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We present a first-principles calculation of self-energy effects on the optical properties of the
GaAs(110) surface. Three main results are obtained. (a) The self-energy shifts for the valen
bands are larger for surface-localized states, at odds with the commonly assumed “scissor operat
hypothesis. (b) The computed shifts display an almost linear dependence on the surface localizati
of the wave function; this allows us to realize a well-converged calculation of optical properties base
on theGW -corrected spectrum. (c) The agreement with experimental data is improved with respect t
local-density-approximation calculations. [S0031-9007(98)07843-0]
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The optical properties of surfaces are a developing fie
of research because of the versatility and nondamag
character of optical spectroscopy [1]. The comparis
between measured and calculated spectra has yie
information on the atomic and electronic structure of
number of surfaces [1]. For several years theory has b
generally limited to the one-electron approximation an
to the tight-binding semiempirical approach. Recent
ab initio calculations carried out within the local-densit
approximation (LDA) to the density functional theor
(DFT) [2] have also appeared [3–8].

However, a first-principles calculation of the electron
band structure should be carried out within Green’s fun
tion theory. The propagation of independent quasipa
icles (electrons or holes) is described by the one-parti
Green’s function, involving the self-energy, which can b
calculated according to Hedin’sGW approximation [9].
The electronic structure and energy gaps determined
this way for semiconductors are in excellent agreeme
with experiments [10]. In most bulk semiconductors, th
corrections are approximately constant, so that the net
sult is an almost rigid shift of the LDA absorption spec
trum to higher frequencies. This justifies the so-calle
“scissor operator” (SO) approach, in which quasipartic
(QP) energies are obtained by rigidly shifting the LD
empty bands [11,12]. Although a similar rigid shift ha
also been invoked for some surfaces [4,8], it is not cle
whether or not this is a general feature, especially sin
very few well-convergedGW calculations on surfaces
have been performed up to now [13,14].

One of the goals of the present calculation is
clarify this issue for the GaAs(110) surface. Anothe
goal is to test the capability of the single-quasipartic
approximation to describe surface optical spectra.

In this work we report a well-converged calculation o
the reflectance anisotropy (RA) of the GaAs(110) surfa
within the GW approximation. A previousGW calcula-
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tion on this surface has been performed by Zhuet al. [15],
using very thin slabs (5 atomic layers) separated by ev
thinner vacuum regions (2 layers). Their pioneering wo
gave an electronic structure in good agreement with t
experiment, but their RA spectrum was far from bein
converged. In fact, the reflectance anisotropy is a quan
extremely sensitive to all the details of the calculations.

The RA, defined as the difference of the reflectivit
for two different polarization directions of the light, is
calculated according to the method described in more de
in Refs. [1,16]. Since the GaAs bulk is optically isotropic
the difference between the reflectivity for light polarize
along two different directions is due to the presence
the surface. In our calculation, the semi-infinite soli
is replaced by periodically repeated, separated slabs.
order to achieve a good convergence of the results,
have considered a system containing 11 atomic layers, w
7 empty layers separation. Within the slab geometry, t
RA can be written as

DR
R


Rf1̄10g 2 Rf001g

R̄


16pvd

c
Im

af1̄10gsvd 2 af001gsvd
ebsvd 2 1

, (1)

whereR̄ is the average of the two reflectivity signals,a

the half-slab polarizability,eb the bulk dielectric function,
and d the half-slab thickness. The calculation ofa and
eb involves the determination of the matrix elements o
the momentum operator between valence and conduct
states. Our calculation starts with the DFT-LDA structur
and successively introduces the self-energy correctio
using theGW scheme [9,10]. In the latter, the self-energ
S is constructed as the convolution of the one-partic
Green’s functionG and the screened Coulomb interactio
W . QP corrections are evaluated to first order on t
DFT-LDA eigenstates [17,18]. The (almost linear) energ
© 1998 The American Physical Society
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dependence ofS is taken into account via the calculation
of k≠Sy≠El at the LDA energy, and the calculations are
done in a plane-wave basis.

The theoretical equilibrium geometry is calculated in
the DFT LDA [19]; we use norm-conserving, fully
separable pseudopotentials with nonlinear core correctio
for the Ga atom [20]. We use a cutoff of 18 Ry and
four special k points [21] in the irreducible part of
the surface Brillouin zone. DFT-LDA results are then
used as ingredients for the calculation of the self-energ
corrections to the Kohn-Sham eigenvalues at four high
symmetryk points (G, X, M, X 0).

First, in order to obtainW, we compute each matrix
element of the RPA inverse dielectric functione

21
G,G0sv, qd

at two imaginary energies, and the energy dependence
fitted to a plasmon-pole model [17]. Subsequently, w
evaluate the expectation value ofS 2 Vxc between LDA
eigenstates for the 9 highest occupied bands and for t
12 lowest conduction bands, corresponding to an ener
range of about 6 eV around the Fermi level.

A technical point that must be addressed with care
the set ofk0 points used in the calculation of the screenin
function [sum overk0 in Eq. (1) of Ref. [22] ], and in the
calculation of the Brillouin zone integrals appearing in
both the exchange and correlation part ofkSl. This point
is more complicated here than in the bulk case, due to t
anisotropy of the system. In fact,e21s $qdGG00 (where
$q  $k 2 $k0) is nonanalytic forq ! 0, since the value
of its limit (i.e., the static dielectric constant) depend
on the direction of$q. This point is not a minor one,
since for G  G0  0 the “small q” region contributes
strongly to the integrals, havingq2 in the denominator
[see Eq. (4) of Ref. [22] ]. The simplest approach, i.e
introducing a shift of thek0 mesh in order to avoid the
k  k0 case in the latter equation, has proved to yiel
large underestimations ofjkSxlj andjkSclj.

In order to improve the convergence, keeping the num
ber of k0 (and henceq) points within the computation-
ally accessible range (which is of the order of 10), w
have replaced the value of theq ! 0 term in Eq. (4) of
Ref. [22] with the value of the integral performed ove
the appropriate region of reciprocal space surrounding t
q  0 point, the shape of this region depending on th
geometry of the remaining, nonzeroq points. In this in-
tegral, e21sq . 0dyq2 is approximated with the analytic
expression

e21sqd
q2 .

X
i

e21sq0id
q2

√
qi

q

!2

, (2)

wheree21sq0id is the limit of e21sqd for q ! 0 along the
i direction (withi  x, y, z). A similar procedure (which
we call in the following “improved integration”) has to be
used in the calculation ofkS 2 Vxcl for the evaluation of
every

R
d3 qf fsqdyjq 1 Gj2g appearing in the expression

of kSl: the Coulomb interaction is integrated around eac
q over a small volume centered at$q 1 $G, while the rest
of the integrandfsqd is supposed to be constant over tha
ns
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volume. This improved treatment of the Coulomb inte
action turns out to be essential, as illustrated in the in
of Fig. 1, where the convergence of the exchange part
the self-energy, with and without the improved integratio
(black and gray columns, respectively), is shown.

We have found that in this way a good convergen
is reached using in the irreducible part of the Brilloui
zone (IBZ) the four high-symmetry pointsG, X, M, and
X 0, plus the Baldereschi point [23,24]. In particular
this choice yieldskSx 2 Vxcl values converged within
100 meV. In order to obtain this level of convergency
1667 plane waves per electronic state are included [9
in e21sqd] and 650 conduction states in the calculatio
of e21sqd and kScl, corresponding to an energy of abou
46 eV above the Fermi level.

Our results for the dispersion and the energy ga
between surface states are compared in Table I with
perimental data measured by direct and inverse phot
mission on the same sample by Carstensenet al. [25].
The agreement is good, as in [15], and the improveme
with respect to the LDA level is important.

A very interesting feature of the obtained QP corre
tions is their dependence on the localization of a sta
at the surface. The main panels of Fig. 1 show the r
lation between theGW corrections (defined as theGW
quasiparticle energies minus the LDA eigenvalues) a
the degree of “surface localization” of the eigenstate. T
localization is computed as the integral ofjCj2 over the
two outermost atomic layers and the first “empty laye
of both surfaces (corresponding to a region limited by th
planesjzj  6.88 Å and jzj  12.77 Å, having z  0 at
the center of the slab; a state uniformly distributed ov
the 11 layers of the slab should yield a value of abo
4y11  0.36).
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FIG. 1. Calculated self-energyGW corrections to the LDA
eigenvalues atG, X, X 0, and M plotted against the surface
localization of the states. (a) Conduction bands. (b) Valen
bands. In the inset, we show the convergence, with resp
to the IBZ sampling, forkSx 2 Vxcl evaluated for the highest
valence state atM (see text and [24]).
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TABLE I. Results for the surface energy gaps: LDA andGW ,
compared to experiment (eV).

E
gap
s2ssGd E

gap
s2ssXd E

gap
s2ssMd E

gap
s2ssX 0d

LDA 1.8 1.9 2.2 2.0
GW 2.7 2.9 3.2 2.9

Exp. [25] 2.4 3.1 3.3 3.0

The least-squares linear fit to the data is also show
A clear correlation is visible for the holes (valenc
states), while conduction bands appear to undergoGW
corrections which are almost independent from the surfa
localization. In particular, filled surface states corre
0.2–0.3 eV more than bulk ones. The bulk gap correcti
of about 0.8 eV agrees with previous calculations [10
and the surface corrections tend to increase up to 1.1 e

A deviation from the scissor operator scheme has a
been found by Blaseet al. [13] on the Si(111):H surface
and predicted by Bechstedt and Del Sole [26] for the (11
surfaces of the III-V compounds. A qualitative argume
that explains the largerGW shift of the surface states
with respect to bulk states is the following: Self-energ
corrections with respect to DFT-LDA eigenvalues ar
approximately proportional to the inverse of the dielectr
function, e. Since passing from a bulk semiconductor t
its surfacee is predicted to undergo a reduction of abou
a factor of 2, one could expect a doubling of the “ga
correction” [26]. Of course, this picture is oversimplified
since it neglects any kind of surface effect except th
crystal termination.

Our results indicate that a scissor operator approxim
tion for surfaces is less appropriate than in bulk, althou
the effect is less dramatic than predicted by [26]. In fac
filled surface states exhibit an increased downwards sh
due to an increased self-interaction correction (which do
not exist for empty states) arising from their greater lo
calization. Our calculations show that at this surface t
localization is not too strong, which explains the reduce
effect, also when compared to the findings of Ref. [13].

The obtained linear relation between surface localizati
andGW corrections can be used to deduce the QP shifts
all of the many bands andk points required in a calculation
of optical properties. Using this scheme we compute t
RA of this surface [Eq. (1)]. The calculation requires th
knowledge of the momentum matrix elements and tra
sition energies between all the valences and an appro
mately equivalent number of conduction states for a lar
number ofk points in the IBZ. The direct calculation of QP
shifts for all those states is clearly unaffordable; howeve
their degree of surface localization is obtained very easi
Starting from ourGW results for the 21 states around th
Fermi level at the 4 high-symmetryk points, we have then
extrapolated the corrections to all of the required states
64 k points in the IBZ.

We show in Fig. 2 the resulting RA spectrum, com
pared with the corresponding LDA result. TheGW curve
5376
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FIG. 2. Reflectance anisotropy spectrum of GaAs(110) com
puted according to Eq. (10) of Ref. [16], at the LDA level (top
and includingGW corrections (middle). Bottom: experimental
data from Ref. [28].

is shifted toward the high-energy side, because QP co
rections increase the gaps and therefore the transition
ergies. A similar effect is obtained in bulk GaAs as we
as in other semiconductors [27]. In our case, the shift
not rigid because of the localization dependence of Q
corrections. The line shapes in the LDA andGW spectra
turn out, however, to be qualitatively similar. The ex
perimental curve measured by Esseret al. [28] at room
temperature is also shown. The low-frequency peakS
has a substantial contribution due to the transitions b
tween near-gap surface states, while all other structur
originate from transitions between surface-perturbed bu
states. Hence the dip at about 3.2 eV in theGW RA (at
about 2.4 eV in the LDA spectrum) and the subseque
peak corresponds to theE1 bulk structure, and the next
peak at about 4.3 eV (at about 3.5 eV in the LDA case
corresponds to theE0

0 structure. TheE2 bulk absorption
peak, occurring in experiments at about 5 eV, correspon
in theGW RA spectrum to a dip at about 4.7 eV (the on
in the LDA spectrum is located at 3.9 eV).

The agreement between theory and experiment is clea
improved; however, some discrepancies remain both in e
ergy position and line shape. They may be ascribed
effects which have been neglected in the calculation,
dynamical self-energy effects on the dielectric functio
[29,30], the difference between QP and DFT-LDA wav



VOLUME 81, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 14 DECEMBER 1998

,

B

.

.

he
th
e

e,
o

r,

o

i-

s.
l

,

e,

,

.

functions, and, more importantly, to electron-hole interac
tion and local-field effects. These effects strongly disto
the absorption spectra of clusters and bulk semiconduct
and are expected to do so also at surfaces [31,32].

In conclusion, we have carried out a well-converge
calculation of the electronic structure and of the re
flectance anisotropy of GaAs(110) within theGW ap-
proximation. We have shown that filled bands underg
downward self-energy corrections which depend on the
localization at the surface, and empty bands undergo
almost constant upward shift. We find very good agre
ment with direct and inverse photoemission measureme
and a (almost linear) relation between surface localizatio
and quasiparticle shifts. This last feature has allowed
to calculate a well-converged RA spectrum.

The calculated reflection anisotropy line shape turn
out to be quantitatively different from the DFT-LDA line
shape, as a consequence of the deviation of actual QP c
rections from the SO scheme. The positions of the ma
features in the experimental spectrum are underestima
by more than 0.5 eV by LDA, but correctly reproduced
by theGW calculation. The remaining discrepancies ma
probably be eliminated by the inclusion of excitonic an
local-field effects. If this situation will also be confirmed
for other surfaces,ab initio calculations will soon replace
semiempirical ones as state of the art in the theory of su
face optical properties.
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