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An efficient continuous-time path-integral quantum Monte Carlo algorithm for the lattice polaron i
presented. It is based on Feynman’s integration of phonons and subsequent simulation of the resu
single-particle self-interacting system. The method is free from the finite-size and finite-time-step erro
and works in any dimensionality and for any range of electron-phonon interaction. The ground-sta
energy and effective mass of the polaron are calculated for several models. The polaron spectrum
be measured directly by Monte Carlo, which is of general interest. [S0031-9007(98)07859-4]
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The past few years have witnessed a rapid develo
ment of continuous-time quantum Monte Carlo (QMC
algorithms for quantum-mechanical lattice models. Th
driving force behind this is the desire to eliminate the sy
tematic errors introduced by the Trotter decomposition
the standard discrete-time QMC methods [1]. The ma
idea then is to regard the imaginary-time evolution of
particle or spin configuration as a continuous-time Poi
son process with “events” being either a particle jump o
a spin flip. In this way continuous-time QMC algorithms
were developed for a particle in an external potential [2
Heisenberg model [3,4],t-J model [5], bosonic Hubbard
model [6], and Fröhlich polaron [7].

In this Letter I present a continuous-time path-integr
QMC algorithm for the lattice polaron, i.e., an electro
strongly interacting with phonons on a lattice. The metho
combines analytical integration of the phonon degrees
freedom with the advantages of the continuous-time fo
mulation of the Monte Carlo process. The method is un
versal. It works for infinite lattices in any dimensionality
and for any radius of electron-phonon interaction. It is als
free from the systematic finite-time-step errors which we
an undesirable feature of the original (discrete-time) QM
algorithm based on the integration of phonons [8]. In fac
the new method allows forexact(in the QMC sense) calcu-
lation of the ground-state energy, effective mass, and ev
spectrumof the polaron. The numerical accuracy of th
method is0.1% 0.3%, which is not as good as that of ex-
act diagonalization [9,10] and density-matrix renormaliza
tion group [11] schemes, but is good enough for practic
purposes.

I begin with the important question of which quanti
ties can be calculated with a path-integral QMC metho
The traditional scheme samples paths which are periodic
imaginary time, see, e.g., Refs. [1,8]. This allows for th
calculation of thermodynamic properties such as intern
energy or specific heat, as well as some static correlat
functions, but not dynamic properties of the system.
Ref. [12] it was shown that the polaron effective mass, a
important dynamic characteristic, can be measured on
0031-9007y98y81(24)y5382(4)$15.00
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ensemble of paths withopenboundary conditions in imagi-
nary time (BCIT). Here I extend the argument to the whol
polaron spectrum. Consider two quantities. The firs
one,ZP ­

P
ikije2bH jildPi ,P , is by definition the partition

function of many-body states with fixed total (electron plu
phonon) quasimomentumP [b ­ skBT d21 and H is the
Hamiltonian]. The second quantity is the partition func
tion with twisted BCIT,ZDr ­ TrDre2bH , in which the
many-body configurations (electron positionr and ionic
displacements$j) at t ­ b are obtained from the configu-
rations att ­ 0 by shifting along the lattice by the vector
Dr. There exists a fundamental Fourier-type relation be
tween the two [12]:

ZP ­
X
Dr

eiPDrZDr ­
Z

op
D r D $j eiPDrwfrstd $jstdg .

(1)

Here wfrstd $jstdg is the (positive-definite) weight of
a many-body path satisfying the twisted BCIT, andR

op D r D $j means the integration over such paths with a
possible shiftsDr. In the low-temperature limit,b ! `,
ZP is dominated by the lowest eigenstateEP : ZP ­
exps2bEPd andEP ­ 2

1
ZP

≠ZP

≠b . Equation (1) then gives

EP ­

R
op D r D $j eiPDrf2 1

w
≠w
≠b gwR

op D r D $j eiPDrw
;

k2eiPDr 1
w

≠w
≠b l0

keiPDrl0
,

(2)

wherekAl0 ; s
R

op D r D $j wd21
R

op D r D $j Aw stands
for the average in the caseP ­ 0. Equation (2) shows that
the ground-state dispersion of the polaron can be inferr
directly from imaginary-time simulations. However, the
formalism is not free from the sign problem, as apparen
from Eq. (2). Energies for nonzero values ofP can be
obtained only at intermediate and large electron-phono
couplings when the averagekeiPDrl0 ­ kcosPDrl0 is not
small. The ground state corresponds toP ­ 0 and its
energy can be calculated straightforwardly using Eq. (2)
© 1998 The American Physical Society
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Analogous formulas can be obtained for derivative
of EP with respect to momentum, e.g., for the invers
effective mass. In the low-temperature limit one can wri
EP ­ 2

1
b ln ZP since there is no difference between1yb

and≠y≠b. From this and Eq. (1), it follows that

1
mp

a

;
1
h̄2

≠2EP

≠P2
a

Ç
P­0

­

R
op D r D $j f sDrad2

h̄2b
gwR

op D r D $j w

­
ksDrad2l0

h̄2b
. (3)

One can see that the inverse effective mass is the “dif
sion coefficient” of the imaginary-time propagation. (Fo
similar treatment of the continuous polaron and of an ato
of 3He in liquid 4He, see [13] and [14], respectively.)

Thus, to compute dynamical properties, the QMC pr
cess should sample paths with open BCIT. Consider n
a particular polaron system on a hypercubic lattice wi
nearest-neighbor hopping. The model is defined by t
s
e
te

fu-
r
m

o-
ow
th
he

Hamiltonian

H ­ 2t
X
nn0

c
y
n0cn 2

X
mn

fmsndcy
ncnjm 1 h̄v

X
m

by
mbm .

(4)

The phonon subsystem (operatorsby
m, bm) is a set of

uncoupled harmonic oscillators, one per site, with intern
coordinatesjm, frequencyv, and reduced massM. The
lattice is assumed to be infinite in all dimensions. Th
electron-phonon interaction is taken to be of the “densi
displacement” form. No restriction is imposed on the for
of forcefmsnd with which the electron at siten acts onmth
oscillator.

Since Feynman’s classic work on polarons [15], it h
been known that phonon degrees of freedom [variab
$jstd] can be integrated out in the path-integral represe
tation of the partition function, Eq. (1), leading to a re
tarded self-interaction of the electron. ForperiodicBCIT,
jmsbd ­ jms0d, the phonon-induced part of the polaro
action is [15]
Aper frstdg ­
h̄

4Mv

Z b

0

Z b

0
dt1 dt2

coshh̄vs b

2 2 jt1 2 t2jd
sinh h̄vb

2

X
m

fmsssrst1ddddfmsssrst2dddd , (5)
h
d
is

en

)
for

c-

b-

-

whererstd is the electron path. However, in the case o
open BCIT the integration must be performed under t
constraintjm1Drsbd ­ jms0d, whereDr ­ rsbd 2 rs0d
is the shift of the electron path. For nonzeroDr this
yields anextra termin the action

DAfrstdg ­
h̄

2Mv

X
m

BmsCm1Dr 2 Cmd , (6)

where

Bm ­
Z b

0
dt e2 h̄vtfmsssrstdddd ,

Cm ­
Z b

0
dt e2 h̄vsb2tdfmsssrstdddd .

(7)

This formula is valid only in the limiteb h̄v ¿ 1, which
is easy to realize in practice. Thus, the integration ov
phonons reduces the problem to a single-particle syst
with an extra factor expsAd ­ expsAper 1 DAd in the
weight of each pathrstd.

I now describe how this factor should be incorporate
into the general scheme of continuous-time QMC [16
In d dimensions the hopping term in the Hamiltonia
(4) introduces2d independentPoisson processes with
events, or “kinks” (after Ref. [2]), being jumps of an
electron path to one of2d nearest neighbors. The proba
bility to have Nk kinks of a given sort on the time
interval f0, bg is given by the Poisson distributionPNk ­
sNk!d21stbdNk e2tb. The Monte Carlo process consist
of (i) proposing a change of the path by either removin
existing kinks or adding new kinks and (ii) either acceptin
or rejecting the proposal. (Another possible subprocess
f
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-
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g
g
is

the shift of a kink in time but this can always be achieve
by adding and removing.) Because of the open BCIT, it
sufficient to change the number of kinks just by one. Wh
a kink is added (removed) at timet0 thewholepath att .

t0 is shifted in the corresponding direction (antidirection
by one lattice site (see Fig. 1). The balance equation
the adding-removing process is

qaW sNkdPasNk ! Nk 1 1d ­ qrWsNk 1 1d
3 Pr sNk 1 1 ! Nkd ,

(8)

whereWsNkd is the probability to have a given path with
Nk kinks of a given sort, andqa and qr are the proba-
bilities of attempting to add or remove a kink, respe
tively. In this paper,qa ­ qr ­ 1y2 is used forNk $ 1,
and qa ­ 1, qr ­ 0 for Nk ­ 0 (if there are no kinks
of a given sort, one can only add one). In the a
sence of electron-phonon interaction the ratioWsNk 1 1dy
WsNkd ­ tbysNk 1 1d follows from the Poisson distri-
bution. In the general case, eachW is multiplied by its
phonon-induced weighteA. The acceptance rules now fol
low from Eq. (8):

PasNk ! Nk 1 1d ­ min

∑
1,

tb

Nk 1 1
eANk 112ANk

∏
, (9)

to add a new kink to the existingNk of a given sort, and

Pr sNk 1 1 ! Nkd ­ min

∑
1,

Nk 1 1
tb

eANk 2ANk 11

∏
,

(10)
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FIG. 1. A typical polaron path forb ­ 10t21 (solid line).
When the kink att0 ­ 7.0t21 (bold line) is removed, the whole
path at t0 , t , b is shifted to the left by one lattice site
(dashed line). Dr changes from21 to 22.

to remove one of the existingNk 1 1 kinks of a given sort.
For the special caseNk ­ 0, the preexponential factor in
Eq. (9) must betby2 instead oftb, and in Eq. (10) it must
be2ystbd instead of1ystbd.

The explicit form of the energy estimator that ente
Eq. (2) follows from theDt ! 0 limit of the correspond-
ing finite-time expression [8]

2
1
w

≠w
≠b

­ 2
N tot

k

b
2

≠A
≠b

, (11)

whereN tot
k is the total number of kinks (of all sorts) on a

path. Note that due to the open BCIT the thermodynam
estimator (11) measures the ground-state energy rat
than full internal energy.

Summarizing the procedure, the QMC process samp
single-particle paths with open BCIT by inserting an
deleting kinks of2d types. The acceptance rules for thes
two fundamental processes are given by Eqs. (9) and (1
The actionA is a functional of the electron pathrstd and
is given by the sum of Eqs. (5) and (6). Measured quan
ties include the energy estimator (11) and the inverse m
estimator1

b frasbd 2 ras0dg2. The polaron spectrum and
effective mass are calculated with Eqs. (2) and (3), resp
tively. Note that statistics forall momenta (i.e., for as
manyP points as one wants) are collected during asingle
QMC run. In practical simulations successive measu
ments were taken every tenth single-kink step to redu
statistical correlations. For each set of model paramet
several series of 500 000 or 1 000 000 measurements w
conducted for different values ofb to detect possible finite-
temperature systematic errors, typically forbh̄v ­ 10,
15, 20, and 25. No such errors were detected.

The method was tested on the Holstein model, f
which independent numerical results are available. T
Holstein model is a particular case of Eq. (4) wit
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fmsnd ­ kdmn. The model is parametrized by the
dimensionless frequencȳv ­ h̄vyt and the dimension-
less coupling constantl ; f

P
m f2

ms0dgy2dt Mv2 ­
k2y2dt Mv2. Excellent agreement with previously pub
lished or communicated results was found. For examp
in d ­ 1 [Figs. 2 and 3 (circles)] the present method
estimate of the ground-state energy forv̄ ­ 1.0, l ­ 0.5
is E0 ­ 22.471 6 0.001 (in units of t), with the true
value being in the intervals22.46968, 22.471d [17]; for
v̄ ­ 1.0, l ­ 1.0 it yields E0 ­ 22.999 6 0.001 with
the true value ins22.99883, 23.000d [17]. For v̄ ­ 1.0
and l ­ 1.25, 1.5, and 2.0, the estimated energies a
23.298, 23.623, and 24.388, respectively, which are,
to within statistical error (60.002), precisely the values
obtained by the exact diagonalization (ED) method [18
For v̄ ­ 2.0 and l ­ 1.5625 and 2.25, QMC yields
E0 ­ 24.013 and 25.070, respectively, in agreemen
with the strong-coupling perturbation theory [19]. Po
laron masses obtained by QMC are in excellent agreem
with variational calculations [17] and with density-matri
renormalization group (DMRG) results [11]. Ind ­ 2,
v̄ ­ 1.0 [Figs. 2 and 3 (filled squares)], QMC’s ener
gies agree with ED [20] and QMC’s masses agree w
DMRG [11]. All of these checks confirm that the prese
algorithm is free from systematic errors of any kind
Statistical errors are small,0.1% 0.3% in most cases.

As a new application of the method the ground-sta
energy and effective polaron mass were calculated
the three-dimensional Holstein model [see Figs. 2 and
(triangles)]. At present, three-dimensional lattices are o
of reach of ED and DMRG methods due to the enormo
phonon Hilbert space. The present Monte Carlo algorith
treats all of the phonons in an infinite lattice exact
through the analytical integration so the lattice size
irrelevant. Another advantage of the method is its abili
to study long-range electron-phonon interactions. Inde
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E
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t
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2D Long-range

FIG. 2. Ground-state polaron energy for several models.
all cases,v̄ ­ 1.0. Statistical errors are smaller than th
symbols.
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FIG. 3. Inverse effective polaron mass in units of1ym0 ­
2ta2yh̄2 for several models. In all cases,v̄ ­ 1.0. Statistical
errors are smaller than the symbols.

the interaction enters the formalism only via lattice sumP
m fmsr1dfmsr2d which can be computed in advance fo

all r1 2 r2 and stored for later calculation of the actionA.
Figures 2 and 3 (open squares) show results forfmsnd ­
ksjm 2 nj2 1 1d23y2 in d ­ 2 (for this interaction,l ­
1.742k2y4tMv2). This form offmsnd has recently been
proposed to model the interaction between in-plane ho
andapical oxygens in high-Tc superconductors [21]. One
can see that at largel the polaron is much lighter than in
the Holstein case. Indeed, a long-range interaction resu
in “wider” polaron paths and, consequently, in a small
effective mass by virtue of Eq. (3). Finally, I present th
polaronspectrumin the d ­ 1 Holstein model forv̄ ­
1.0 and l ­ 1.75, calculated with Eq. (2) (see Fig. 4)
The spectrum flattens at large momenta as was reveale
previous numerical studies [22,23]. The actual energ
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FIG. 4. The polaron spectrumEP (in units of t) in the one-
dimensional Holstein model for̄v ­ 1.0 andl ­ 1.75. Open
circles are exact diagonalization results [20].
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EP are in excellent agreement with ED results [20]. Thi
demonstrates that areal-time spectrum can be measured
directly by animaginary-timepath-integral QMC.

In conclusion, an efficient continuous-time path
integral quantum Monte Carlo algorithm for the lattice
polaron has been presented. It is free from the finite-si
and finite-time-step systematic errors. The method wor
for infinite lattices and any range of electron-phono
interaction. It allows for exact calculation of the ground
state energy, effective mass, and spectrum of the polar
More technical details will be presented elsewhere.
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