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The absolute decay width of a single-particle level in a deformed potential is evaluated exactly.
Experimental data are analyzed by using the formalism developed here. It is found that proton decay is
a powerful tool to determine the deformation of nuclei as well as to probe small components of the wave
functions of the decaying states. This will allow one to study the behavior of single-particle resonances
in nuclei close to the drip line, and may guide future experiments. [S0031-9007(98)06649-6]
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There is at present an intense experimental activity
reach and study nuclei far from stability. However, th
interpretation of the coming experimental data requires
adequate theoretical framework to analyze the unstable
clei to be measured. This is also essential to guide
ture experiments. The theory should take into accou
that the processes to be analyzed may occur in the c
tinuum part of the spectrum. This is a difficult undertak
ing because the most relevant of those processes are
dependent with the additional complication that the initi
states may not be well defined. These difficulties notwit
standing, the possibilities opened by the various ph
nomena related to the single-particle resonances, wh
will now be measured, are very interesting. One of t
important features of these measurements is that the re
nances will have a single-particle character. In contra
resonances in stable nuclei lie very high in the spectru
and are a mixture of many degrees of freedom. For
stance, in209Bi the proton strength of the state0j15y2

was found to be spread in an energy range from 4 up
13 MeV, with a centroid at 8 MeV [1]. This is a gen
eral feature of nuclei in regions of the chart of nuclide
close to the stability line. In these nuclei only a fraction o
the single-particle strength is concentrated in the “sing
particle” resonance [2,3]. In nuclei on the drip line, in
stead, the Fermi level is very close to, or even immers
in, the continuum. Thus, in odd systems the lowest excit
levels, which, as usual, are single-particle excitations, lie
the continuum and one expects that other degrees of fr
dom would not play an important role.

Single-particle resonances may have rather unus
properties. In particular, it was recently shown [4] th
the noncrossing rule for Nilsson levels may be violate
Properties such as this and the corresponding formal
can be tested experimentally by means of nucleon-de
experiments by measuring, for example, the positi
and the corresponding decay width of the single-partic
resonances. In this simple case, where the cluster i
nucleon, the exact quantum mechanics evaluation of
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decay width is a simple task if the nucleus is spherica
This is an important point which is worthwhile to develop
in detail. We will thus derive the decay width corre-
sponding to a pure single-particle state, for example, th
one obtained from a diagonalization of a Woods-Saxo
potential. That is, we will consider a single-particle
model and therefore the parent nucleus will be describe
by a nucleon moving in a deformed potential.

In order to compare the theoretical and experiment
single-particle quantities, one may need to include reno
malization effects due to the fact that the outgoing nu
cleon may leave the daughter nucleus in an excited sta
This can be taken into account by multiplying this “bare
single-particle width by a spectroscopic factor. In the cas
of an odd decaying nucleus, described by the BCS mod
this factor is simplyu2.

At large distances the bare single-particle radial wav
function rc

out
lj srd corresponding to the outgoing nucleon

in a statesljd has the form

rc
out
lj srd ­ NljfGljsrd 1 iFljsrdg , (1)

where N is a normalization constant andF and G are
the regular and irregular Coulomb functions, respectivel
The probability rate per second that the particle goe
through a surface elementdS ­ r2 sinududw is given by
Flj ­ jc

out
lj s$rdj2ydS, wherey ­ h̄kym is the velocity of

the particle. Since

lim
r!`

jrc
out
lj srdj2 ­ jNljj

2, (2)

the decay probability per second, i.e., the inverse of th
half-life T , obtained by integratingF over the angles,
is 1yT ­ jNlj j

2y, noticing that jNljj
2 has a dimension

of 1yfm. The normalizationN is determined by match-
ing at a certain distanceR the wave functionc

out
lj sRd

to the solution cljsRd of the Schrödinger equation,
which is regular at the origin and has outgoing bound
ary conditions, i.e., the Gamow state. Therefore, th
© 1998 The American Physical Society
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GljsRd ­ h̄yT ­
h̄2k
m

R2jcljsRdj2

F2
ljsRd 1 G2

ljsRd
, (3)

which is independent ofR for distances outside the range
of the nuclear potential as can be seen from Eq. (1).

The expression of Eq. (3) gives the exact quantu
mechanics value of the width. It coincides with th
one obtained by Thomas [5] as the residues of theS
matrix, although the Thomas expression is valid for th
decay of any cluster and, therefore,csRd is the formation
amplitude of the cluster; this is just the overlap betwee
the mother wave function and the antisymmetrized tens
product of the daughter and cluster wave functions at
distanceR between the corresponding centers of mas
including in this way the spectroscopic factor.

An alternative and equivalent method to obtain the dec
width is discussed in detail in Ref. [6]. The Schrödinge
equation is solved with outgoing wave boundary cond
tions [7] and the complex energiesEn ­ En 2 iGny2 are
obtained, which correspond to resonances with energyEn

and decaying widthGn. For the case of spherical nucle
there are standard computer codes to do this [8,9], althou
often approximations to Eq. (3) are used to evaluate tho
widths [10,11]. These calculations were used to determi
the spin and parity of the resonances. A similar study f
deformed nuclei is important, for instance, in the drip lin
region where nuclei are expected to have significant d
formations. The problem of evaluating complex energ
eigenvalues in nonspherical systems was solved only
cently [4], but for the present study one needs to evalua
the partial decay widths for angular momentum projecte
states.

We will assume that the mother nucleus is odd. Usin
standard notation, the angular momentum projected wa
function is given by

CJiMi ,Ki
m ­

µ
Ĵi

16p2

∂1y2

hD Ji
MiKi

xKi

1 s21dJi1Ki D
Ji
Mi2Ki

xK̄i j , (4)

whereĴi ­ 2Ji 1 1, D are the rotation matrices, andx
is the intrinsic single-particle wave function that can b
expanded in spherical components [4] as

xKi s$rd ­
X

j$Ki

aljsrd fYlsr̂dx1y2gjKi , (5)

where the orbital angular momentuml is determined by
the parity of the state.

Since electromagnetic transitions are usually faster th
the decay by proton emission, the decay is more proba
when the nucleus is in the lowest energy state wi
Ji ­ Ki.

The exit channel wave function will be the tensoria
product of the internal wave functions of the daughte
nucleusCd times the wave function corresponding to th
relative motion of the proton with respect to the mothe
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nucleus. The daughter wave function is

C
JdMdKd
d ­

µ
Ĵd

8p2

∂1y2

D
Jd
MdKd

. (6)

The most probable decay is usually the one that leav
the daughter nucleus in the ground state, since in t
way the proton has the largest possible energy. Theref
the relationJd ­ Md ­ Kd ­ 0 can be imposed. The
generalization to decays to other members of the grou
band in the daughter nucleus is straightforward.

Angular momentum conservation implies that the a
gular momentum of the outgoing protonjp is such that
jp ­ Ji ­ Ki. A spectroscopic factor of1ys jp 1 1y2d
has to be included since we require that the angular m
mentum of the daughter nucleus must be equal to ze
For the purpose of the discussion we will neglect th
multiplicative factor that will be taken into account in the
comparison with the experimental data.

At a large distanceR the nuclear potential vanishes
and the Coulomb potential is spherically symmetri
Therefore the wave function of Eq. (5) atR has, as in
the spherical case, the form

Rxout
Ki

s $Rd ­
X
lj

NljfGljsRd 1 iFljsRdg fYlsR̂dx1y2gjKi
,

(7)

where Nlj are normalization constants which are dete
mined by matching the outgoing solutionxout with the
internal solution of Eq. (5). As before, the probabilit
rate of decay to the channellj is given by1yTlj ­ N2

ljy.
From the angular momentum conservation discuss

above and the orthogonality of the different partial wave
one finds that the partial decay width corresponding to t
decay to the channellpjp is given by

Glpjp sRd ­
h̄2k
m

R2a
2
lpjp

sRd

F2
lpjp

sRd 1 G2
lpjp

sRd
, (8)

which has the same structure of Eq. (3) for the spheric
system.

In all of these derivations it was assumed that th
deformation of the daughter nucleus is the same as in
mother one.

We have checked numerically that the total widt
calculated by summingGljsRd of Eq. (8) over all of the
channels labeled bylj at large R is minus twice the
imaginary part of the energy for the bare single-partic
state. The partial decay width is then defined as

GljsRd ­ 22EiPlj , (9)

whereEi is the imaginary part of the energy andPlj is
the probability of finding the particle in the channellj
normalized to the outgoing wave. Defining the quanti
b

2
i sRd ­ a

2
i yfF2

i sRd 1 G2
i sRdg that probability becomes

Plj ­ b2
ljsRd

¡ X
l0j0

b2
l0j0 sRd , (10)
539



VOLUME 81, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 20 JULY 1998

e
m
-

g
g
a-
lie
y

ng

an

a-

at
y
re
ng

d
e

r

FIG. 1. Proton Nilsson levels corresponding to113
55 Cs. The

dotted lines are the levels around the Fermi surface. Th
correspond to the stateK ­ 1y21 (coming from the shellg7y2),
K ­ 3y21, and K ­ 5y21 (these two come from the shell
d5y2).

with R as a large distance beyond the range of the nucl
mean field and beyond the distance where the Coulo
potential can be considered spherically symmetric.

In order to compare the results of the exact forma
ism presented here with other calculations, we will an
lyze the proton decay of the nucleus113Cs (968 6 6 keV)

FIG. 2. Half-life of the resonance113Cs (968 6 6 keV) as a
function of the deformationb2 for the statesK ­ 1y21, 3y21,
and 5y21 that in Fig. 1 were dotted. The correspondin
experimental value [13] is within the dashed lines.
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[12], with a half-life of 16.7 6 0.7 ms [13]. This decay
was studied in Ref. [14] within the framework of pertur-
bation theory. To probe this approximated treatment w
analyzed the dependence of the half-life evaluated fro
the exact Eq. (8) as a function of the deformation pa
rameterb2 and found a very peculiar feature which is
missing in Ref. [14]. The Nilsson levels correspondin
to this nucleus, shown in Fig. 1, were obtained by usin
a Woods-Saxon potential with the so-called universal p
rameters [15]. The dotted lines are the states which
close to the Fermi level, for which we evaluate the deca
width.

Figure 2 shows the dependence of the half-life onb2

mentioned above. While the1ys jp 1 1y2d factor has
been included, the part of the spectroscopic factor comi
from the BCS,u2, was not.

There are several interesting conclusions that one c
draw from Fig. 2. First, it is not possible to reproduce
the experimental data by using a spherical (i.e.,b2 ­ 0)
scheme with a reasonable value for the occupation prob
bility u2. Allowing for deformations instead, the experi-
mental half-life can be fitted by the state1y21, coming
from the orbital0g7y2 at deformationb2 ø 0.12, by the
state 3y21, coming from the orbital1d5y2 at deforma-
tion b2 ø 0.15 0.20, or by the state5y21, coming from
the orbital1d5y2 at deformationb2 ø 0.22 0.27, using a
value ofu2 ø 0.5. This last possibility can be easily dis-
carded, since the state is too far from the Fermi surface
that deformation. Of the two remaining possibilities, onl
the second was noticed in Ref. [14]. But perhaps mo
intriguing is the sharp increase of the curve correspondi
to the state1y21 at b2 ø 0.08 indicating that a diver-
gence exists at that point. In a further analysis we foun
that this is indeed the case. To understand this point w
show in Fig. 3 the spherical componentsaljsRd as a func-
tion of the deformation for the statesK ­ 1y21, K ­
3y21, andK ­ 5y21 at R ­ 13 fm. These are the three
states marked with dots in Fig. 1. One notices that fo

FIG. 3. Spherical componentsalj corresponding to the wave
function of the resonance113Cs (968 6 6 keV) as a function of
b2. The solid line corresponds toj ­ K, the dash-dotted line
to j ­ K 1 1, the dashed line toj ­ K 1 2, and the dotted
line to j ­ K 1 3.
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K ­ 1y21 the component corresponding to the states1y2,
which is responsible for the decay, changes sign just
the value ofb2 that produces the divergence in Fig. 2
This divergence is due to the fact that the half-life is in
versely proportional to the square of the wave functio
If the nucleus had this particular deformation, then the d
cay to the21 state could compete with the decay to th
ground state. We would like to stress that, in order to b
able to distinguish such a possibility, it would be esse
tial to measure the angular momenta of the daughter a
mother nuclei. This is a suggestion for further exper
ments in this field, since this would become a powerf
tool to probe small components of the single-particle wav
functions.

In conclusion, we have presented in this paper
formalism and the corresponding equations to calcula
the width corresponding to the decay of a nucleon movin
in a single-particle level in a deformed potential. B
comparing the calculation with experimental data, w
have shown that these processes provide a powerful t
to investigate the properties of single-particle resonanc
in nuclei close to the drip lines. We also found tha
proton decay can be used to probe small components
the deformed wave function in the mother nucleus, whic
would otherwise be very difficult, if at all possible, to
measure.

We express our gratitude to D. Delion and T. Vertse fo
discussions. This work has been supported by the Gö
Gustafsson Foundation.
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