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Continuous-Time Quantum Monte Carlo Algorithm for the Lattice Polaron
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An efficient continuous-time path-integral quantum Monte Carlo algorithm for the lattice polaron is
presented. It is based on Feynman’s integration of phonons and subsequent simulation of the resulting
single-particle self-interacting system. The method is free from the finite-size and finite-time-step errors
and works in any dimensionality and for any range of electron-phonon interaction. The ground-state
energy and effective mass of the polaron are calculated for several models. The polaron spectrum can
be measured directly by Monte Carlo, which is of general interest. [S0031-9007(98)07859-4]

PACS numbers: 71.38.+i, 02.70.Lq

The past few years have witnessed a rapid developensemble of paths withpenboundary conditions in imagi-
ment of continuous-time quantum Monte Carlo (QMC) nary time (BCIT). Here | extend the argument to the whole
algorithms for quantum-mechanical lattice models. Thepolaron spectrum. Consider two quantities. The first
driving force behind this is the desire to eliminate the sysone,Zp = Zi<i|€_'BH|i>5Pi,P, is by definition the partition
tematic errors introduced by the Trotter decomposition irfunction of many-body states with fixed total (electron plus
the standard discrete-time QMC methods [1]. The mairphonon) quasimomentul [8 = (kgT)~! and H is the
idea then is to regard the imaginary-time evolution of aHamiltonian]. The second quantity is the partition func-
particle or spin configuration as a continuous-time Poistion with twisted BCIT,Zx, = Trare 2%, in which the
son process with “events” being either a particle jump omany-body configurations (electron positienand ionic
a spin flip. In this way continuous-time QMC algorithms displacementg) at = g are obtained from the configu-
were developed for a particle in an external potential [2]rations atr = 0 by shifting along the lattice by the vector
Heisenberg model [3,4}-/ model [5], bosonic Hubbard Ar. There exists a fundamental Fourier-type relation be-
model [6], and Frohlich polaron [7]. tween the two [12]:

In this Letter | present a continuous-time path-integral
QMC algorithm for the lattice polaron, i.e., an electron iPAr 2 iPAr 2
strongly interacting with phonons on a Iattlce The method Zr = Z e Zar fop DrDée wlr(nem)].
combines analytical integration of the phonon degrees of 1)
freedom with the advantages of the continuous-time for-
mulation of the Monte Carlo process. The method is uniHere w[r(r)g(r)] is the (positive-definite) weight of
versal. It works for infinite lattices in any dimensionality a many-body path satisfying the twisted BCIT, and
and for any radius of electron-phonon interaction. Itis alsoj Dr fD§ means the integration over such paths with all
free from the systematic finite-time-step errors which wereyossible shiftsAr. In the low-temperature limit3 — o,
an undesirable feature of the original (discrete-time) QMCz, is dominated by the lowest eigenstai: Zp =

algorithm based on the integration of phonons [8]. In factexp —gEp) andEp = _% %_ Equation (1) then gives
the new method allows faxact(in the QMC sense) calcu-

lation of the ground-state energy, effective mass, and even Dr DE PArp_L 2w iPAr 1 9w
spectrumof the polaron. The numerical accuracy of the gp = f"P r §e = 85] = < ¢ _PAW "B> ,
method is0.1%-0.3%, which is not as good as that of ex- Jop Dy DE eiPAry (e’PAr)o

act diagonalization [9,10] and density-matrix renormaliza- 2)
tion group [11] schemes, but is good enough for practical . R

purposes. where(A) = ([,, DrDéw)~! [, Dr DE Aw stands

| begin with the important question of which quanti- for the average in the ca®e= 0. Equation (2) shows that

ties can be calculated with a path-integral QMC methodthe ground-state dispersion of the polaron can be inferred
The traditional scheme samples paths which are periodic idirectly from imaginary-time simulations. However, the
imaginary time, see, e.g., Refs. [1,8]. This allows for theformalism is not free from the sign problem, as apparent
calculation of thermodynamic properties such as internairom Eq. (2). Energies for nonzero values Bfcan be
energy or specific heat, as well as some static correlatioobtained only at intermediate and large electron-phonon
functions, but not dynamic properties of the system. Incouplings when the average’*2r), = (cosPAr), is not
Ref. [12] it was shown that the polaron effective mass, arsmall. The ground state correspondsRo= 0 and its
important dynamic characteristic, can be measured on thenergy can be calculated straightforwardly using Eq. (2).
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Analogous formulas can be obtained for derivativesHamiltonian
of Ep with respect to momentum, e.g., for the inverse

effective mass. In the low-temperature limit one can write H = —th,J{/cn — me(n)c;cngm + hw Zb:{,bm.
Ep = —+ InZp since there is no difference betwekf3 nn/ mn m
ando/oB. From this and Eq. (1), it follows that (4)
2 (A2 The phonon subsystem (operatdsd, by,) is a set of
1 — 1 9*Ep _ fop DrD¢ nB Iw uncoupled harmonic oscillators, one per site, with internal
mk "> 9P% |p— fop Dr DE w coordinatesty,, frequencyw, and reduced masg. The

(Ara)o lattice is assume_d to be_ inf_inite in all dimensions. T_he
= 5. (3) electron-phonon interaction is taken to be of the “density-

h=p displacement” form. No restriction is imposed on the form
of force fim (n) with which the electron at site acts onmth

One can see that the inverse effective mass is the “diffu-" "
oscillator.

sion coefficient” of the imaginary-time propagation. (For Si F 's classi K | 15] it h
similar treatment of the continuous polaron and of an atorTP3 mcke eyntnr’]laP shc aSSICdWOI’ on '?Of arogs [15]. I b?s
of *He in liquid “He, see [13] and [14], respectively.) een known that phonon degrees of freedom [variables

Thus, to compute dynamical properties, the QMC pro_f(r)] can be integrated out in the path-integral represen-

cess should sample paths with open BCIT. Consider noJtion of the partition function, Eq. (1), leading to a re-
a particular polaron system on a hypercubic lattice withtarded self-interaction of the electron. FmeriodicBCIT,

nearest-neighbor hopping. The model is defined by }hé;gtggg i: [éilg](o)’ the phonon-induced part of the polaron

B B Wiw(Z — _
el = i [ [ an, SRS BB () (). ®

2

wherer(7) is the electron path. However, in the case |ofthe shift of a kink in time but this can always be achieved
open BCIT the integration must be performed under théby adding and removing.) Because of the open BCIT, itis
constraintéy +ar(8) = ém(0), whereAr = r(8) — r(0)  sufficient to change the number of kinks just by one. When
is the shift of the electron path. For nonzeir this akinkis added (removed) at timg thewholepath atr >
yields anextra termin the action 7o IS shifted in the corresponding direction (antidirection)
ki by one lattice site (see Fig. 1). The balance equation for
AA[r(7)] = M > Bum(Cm+ar — Cm),  (6)  the adding-removing process is
m

where GaW(N)Po(Ny — Ny + 1) = g, W(Ny + 1)

B XP;‘(Nk+]_’Nk)»
Ban = [0 dr e 7 fu(x(r). ®)

7
B he(B—1) Q) whereW(N,) is the probability to have a given path with
Cm = fo dre fm(x(7)). Ny kinks of a given sort, and, and g, are the proba-

) i i ) o ) bilities of attempting to add or remove a kink, respec-
This formula is valid only in the limit#”"® > 1, which tively. In this paperg, = ¢, = 1/2 is used forN; = 1

is easy to realize in practice. Thus, the integration ovegq ga = 1, g, = 0 for Ny = 0 (if there are no kinks
phonons reduces the problem to a single-particle systegy 5 given sort, one can only add one). In the ab-
with an extra factor expl) = explAper + AA) in the  gence of electron-phonon interaction the raiov, + 1)/
weight of each patin(r). _ W(Ny) = tB/(Ny + 1) follows from the Poisson distri-

I now describe how this factor should be incorporatedy, tion. In the general case, eabhis multiplied by its

into the general scheme of continuous-time QMC [16].5honon-induced weight'. The acceptance rules now fol-
In d dimensions the hopping term in the Hamiltonian o from Eqg. (8):

(4) introduces2d independentPoisson processes with
events, or “kinks” (after Ref. [2]), being jumps of an
electron path to one dfd nearest neighbors. The proba-
bility to have N, kinks of a given sort on the time
interval [0, B8] is given by the Poisson distributiafy, = to add a new kink to the existingj; of a given sort, and
(N ) ' (tB)Nee "B, The Monte Carlo process consists

of (i) proposing a change of the path by either removing P,(N, + 1 > Ny) = min[l, N +1 o —ANW}’
existing kinks or adding new kinks and (ii) either accepting 1B

or rejecting the proposal. (Another possible subprocess is (20)

1B

PNy — Ny + 1) =min| 1, —— ANHI‘ANk}, 9
(e = N+ 1) = min 1, B ©
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fm(Mm) = k8un. The model is parametrized by the
dimensionless frequency = fw/t and the dimension-
S less coupling constantA = [>, f2(0)]/2dt Mw? =
‘ k2/2dt Mw?. Excellent agreement with previously pub-
lished or communicated results was found. For example,
in d = 1 [Figs. 2 and 3 (circles)] the present method’s
estimate of the ground-state energy for= 1.0, A = 0.5

I is Eg = —2.471 = 0.001 (in units of ¢), with the true
40 - ] value being in the interval—2.46968, —2.471) [17]; for
@ = 1.0, A = 1.0 it yields E; = —2.999 = 0.001 with

I the true value in(—2.99883, —3.000) [17]. Fora = 1.0
20 1 and A = 1.25, 1.5, and 2.0, the estimated energies are
—3.298, —3.623, and —4.388, respectively, which are,
to within statistical error £0.002), precisely the values

10.0

@
o
T
I

6.0 - B

Imaginary time, t

00, 3 2 ‘ 0 1 2 obtained by the exact diagonalization (ED) method [18].

-1
Lattice site For @ = 2.0 and A = 1.5625 and 2.25, QMC yields
FIG. 1. A typical polaron path for3 = 10¢~! (solid line). Eq = —4.013 and —5.070, respectively, in agreement

When the kink at-y = 7.0: ' (bold line) is removed, the whole With the strong-coupling perturbation theory [19]. Po-
path atry < 7 < B is shifted to the left by one lattice site laron masses obtained by QMC are in excellent agreement

(dashed line). Ar changes from-1 to —2. with variational calculations [17] and with density-matrix
renormalization group (DMRG) results [11]. b= 2,

to remove one of the existing; + 1 kinks of agivensort. @ = 1.0 [Figs. 2 and 3 (filled squares)], QMC's ener-

For the special cas¥, = 0, the preexponential factor in gies agree with ED [20] and QMC’s masses agree with

Eg. (9) mustbeB/2 instead of 3, and in Eq. (10) itmust DMRG [11]. All of these checks confirm that the present

be2/(¢B) instead ofl /(zB). algorithm is free from systematic errors of any kind.
The explicit form of the energy estimator that entersStatistical errors are smaf),1%—-0.3% in most cases.

Eqg. (2) follows from theAr — 0 limit of the correspond- As a new application of the method the ground-state

ing finite-time expression [8] energy and effective polaron mass were calculated for

19 tot the three-dimensional Holstein model [see Figs. 2 and 3
= - - —, (11) (triangles)]. At present, three-dimensional lattices are out
wIp B Ip of reach of ED and DMRG methods due to the enormous
whereN;*' is the total number of kinks (of all sorts) on a phonon Hilbert space. The present Monte Carlo algorithm
path. Note that due to the open BCIT the thermodynamidreats all of the phonons in an infinite lattice exactly
estimator (11) measures the ground-state energy rath#érough the analytical integration so the lattice size is
than full internal energy. irrelevant. Another advantage of the method is its ability
Summarizing the procedure, the QMC process sample® study long-range electron-phonon interactions. Indeed,
single-particle paths with open BCIT by inserting and

deleting kinks of2d types. The acceptance rules for these 10 ‘
two fundamental processes are given by Egs. (9) and (10). , @— 1D Holstein
The actionA is a functional of the electron patt{r) and -2.0 == 2D Holstein

A—A 3D Holstein

is given by the sum of Egs. (5) and (6). Measured quanti- 2D Long-range]

ties include the energy estimator (11) and the inverse mass I
estimatoré[ra(ﬁ) — ro(0)]>. The polaron spectrum and 400
effective mass are calculated with Egs. (2) and (3), respec-_, f
tively. Note that statistics foall momenta (i.e., for as Eo -5.0
manyP points as one wants) are collected duringjragle I
QMC run. In practical simulations successive measure- I
ments were taken every tenth single-kink step to reduce ;g
statistical correlations. For each set of model parameters
several series of 500 000 or 1000 000 measurements were 8.0
conducted for different values @fto detect possible finite- 90| ‘ ‘
temperature systematic errors, typically f8fiw = 10, 70,0 1.0 2.0 3.0
15, 20, and 25. No such errors were detected. A

The.method was teStefj on the Holstein _model, forFIG. 2. Ground-state polaron energy for several models. In
which independent numerical results are available. They cases, = 1.0. Statistical errors are smaller than the
Holstein model is a particular case of Eg. (4) with symbols.

-6.0 4
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1.0 Ep are in excellent agreement with ED results [20]. This
®—® 1D Holstein dgmonstrateg that_ @al-ti.me spectrum can be measured
B = 2D Holstein directly by animaginary-timepath-integral QMC.
A—A 3D Holstein ] In conclusion, an efficient continuous-time path-
512D Long-range integral guantum Monte Carlo algorithm for the lattice
polaron has been presented. It is free from the finite-size
and finite-time-step systematic errors. The method works
for infinite lattices and any range of electron-phonon
interaction. It allows for exact calculation of the ground-
state energy, effective mass, and spectrum of the polaron.
More technical details will be presented elsewhere.
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