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It is demonstrated that the self-organized criticality emerges in a hierarchical system as a r
of heterogeneity in the scaling conditions. A heterogeneous system consisting of a mixture of
simplest hierarchical models of failure is considered. Four types of model behavior are obtai
stability, catastrophe, unstable criticality, and stable (self-organized) criticality. It is shown that
self-organized criticality reflects heterogeneous properties of media. Possible applications to the
of seismicity are discussed. [S0031-9007(98)07823-5]
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Self-organized critical phenomena have drawn close
tention since their discovery by Bak, Tang, and Wiese
feld [1]. They constructed an avalanche system (sandp
model) which exhibited a critical behavior, reflected in th
linear form of the magnitude-frequency relationship, an
not associated with any phase transition. This kind of b
havior was designated by them asself-organized critical-
ity (SOC). The linear form of the magnitude-frequenc
relationship was observed in various natural and arti
cial systems (see references cited in [1]). In particula
in geophysics it has been known for a long time as t
Gutenberg-Richter law [2]; the idea of SOC was wide
discussed in this context [3–8]. Systems demonstrat
self-organized criticality are widely applied to the mode
ing of seismic processes [3,9–15] and are able to rep
duce various basic features of seismicity.

The main interest in the field since the paper [1] is
investigate the conditions after which SOC emerges.
number of models exhibiting SOC were proposed; amo
them avalanche systems [3,11], hierarchical systems of
fect development [10,14–16], or the combination of bo
types [13]. It was discovered that SOC in hierarchical sy
tems may appear as a consequence of nonmonotone
ditions of destruction [16] or feedback relations [10,15
These results, however, do not explain the fact that SOC
a common feature of nature. Such an explanation could
given provided SOC generally emerges as a conseque
of some inherent property of natural phenomena.

The importance of heterogeneity in relation to critica
phenomena was previously established [17]. In th
Letter, we investigate the role of heterogeneity in th
emergence of SOC. We consider a simple hierarchi
system with heterogeneous conditions of destruction, a
show that appearance of SOC reflects the degree
heterogeneity. Since heterogeneity is a common feat
of natural systems, one can expect that SOC is, inde
typical for the evolution of inhomogeneous media, such
the lithosphere of the Earth. In addition, we identify othe
possible regimes of evolution of the system: stabilit
catastrophe, and unstable criticality. We investigate th
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emergence in dependence on heterogeneity involved
the system.

Description of the model.—We consider a hierarchical
system of elements with branching numbern ­ 3 (Fig. 1).
Each element at the levell 1 1 corresponds to a group of
three elements of the previous levell. Elements of the
system have two possible states, broken or unbroken. A
element in a broken state is referred to as a defect.

States of elements at the levell 1 1 are determined by
the number of defects in relevant groups of three elemen
at the previous levell. The number of defects in the group
sufficient to obtain a defect at the superior level is referre
to as the critical number. Any configuration of defects in
a group of three elements, containing a critical number o
more defects, is referred to as a critical configuration.

In previous models [10,14–16,18] destruction condi
tions were constant for all elements of the system. I
the present model the critical numberk may be different
for different elements (k ­ 1, 2, 3). It is assumed that the
critical number is independently determined, by a random
choice, for each element of the system. The fraction o
elements with the critical numberk is denoted asak . We
refer to the parametersak as concentrations of the mix-
ture; they determine heterogeneity of the system. It

FIG. 1. A hierarchical system with the branching numbe
n ­ 3.
© 1998 The American Physical Society 5445
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assumed that concentrationsak are invariant with respect
to the level numberl, reflecting self-similarity of con-
ditions of destruction. The sum of the concentrations
equal to unity (a1 1 a2 1 a3 ­ 1); therefore it is nec-
essary to define only two from three concentrations, f
example,a1 and a2. Homogeneous systems correspon
to degenerated cases of the mixture, when one of
concentrationsak is equal to unity and the two others
are zero.

The density of defects at the levell 1 1 can be
expressed as follows:

psl 1 1d ­ Ffpsldg , (1)

where Fspd denotes the probability to obtain a critica
configuration of defects in a group of three elements,
the probability of a defect is equal top. Assumption of
self-similarity implies that the transition functionF is the
same for all levels of the system. The behavior of th
system is governed by the transition functionF and
the initial density of defects at the first level of the
hierarchy ps1d. The density of critical configurations,
containing exactlyk defects in a group of three element
at level l is equal toVk ­ Ck

3 pks1 2 pd32k, wherep ­
psld is the density of defects at levell. Then, the density
of critical configurations, containingk or more defects
in a group, is equal toWk ­

P3
l­k Vl . This implies the

following form for the functionFspd:

Fspd ­
X

k

akWkspd

­ 3a1ps1 2 pd2 1 3sa1 1 a2dp2s1 2 pd 1 p3,
(2)

which is completely determined by the concentrationsak.
Magnitude-frequency relation and criticality.—In stud-

ies of seismicity the magnitude of an earthquake is ac
ally used as a measure of the energy of the earthqua
A linear relation between the magnitude of the earthqua
and the linear size of its source is established [19]:

log10 S ø M 1 const. (3)

In the present model, following Refs. [16], we conside
the magnitude as a characteristic of the size of a defec
level l:

Msld ­ l log10 3 . (4)

Expressing the average number of defects at the levell,

Nsld ­ 3L2lpsld , (5)

the magnitude-frequency relation for our model, which
an analog of Eq. (3) for seismicity, reads as

log10 Nsld ­ 2Msld 1 log10 psld 1 const. (6)

We associate critical behavior with a linear form o
the magnitude-frequency relation with a slope equal
unity (cf. [1]). This definition of criticality means that
the critical behavior may be obtained when densities
defectspsld tend to a constant valuep0 . 0 with the
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growth of the level numberl [see Eq. (6)]. A simple
form of the transition function (2) allows one to determine
parametric areas relevant to different types of syste
behavior, to describe areas where the critical behavi
may be observed, and to estimate parameters of t
mixture necessary to obtain self-organized criticality.

Parameters of the mixture and system behavior.—The
behavior of the densities of defectspsld with growth
of the level numberl is governed by concentrationsak

of the mixture and the initial densityps1d. Now we
investigate behavior of the densitiespsld for different
parameters of the mixtureak. We consider the transition
functionFspd for fixed parameters of the mixtureak. The
functionFspd is continuous and smooth. It follows from
Eq. (2) that the map defined by the functionFspd has
three fixed points:p ­ 0, p ­ 1, and p ­ p0 ­ s1 2

3a1dys3a2 2 1d. The derivationdFydp ­ 3a1 for p ­
0; dFydp ­ 3a3 for p ­ 1; and dFydp ­ 1 2 s1 2

3a1d s1 2 3a3dys1 2 3a2d for p ­ p0. The behavior of
densitiespsld depends on stable and unstable fixed point
of the map Fspd inside the intervals0, 1d, which are
governed by the corresponding derivationdFydp.

(i) Stability.—When the fixed pointp0 is either below
zero or above unity, only two fixed points (p ­ 0 and
p ­ 1) exist inside the intervals0, 1d. The functionFspd
lies below the diagonal line (Fig. 2a) or above it (Fig. 2b)

In the first caseFspd , p for all valuesp (Fig. 2a).
Then it follows from Eq. (1) that the densitiespsld tend
to zero with the growth of the level numberl (Fig. 3a).

FIG. 2. The transition functionFspd for different parametric
areas. (a) Area of stability; (b) area of catastrophe; (c) area
unstable scale invariance; (d) area of stable scale invariance.
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FIG. 3. Densities of defects for different parametric area
(a) Area of stability (a1 ­ 0.1, a2 ­ 0.2): ps1d ­ 0.1 for
curve 1 andps1d ­ 0.9 for curve 2; (b) area of catastrophe
(a1 ­ 0.4, a2 ­ 0.4): ps1d ­ 0.1 for curve 1 andps1d ­ 0.9
for curve 2; (c) area of unstable criticality (a1 ­ 0.1, a2 ­
0.8): ps1d ­ 0.1 for curve 1, ps1d ­ 0.5 for curve 2, and
ps1d ­ 0.9 for curve 3; (d) area of stable criticality (a1 ­ 0.45,
a2 ­ 0.1): ps1d ­ 0.1 for curve 1,ps1d ­ 0.5 for curve 2, and
ps1d ­ 0.9 for curve 3.

We denote this kind of behavior asstability, since the
density of defects at the highest levelL is very small
psLd ø 0, and a perturbation actually does not reach hig
levels of the system. This kind of behavior appears und
the following conditions (Fig. 4):

a1 , 1y3, a1 1 a2 , 2y3 . (7)

(ii) Catastrophe.—WhenFspd lies above the diagonal
line (Fig. 2b), or equivalentlyFspd . p for any p, the
densitiespsld tend to unity with the growth of the level
numberl (Fig. 3b). The density of defects of the highes
level psLd is close to unity, and thus high levels of th
system are completely destroyed. Therefore this kind
behavior is denoted ascatastrophe. It occurs for the
following concentrations of the mixtureak (Fig. 4):

a1 . 1y3, a1 1 a2 . 2y3 . (8)

(iii) Unstable criticality.—When the fixed pointp0 is
inside the intervals0, 1d, for ps1d ­ p0 all of the densities
of defects assume the same valuepsld ­ p0. It follows
from Eq. (6) that the magnitude-frequency relation in th
case is linear with a slope equal to unity. This means th
the system exhibits critical behavior.

When concentrations of the mixtureak satisfy the con-
ditionsa1 , 1y3 anda1 1 a2 . 2y3 simultaneously, the
fixed point p0 is unstable (Fig. 2c). Forp , p0, one
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FIG. 4. Different parametric areas of behavior of the syste
The triangle is divided by two straight lines:a1 ­ 1y3 and
a1 1 a2 ­ 2y3.

hasFspd , p. Thus, for allps1d , p0 the densities of
defectspsld tend to zero with the growth ofl (Fig. 3c,
curve 1). Forp . p0 one obtainsFspd . p, and for all
ps1d . p0 the densities of defectspsld tend to unity with
the growth ofl (Fig. 3c, curve 3). Thus, critical behavio
exists in the single unstable pointp0 (Fig. 3c, curve 2).
We denote this kind of behavior asunstable criticality
(Fig. 4).

(iv) Stable criticality (SOC).—When concentrations
of the mixture ak satisfy the conditionsa1 . 1y3 and
a1 1 a2 , 2y3 at the same time, the fixed pointp0 is
stable (Fig. 2d). For all values of the initial densityps1d
the densities of defectspsld tend to the valuep0 with
the growth of the level numberl (Fig. 3d). The critical
behavior exists for all values of initial density of defec
ps1d, and may be denoted asstable or self-organized
criticality (Fig. 4).

Figure 4 shows all possible types of behavior of the s
tem. Three of them—stability, catastrophe, and unsta
criticality—may be obtained for homogeneous rules
destruction, when the critical numberk is the same for
all elements of the system (k ­ 3, 1, and 2, respec-
tively). In contrast, self-organized criticality occurs onl
under heterogeneous conditions of destruction: the m
different rules of destruction (elements corresponding
critical numbersk ­ 1 and k ­ 3) must be mixed with
sufficiently high concentrations (a1 . 1y3 and a3 .

1y3). This condition determines high heterogeneity of t
system with self-organized critical behavior.

Despite the fact that the considered model is not
dynamic one and does not describe the temporal evolu
of any natural system, it has a wide field of application
It may be applied to the description of processes, wh
the result is more important than details of evolution, su
as the rupture process. It also reflects statistic proper
of stationary processes.
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The described model allows for combination of both
stable and unstable criticality in the behavior of on
system. This combination may be very important in orde
to understand the nature of different predictability of cata
strophic events, in particular, that of strong earthquake
Applications of a fixed precursor of a catastrophic even
give different results in models with unstable [20] and
stable [21] critical behavior. Variations of predictability
for a fixed algorithm were observed in the earthquak
prediction [22]. The complex behavior obtained in the
present simple model allows one to obtain variations o
the predictability of strong events and to investigate th
validity of various precursors of a strong earthquake i
different parametric areas.

In conclusion, it was shown that heterogeneity of th
medium is crucial for the appearance of self-organize
critical behavior. The existence of a phase diagram
which SOC appears only for sufficiently large heterogene
ity has been announced for a different system in [23
Here, we demonstrate that SOC really emerges when t
heterogeneity of destruction conditions is relatively strong
the most robust and the most fragile elements must
mixed in large proportions (a1 $ 1y3, a3 $ 1y3). Thus
the self-organized criticality (linear form of the magnitude
frequency relationship) is expected to be a common featu
of various systems with high heterogeneity.

The present work was supported by INTAS Foun
dation (Project Code No. INTAS-94-232) and by Inter
national Science and Technology Center (Project Cod
No. 415-96).
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