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Nucleon Decay from Deformed Nuclei
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The absolute decay width of a single-particle level in a deformed potential is evaluated exactly.
Experimental data are analyzed by using the formalism developed here. It is found that proton decay is
a powerful tool to determine the deformation of nuclei as well as to probe small components of the wave
functions of the decaying states. This will allow one to study the behavior of single-particle resonances
in nuclei close to the drip line, and may guide future experiments. [S0031-9007(98)06649-6]
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There is at present an intense experimental activity talecay width is a simple task if the nucleus is spherical.
reach and study nuclei far from stability. However, theThis is an important point which is worthwhile to develop
interpretation of the coming experimental data requires am detail. We will thus derive the decay width corre-
adequate theoretical framework to analyze the unstable ngponding to a pure single-particle state, for example, the
clei to be measured. This is also essential to guide fuene obtained from a diagonalization of a Woods-Saxon
ture experiments. The theory should take into accounpotential. That is, we will consider a single-particle
that the processes to be analyzed may occur in the comodel and therefore the parent nucleus will be described
tinuum part of the spectrum. This is a difficult undertak-by a nucleon moving in a deformed potential.
ing because the most relevant of those processes are timeln order to compare the theoretical and experimental
dependent with the additional complication that the initialsingle-particle quantities, one may need to include renor-
states may not be well defined. These difficulties notwith-malization effects due to the fact that the outgoing nu-
standing, the possibilities opened by the various pheeleon may leave the daughter nucleus in an excited state.
nomena related to the single-particle resonances, whickhis can be taken into account by multiplying this “bare”
will now be measured, are very interesting. One of thesingle-particle width by a spectroscopic factor. In the case
important features of these measurements is that the resof an odd decaying nucleus, described by the BCS model,
nances will have a single-particle character. In contrasthis factor is simplyu?.
resonances in stable nuclei lie very high in the spectrum At large distances the bare single-particle radial wave
and are a mixture of many degrees of freedom. For infunction r:/rf“‘(r) corresponding to the outgoing nucleon
stance, in?”Bi the proton strength of the sta®js,,  in astate(l]) has the form
was found to be spread in an energy range from 4 up to
13 MeV, with a cent_rqld at 8 MeV [1]. Thisis a gen- P (r) = NyLGy(r) + iFy(r)], @
eral feature of nuclei in regions of the chart of nuclides
close to the stability line. In these nuclei only a fraction ofwhere N is a normalization constant anél and G are
the single-particle strength is concentrated in the “singlethe regular and irregular Coulomb functions, respectively.
particle” resonance [2,3]. In nuclei on the drip line, in- The probability rate per second that the particle goes
stead, the Fermi level is very close to, or even |mmerse¢hr0ugh a surface elemeits = r2sinfdd6d¢ is given by
in, the continuum. Thus, in odd systems the lowest excitedf;; = |47;" (F)|*vdS, wherev = fik/u is the velocity of
levels, which, as usual, are single-particle excitations, lie ifhe partlcle Since
the continuum and one expects that other degrees of free-
dom would not play an important role. lim lrgi (D1* = NI, (2)

Single-particle resonances may have rather unusual
properties. In particular, it was recently shown [4] thatthe decay probability per second, i.e., the inverse of the
the noncrossing rule for Nilsson levels may be violatedhalf-life 7, obtained by integratingF over the angles,
Properties such as this and the corresponding formalisis 1/7 = |N;|?v, noticing that|N;;|*> has a dimension
can be tested experimentally by means of nucleon-decayf 1/fm. The normalizationV is determined by match-
experiments by measuring, for example, the positioring at a certain distanc& the wave functlonlp,"“t(R)
and the corresponding decay width of the single-particléo the solution ¢;;(R) of the Schrodinger equation,
resonances. In this simple case, where the cluster iswhich is regular at the origin and has outgoing bound-
nucleon, the exact quantum mechanics evaluation of thary conditions, i.e., the Gamow state. Therefore, the
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width is nucleus. The daughter wave function is
Rk Ry (R)? JaMJK, Ja \2
T;(R) = h/T = — , 3 MKy _ d> 74
1j(R) / Ffj(R) n Glzj(R) (3) vy <8 5 Dk, - (6)

which is independent ok for distances outside the range The most probable decay is usually the one that leaves
of the nuclear potential as can be seen from Eg. (1). the daughter nucleus in the ground state, since in this
The expression of Eq. (3) gives the exact quantunway the proton has the largest possible energy. Therefore
mechanics value of the width. It coincides with thethe relation/, = M, = K; = 0 can be imposed. The
one obtained by Thomas [5] as the residues of $he generalization to decays to other members of the ground
matrix, although the Thomas expression is valid for theband in the daughter nucleus is straightforward.
decay of any cluster and, therefogg(R) is the formation Angular momentum conservation implies that the an-
amplitude of the cluster; this is just the overlap betweergular momentum of the outgoing protgp is such that
the mother wave function and the antisymmetrized tensof, = J; = K;. A spectroscopic factor of /(j, + 1/2)
product of the daughter and cluster wave functions at &as to be included since we require that the angular mo-
distanceR between the corresponding centers of massmnentum of the daughter nucleus must be equal to zero.
including in this way the spectroscopic factor. For the purpose of the discussion we will neglect this
An alternative and equivalent method to obtain the decaynultiplicative factor that will be taken into account in the
width is discussed in detail in Ref. [6]. The Schrodingercomparison with the experimental data.
equation is solved with outgoing wave boundary condi- At a large distanceR the nuclear potential vanishes
tions [7] and the complex energiés, = E, — il',/2are and the Coulomb potential is spherically symmetric.
obtained, which correspond to resonances with engrgy Therefore the wave function of Eq. (5) & has, as in
and decaying widtH",. For the case of spherical nuclei the spherical case, the form
there are standard computer codes to do this [8,9], although . .
often approximations to Eq. (3) are used to evaluate thoseR X" (R) = > Ny[Gyj(R) + iFi;(R)][Yi(R)x1/2)jx, -
widths [10,11]. These calculations were used to determine lj @)
the spin and parity of the resonances. A similar study for
deformed nuclei is important, for instance, in the drip linewhere N;; are normalization constants which are deter-
region where nuclei are expected to have significant demined by matching the outgoing solutigef®t with the
formations. The problem of evaluating complex energyinternal solution of Eq. (5). As before, the probability
eigenvalues in nonspherical systems was solved only reate of decay to the channgl is given byl/T;; = Nf;v-
cently [4], but for the present study one needs to evaluate From the angular momentum conservation discussed
the partial decay widths for angular momentum projectechbove and the orthogonality of the different partial waves

states. one finds that the partial decay width corresponding to the
We will assume that the mother nucleus is odd. Usingdecay to the channé}j, is given by
standard notation, the angular momentum projected wave 2k R2a? (R)
. . . l/r]/r
function is given by I, (R) = — (8)

Fj(R) + G ; (R)’

\I[«./ M; K; __ < ‘71' >1/2 DJ,‘ I’jﬂ Z/)j/)
" -~ \1672 D xx, which has the same structure of Eq. (3) for the spherical

+ (—1)’*+K"D$i,KiX,-<i}, (4)  system.
In all of these derivations it was assumed that the
deformation of the daughter nucleus is the same as in the

whereJ; = 2J; + 1, D are the rotation matrices, and
is the intrinsic single-particle wave function that can be

. ? mother one.
expanded in spherical components [4] as We have checked numerically that the total width
v () = Z iy (N [Yi(P)x )ik 5) calculated by summing’;;(R) of Eq. (8) over all of the

channels labeled by; at large R is minus twice the

) i ) imaginary part of the energy for the bare single-particle
where the orbital angular momentuiris determined by ¢tate The partial decay width is then defined as
the parity of the state.

Since electromagnetic transitions are usually faster than Ij(R) = —2E; Py, 9

the decay by proton emission, the decay is more probablghere Z; is the imaginary part of the energy afd, is
when the nucleus is in the lowest energy state withthe probability of finding the particle in the chanrigl
Ji = K. normalized to the outgoing wave. Defining the quantity

The exit channel wave function will be the tensorial g2(gy — 42/[F?(R) + G?(R)] that probability becomes
product of the internal wave functions of the daughter e '

nucleus¥, times the wave function corresponding to the P = BA(R) / ZBZ (R) (10)
. . . J l] [’j’ ’
relative motion of the proton with respect to the mother 17

=K
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[12], with a half-life of 16.7 = 0.7 us [13]. This decay
was studied in Ref. [14] within the framework of pertur-
bation theory. To probe this approximated treatment we
analyzed the dependence of the half-life evaluated from
the exact Eq. (8) as a function of the deformation pa-
rameter 8, and found a very peculiar feature which is
missing in Ref. [14]. The Nilsson levels corresponding
to this nucleus, shown in Fig. 1, were obtained by using
a Woods-Saxon potential with the so-called universal pa-
rameters [15]. The dotted lines are the states which lie
close to the Fermi level, for which we evaluate the decay
width.

Figure 2 shows the dependence of the half-life &n
mentioned above. While thé/(j, + 1/2) factor has
been included, the part of the spectroscopic factor coming
from the BCS 2, was not.

R e a— There are several interesting conclusions that one can
draw from Fig. 2. First, it is not possible to reproduce
B the experimental data by using a spherical (i®.,= 0)

FIG. 1. Proton Nilsson levels corresponding #3Cs. The scheme with a reasonable value for the occupation proba-

dotted lines are the levels around the Fermi surface. Thefility u*. Allowing for deformations instead, the experi-

correspond to the sta#é = 1/2% (coming from the shelt;,),

mental half-life can be fitted by the stat¢2™, coming

K =3/2%, and K = 5/2" (these two come from the shell from the orbital0g;/, at deformationg, ~ 0.12, by the

ds ).

state3/2", coming from the orbitallds,, at deforma-
tion B, = 0.15-0.20, or by the stat&s/2*, coming from

with R as a large distance beyond the range of the nucledhe orbitallds/, at deformations, ~ 0.22-0.27, using a
mean field and beyond the distance where the Coulomialue ofu® = 0.5. This last possibility can be easily dis-

potential can be considered spherically symmetric.

carded, since the state is too far from the Fermi surface at

In order to compare the results of the exact formal-that deformation. Of the two remaining possibilities, only
ism presented here with other calculations, we will anathe second was noticed in Ref. [14]. But perhaps more

lyze the proton decay of the nuclel$Cs 068 + 6 keV)

Tyi/e (s)

FIG. 2. Half-life of the resonanc&3Cs 068 = 6 keV) as a
function of the deformatioiB, for the statek = 1/2%, 3/27,

intriguing is the sharp increase of the curve corresponding
to the statel/2" at B, =~ 0.08 indicating that a diver-
gence exists at that point. In a further analysis we found
that this is indeed the case. To understand this point we
show in Fig. 3 the spherical componentg(R) as a func-
tion of the deformation for the statedé = 1/2%, K =
3/2%,andK = 5/2% atR = 13 fm. These are the three
states marked with dots in Fig. 1. One notices that for

0.01 T T T T T T

FIG. 3. Spherical components;; corresponding to the wave
function of the resonancé*Cs 068 + 6 keV) as a function of
B>. The solid line corresponds to= K, the dash-dotted line

and 5/2% that in Fig. 1 were dotted. The correspondingto j = K + 1, the dashed line tg = K + 2, and the dotted

experimental value [13] is within the dashed lines.
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