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Self-Organized Criticality in a Mixed Hierarchical System
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It is demonstrated that the self-organized criticality emerges in a hierarchical system as a result
of heterogeneity in the scaling conditions. A heterogeneous system consisting of a mixture of the
simplest hierarchical models of failure is considered. Four types of model behavior are obtained:
stability, catastrophe, unstable criticality, and stable (self-organized) criticality. It is shown that the
self-organized criticality reflects heterogeneous properties of media. Possible applications to the study
of seismicity are discussed. [S0031-9007(98)07823-5]

PACS numbers: 64.60.Lx, 91.30.—f

Self-organized critical phenomena have drawn close atmergence in dependence on heterogeneity involved in
tention since their discovery by Bak, Tang, and Wiesenthe system.
feld [1]. They constructed an avalanche system (sandpile Description of the modek-We consider a hierarchical
model) which exhibited a critical behavior, reflected in thesystem of elements with branching numbe+ 3 (Fig. 1).
linear form of the magnitude-frequency relationship, andEach element at the levél+ 1 corresponds to a group of
not associated with any phase transition. This kind of bethree elements of the previous level Elements of the
havior was designated by them salf-organized critical- system have two possible states, broken or unbroken. An
ity (SOC). The linear form of the magnitude-frequencyelement in a broken state is referred to as a defect.
relationship was observed in various natural and artifi- States of elements at the level 1 are determined by
cial systems (see references cited in [1]). In particularthe number of defects in relevant groups of three elements
in geophysics it has been known for a long time as thet the previous level. The number of defects in the group
Gutenberg-Richter law [2]; the idea of SOC was widelysufficient to obtain a defect at the superior level is referred
discussed in this context [3—8]. Systems demonstratingp as the critical number. Any configuration of defects in
self-organized criticality are widely applied to the model-a group of three elements, containing a critical number or
ing of seismic processes [3,9—15] and are able to repranore defects, is referred to as a critical configuration.
duce various basic features of seismicity. In previous models [10,14-16,18] destruction condi-

The main interest in the field since the paper [1] is totions were constant for all elements of the system. In
investigate the conditions after which SOC emerges. Ahe present model the critical numbiemay be different
number of models exhibiting SOC were proposed; amondor different elementsi( = 1,2,3). Itis assumed that the
them avalanche systems [3,11], hierarchical systems of deritical number is independently determined, by a random
fect development [10,14—-16], or the combination of bothchoice, for each element of the system. The fraction of
types [13]. It was discovered that SOC in hierarchical syselements with the critical numbéris denoted ag;. We
tems may appear as a consequence of nhonmonotone carfer to the parameterg, as concentrations of the mix-
ditions of destruction [16] or feedback relations [10,15].ture; they determine heterogeneity of the system. It is
These results, however, do not explain the fact that SOC is
a common feature of nature. Such an explanation could be
given provided SOC generally emerges as a consequence
of some inherent property of natural phenomena.

The importance of heterogeneity in relation to critical
phenomena was previously established [17]. In this
Letter, we investigate the role of heterogeneity in the
emergence of SOC. We consider a simple hierarchical
system with heterogeneous conditions of destruction, and ‘ /
show that appearance of SOC reflects the degree of D 0
heterogeneity. Since heterogeneity is a common feature 0
of natural systems, one can expect that SOC is, indeed, /
typical for the evolution of inhomogeneous media, such as 0
the lithosphere of the Earth. In addition, we identify other

possible regimes of evolution of the system: stability,F|G. 1. A hierarchical system with the branching number
catastrophe, and unstable criticality. We investigate thein = 3.
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assumed that concentrationg are invariant with respect growth of the level numbel [see Eq. (6)].

to the level numbel, reflecting self-similarity of con-

A simple

form of the transition function (2) allows one to determine

ditions of destruction. The sum of the concentrations iparametric areas relevant to different types of system

equal to unity §; + a, + a3 = 1); therefore it is nec-

behavior, to describe areas where the critical behavior

essary to define only two from three concentrations, fomay be observed, and to estimate parameters of the

example,a; and a;.

Homogeneous systems correspondmixture necessary to obtain self-organized criticality.

to degenerated cases of the mixture, when one of the Parameters of the mixture and system behaviethe
concentrationsz; is equal to unity and the two others behavior of the densities of defecs(l) with growth

are zero.
The density of defects at the levél+ 1 can be
expressed as follows:

p(l +1) = F[pO], 1)

of the level number is governed by concentrations
of the mixture and the initial density(1).
investigate behavior of the densitigg!) for different
parameters of the mixturg,. We consider the transition
function F( p) for fixed parameters of the mixturg. The

Now we

where F(p) denotes the probability to obtain a critical fynction (p) is continuous and smooth. It follows from
configuration of defects in a group of three elements, iqu_ (2) that the map defined by the functiéf(p) has

the probability of a defect is equal t®. Assumption of
self-similarity implies that the transition functiah is the

three fixed pointsp =0, p =1, andp = py = (1 —
3a;)/(Bay — 1). The derivationdF /dp = 3a; for p =

same for all levels of the system. The behavior of the. dF/dp = 3as for p = 1; and dF/dp = 1 — (1 —

system is governed by the transition functigh and

3a;) (1 — 3a3)/(1 — 3ay) for p = py. The behavior of

the initial density of defects at the first level of the yensitiesy(/) depends on stable and unstable fixed points
hierarchy p(1). The density of critical configurations, of the map F(p) inside the interval(0, 1), which are
containing exactly defects in a group of three elements y4yerned by the corresponding derivatiofi/dp.

(i) Stability—When the fixed poinp is either below

at level! is equal toV, = Cp*(1 — p)*~*, wherep =
p(l) is the density of defects at level Then, the density
of critical configurations, containing or more defects
in a group, is equal tov, = Z?:k V;. This implies the
following form for the functionF(p):

F(p) = > aiWi(p)
k

=3a;p(1 — p)* + 3(a; + ar)p*(1 — p) + p°,
)
which is completely determined by the concentratiops
Magnitude-frequency relation and criticality=In stud-
ies of seismicity the magnitude of an earthquake is actu-
ally used as a measure of the energy of the earthquake
A linear relation between the magnitude of the earthquake
and the linear size of its source is established [19]:

(3)
In the present model, following Refs. [16], we consider

the magnitude as a characteristic of the size of a defect a
level [:

log,, S = M + const

M(l) = 1 log,,3. (4)
Expressing the average number of defects at the lgvel
N() =3"""p(1), (5)

the magnitude-frequency relation for our model, which is
an analog of Eq. (3) for seismicity, reads as

log,y N(I) = —M(l) + log,, p(I) + const  (6)

We associate critical behavior with a linear form of
the magnitude-frequency relation with a slope equal to

zero or above unity, only two fixed pointg (= 0 and
p = 1) exist inside the interval0, 1). The functionF(p)
lies below the diagonal line (Fig. 2a) or above it (Fig. 2b).

In the first caseF(p) < p for all valuesp (Fig. 2a).
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Then it follows from Eq. (1) that the densitieg/) tend
to zero with the growth of the level numbeér(Fig. 3a).
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unity (cf. [1]). This definition of criticality means that g 5 The transition functior(p) for different parametric

the critical behavior may be obtained when densities ohreas. (a) Area of stability; (b) area of catastrophe; (c) area of
defectsp(l) tend to a constant valup, > 0 with the unstable scale invariance; (d) area of stable scale invariance.
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FIG. 3. Densities of defects for different parametric areasdefectsp(l) tend to zero with the growth of (Fig. 3c,
(@) Area of stability ¢ = 0.1, a, = 02): p(1) =0.1 for curve 1). Forp > py one obtaing"(p) > p, and for all
curve 1 andp(1) = 0.9 for curve 2; (b) area of catastrophe p(1) > p, the densities of defects(/) tend to unity with
lﬁg; :ug\}‘é’ 4 Z)Oé‘gal’gf) ljzrns()t;brgrccrlijtirggli% a(nilpo(ll) - 09 the growth off (Fig. 3c, curve 3). Thus, critical behavior
0.8): p(1) Z 0.1 for curve 1, p(1) =05 f(X)ar1 cur\/elz,zand exists in the sjnglg unstable F’?im (Fig. 3c, curve _2)'
p(]) = 0.9 for curve 3l (d) area of stable Crmcahtw( = 045’ We denote th|S k|nd Of behaV|or a.mstable Cr|t|CaI|ty
a, = 0.1): p(1) = 0.1 for curve 1,p(1) = 0.5 for curve 2, and  (Fig. 4).
p(1) = 0.9 for curve 3. (iv) Stable criticality (SOC}—When concentrations
of the mixture q; satisfy the conditions:;; > 1/3 and
o _ o a) + ax < 2/3 at the same time, the fixed poiph is
We denote this kind of behavior asability, since the stable (Fig. 2d). For all values of the initial densjiy1)
density of defects at the highest levElis very small the densities of defectp(/) tend to the valuep, with
p(L) = 0, and a perturbation actually does not reach highhe growth of the level number (Fig. 3d). The critical
levels of the system. This kind of behavior appears undepehavior exists for all values of initial density of defects
the following conditions (Fig. 4): p(1), and may be denoted astable or self-organized
a; < 1/3, ay + ap <2/3. (7) criticality (Fig. 4).

(ii) Catastrophe—WhenF(p) lies above the diagonal Figure 4 shows all possib.lt_e types of behavior of the sys-
line (Fig. 2b), or equivalently?(p) > p for any p, the tem. Three of them—stfablllty, catastrophe, and unstable
densitiesp(l) tend to unity with the growth of the level cr|t|cal|ty—may be obta|_n_ed for homc_)geneous rules of
number! (Fig. 3b). The density of defects of the highestdestructlon, when the critical numbéris the same for

level p(L) is close to unity, and thus high levels of the 6.‘" elements of the systemk (.= 3, l.’. an_d 2, respec-
system are completely destroyed. Therefore this kind ofV€lY)- In contrast, self-organized criticality occurs only
under heterogeneous conditions of destruction: the most

behavior is denoted asatastrophe It occurs for the different rules of destruction (elements corresponding to
following concentrations of the mixture, (Fig. 4): critical numbersk — 1 andk — 3) must be mixed with
ar > 1/3,  ar +a;>2/3. (8)  sufficiently high concentrationsa( > 1/3 and a3 >

(iii) Unstable criticality—When the fixed poinip, is  1/3). This condition determines high heterogeneity of the
inside the interval0, 1), for p(1) = pg all of the densities system with self-organized critical behavior.
of defects assume the same vaju@) = po. It follows Despite the fact that the considered model is not a
from Eqg. (6) that the magnitude-frequency relation in thisdynamic one and does not describe the temporal evolution
case is linear with a slope equal to unity. This means thabf any natural system, it has a wide field of applications.
the system exhibits critical behavior. It may be applied to the description of processes, where

When concentrations of the mixturg satisfy the con- the result is more important than details of evolution, such
ditionsa; < 1/3 anda; + a» > 2/3 simultaneously, the as the rupture process. It also reflects statistic properties
fixed point py is unstable (Fig. 2c). Fop < po, one  of stationary processes.
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