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Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow
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We propose the viscous Camassa-Holm equations as a closure approximation for the Reynolds-
averaged equations of the incompressible Navier-Stokes fluid. This approximation is tested on turbulent
channel and pipe flows with steady mean. Analytical solutions for the mean velocity and the Reynolds
shear stress are consistent with experiments in most of the flow region. [S0031-9007(98)07958-7]

PACS numbers: 47.60.+i, 47.27.—i

Laminar Poiseuille flow occurs when a fluid in a for the Reynolds equations. Our primary aim is to
straight channel, or pipe, is driven by a constant upstrearfiustrate the connection between turbulence and the
pressure gradient, yielding a symmetric parabolic streamVCHE. The analytic form of our profiles based on the
wise velocity profile. In turbulent states, the mean streamsteady VCHE applies away from the viscous sublayer
wise velocity profile remains symmetric, but is flattened(but encompassing at least 95% of the flow region)
in the center because of the increase in velocity fluctuaand depends on two free parameters: the flux Reynolds
tions. A lot of research has been carried out for turbulenhumberR = du/v (whereu is the mean flux) and,.
channel flow, e.g., Refs. [1-6]; however, accurate meaBecause of measurement limitations, most experimental
surement of the mean velocity and the Reynolds stresdata are contained in this region. Let us remark that
profiles, in particular for flows at high Reynolds numbers,we can further reduce the parameter dependence to one
is still an experimental challenge. In the case of pipe flowfree parameter by using a prescribed drag law for the
recent experiments for measuring the mean-velocity prowall friction defined byD = 2R3/R2. For the remaining
file have been successfully performed at moderate to higvall region of the flow, we are unable to determine
Reynolds numbers [7]. However, the fundamental underthe mean profile explicitly without further assumptions.
standing of how these profiles change as functions of thelowever, we can show compatibility of the steady VCHE
Reynolds number is still missing. with empirical and numerical velocity profiles in the

In wall bounded flows it is customary to define anear-wall region [11]. The VCHE profiles are consistent
characteristic velocityu. and Reynolds numbeR, by  with data obtained from turbulent channel and pipe flow
u. = +/|rol/p andRy = du../v, wherer, is the bound- measurements and simulations.
ary shear stress, densjbyis unity, » is the molecular vis- We begin our theoretical treatment by recalling the
cosity of the fluid, and/ is a characteristic macrolength. Reynolds-averaged Navier-Stokes equations [8,12]:

For instance, the channel half-widthdsin channel flow, 5(u)

and the pipe radius ig in pipe flow. Based on experi- —~ + (u) - V{u) = divW(T), diviu) =0, (1)
mental observation and numerical simulation, a piece- 97

wise expression of the mean velocity across the channglhere (-) denotes the ensemble average aft) =
has been commonly accepted [8], for which the nondi-—( )1 — (u ® u) + »(V(u) + V(u)?). Our approach
mensional mean streamwise velocitf,= U/u., is @s-  holds for both the channel and the pipe flows; however,
sumed to depend om = u.5/» and have three types for brevity we will give details only for the channel
of behavior, depending on the distance away from thgase. For turbulent channel flow, the mean velocity is
wall boundarys: a viscous sublayer, in whickh ~ n;  of the form (u) = [U(z),0,0]”, with (p) = P(x,y,2)

the von Karman |Ogarithmic “law of the Wa.”," in which and the Reynolds equations (l) reduce t(x’ﬂ}vz 0, or
¢(n) =k 'Inn + A, wherexk =041 and A = 5.5; equivalently,

and a power law region, in whiclh ~ n?,0 < p < 1.

Alternatively, in [9] a single curve fitting over the whole —vU" + d(wu) = —a.P, )
region is proposed. Yet another proposal [10] is a family dAwv) = —9,P 9w = —0.P

of power laws that fit the data away from the viscous sub- ¢ e ¢ ©
layer, and has the log law as an envelope. where (u,v,w)” is the fluctuation velocity in the in-

In this paper we propose the viscous Camassa-Holrfinite channel{(x,y,z) € R?},—d = z = d}. The (1,3)
equations (VCHE) [in Eqg. (4)] as a closure approximationcomponent of the averaged stress ten@ris given by
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(T13) = —vU'(z) + (wu). On the boundary, the velocity In this particular case, the steady VCHE reduces to
components all vanish and one has the stress condition —o[(1 = YT + v(@?UY" = —a, 7, 6)
— =5/

+70 = {Ti3)l:=xa = vU (2)|;=2a,» 3) 0= —a,7, 0= —a,7.

upon using(wu) = 0 at z = *d. Hence, the Reynolds
equations imply(wv)(z) = 0 and P = Py — 7ox/d —
(w?) (z), with integration constan®,.

The VCHE are

Here a? = (03), B =(o3), # =m + [[U — B'U —
(a?U")']U’' dz, and the primeg’) denotes & derivative.
Thus, for channel geometrylv/dr vanishes in (4) and
the remaining(c;o;) terms modify the pressure and dis-
dv 4 vjVuj b Vo — oV Vou=0. (4 Epanon. Comparing (2) and (6) identifies counterparts as
a U=U,  a:wu) = v[(@U)" = (B'U)T+ po, 4
where v =[I—-(V:{(o)]u — 9;({o;0;)d;u), the _ - 2N\  Uls
material derivatived/dt = 9/dt + u - V,]an]d 7 is the 0:{wv) =0, VP A+ (w) = V(7 = pox),
modified pressurer = p — 1/2|ul* — 1/2o;0)uu, for a constantpy. Using the boundary condition and
where p is the usual pressure. In Ref. [13], Eq. (4) reflection symmetry in this identification gives
with » = 0 is derived by decomposing Lagrangian (wv)(z) = 0
parcel trajectories into mean and fluctuating parts as ' (8)
X7(a,7) = X(a,1) + o[X(a,1),r]and assumingisotropy ~ —{wu) (z) = —poz — »[(*U")"(z) — (B'U)(2)],
and homogeneity of the fluctuations with components  and leavesw?) undetermined up to an arbitrary function
oi, i =1, 2, and 3. Isotropy impliedo;o;) = @*8;;  of ;. A closure relation for—(wu) involving U"(z) also
with (o) = 0, wherea is a local length scale. Homo- appears in Yoshizawa [20]; cf. also Eq. (8) of Ref. [4].
geneity, in addition to isotropy, implies thatis constant. The general solution of the steady VCHE (6) witlton-
This derivation generalizes a one-dimensional integrablgant angs = 0 (i.e., assuming isotropy and homogeneity

dispersive shallow water model studied in [14] @0  throughout the channel), subject to the above boundary and
dimensions and provides the interpretation@fas the  symmetry conditions, is

typical mean amplitude of the fluctuations. Thus, it is )
clear that the solutions of VCHE are mean quantities. U(z) = a|:1 — M} + b(l — Z_2> (9)
Before comparing VCHE with Reynolds averaged coshd/a) d

equations, we rewrite Eq. (4) (wite constant) in the \yith constantsa, b [22]. We show in [23] that any

equivalent constitutive form, time-dependent solution of (4), such that(z,r) =
du oo [U(z,1),0,0]" with U(z,7) = U(=z,7) and U(£d,1) =
dr div T, T=—pl+2»(I—aV))D 0, converges exponentially in time to the solution (9) with
+ 2a’D, (5) the same mean flow and boundary shear stresses.
. - It is plausible to assume isotropy and homogeneity
with  V-u=0, D=(1/2)(Vu+Vu'), Q= zuay from the walls, and to consider the case where

(1_/2) (Vu — Vu”), and corotational (Jaumgnn) derivative a(z) = ap = const andB(z) = 0 only in that part of
given byD = dD/d: + DO — QD. In this form, one  the channe{|z| = d,} away from the walls, for soméy,
recognizes the constitutive relation for VCHE as a variany < 4, < 4, to be chosen appropriately. Given that

of the rate-dependent incompressible homogeneous fluid the typical size of the fluctuations away from the walls,
of second grade [15,16], whose viscous d|SS|pat2|or21, hoWour basic assumptions are thag/d is small and that
ever, is modified by the Helmholtz operatdr — a“V). 5 _ g4, is of the orderao. In the part of the channel
There is a tradition, at least since Rivlin [17], of modeling|z| = dy, the solution of (6) with the same symmetry

turbulence by using continuum mechanics principlesprgoperty is given by a formula similar to Eq. (9),
such as objectivity and material frame indifference (see

also Ref. [18]). For example, this type of approach is U(z) = a[l — M} + b(l _ Z_z)
taken in deriving Reynolds stress algebraic equation coshido/ ao) dp
models [19]. Rate-dependent closure models of mean + U(*dy).
turbulence have also been obtained by the two-scale
direct-interaction approximation approach [20] and by M the lower half of the channel, the mean velooity
the renormalization group method [21]. Since VCHE ¢@n e expressed in wall units using the notatidm) =
describe mean quantities, we propose to use (4) as @()/us m = (z + )/, With €. = v/u. = d/Ry. In
turbulence closure model and test this ansatz by applyinfj!iS representation, the solution becomes
it to turbulent channel and pipe flows. b(n) = a | — coshé(l — n/Ry)

!n the case of channgl flow, we denote the ve_IOC|ty n U cosh&(1 — mo/Ro)
u in (4) by U and seek its steady state solutions in the 2
form U = [U(z),0,0]" subject to the boundary condition b |:1 _ ( 1 - n/Ro) } + (no). (10)

J’_ N
U(+d) = 0 and the symmetry conditioti(z) = U(—z). Us 1 — mo/Ro
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for mo = m» = Ro, where ¢ = d/a and no = qoRo
(d = do)/t: ~ ao/ts = Ro/€.
Using the definition of R and ¢, we have R
% $(n)dn. Hence (10) gives
) .

_ tanh£(1 — q0)
£(1 — qo)
7o
+ ¢(no) (Ro — mo) + fo ¢(n)dn,

where ap = a(l — qp) and by = b(1 — qp). To com-
plete this computation it is sufficient to approximate
on (0, no) by the piecewise linear function equal tp
for 0 <7 = . and to ¢g + (9 — o)y for n.
1 = mo, Where ¢ = ¢(no), o = ¢'(10), and n.
(o — modo)/(1 — ¢y). We obtain

R _ tanh&d — qo) |, 2bo _
Ry |:1 £0 — a0) :| 3w T (I = qo)go
363/Ro).

— (1 = ¢ (bogo — 393R0b}) —
(11)

a()R() 2b0R0

3us

R = 1

Us

1A

~ @ 21?0

U

where
aé 2b

¢ R tanf&(1 — go)] + R (1 — qo).

Using this and solving foghy, we obtain an explicit func-
tion ¢ = Polqo; R/Ro; a/us,b/u., £). Thus Eq. (10)
coshé(1 — n/Ro)

becomes
1 —
u [ coshé(l — ﬂo/Ro)}

b(n) = =
A=

!
0

J’_ P
1 — no/Ro

U
a b
+ ¢0<610;R,R0; M—,uf,§>. (12)

bers,$o(R/Ry) has the following asymptotic formula:

1
C()*l-?

Bo(R/Ro) ~ - - 4iCh»

0

whereC, andC}, depend only oni., b., &, andg.. The
ratio R/Ry can be determined from the empirical drag
laws. In this way, one can use our formula (13) to predict
the profile of¢ for any Reynolds numbers.

In Fig. 1 we compare our profiles with experimental
data [4]. As the Reynolds numbers for these experiments
are small,a/u. and b/u. have not reached their theo-
retical asymptotic values. These constants are therefore
allowed to vary slightly withR, while holding &.. and
g+ constant to fit the data. Figure 2 compares the cor-
responding experimental and theoretical Reynolds shear
stresses. In Fig. 1 our theoretical mean-velocity profiles
extend closer to the wall while still matching the empiri-
cal data; however, in Fig. 2 the corresponding Reynolds
shear stresses do not so extend. Therefore, we take as
the least value that works for both.

Near the wall (i.e., in the regiord < n < g«Ry)
the hypotheses of isotropy and homogeneity in the La-
grangian fluctuations break down. Therefggez# 0 and
a depends om. A heuristic argument give8 ~ (19 —
1)?Bo. To test whether our Egs. (6) are still valid in this
region, we observe that the statistical deduction of the
VCHE in the channel provides the following realizabil-
ity condition:

B=a=1nCR —m) +2R — nB. (14)

To check this condition we extrapolated [11] the experi-
mental profiles in Fig. 1 into the near-wall region accord-
ing to Panton [9] to obtaia from the first equation in (6).
We found that the realizability condition (14) can be sat-
isfied for an appropriate choice @,. Thus, our closure

All empirical data up to now suggest that there is aansatz is consistent with Panton’s results as well.

small range(z;, z) of positions within the channel such
that, for z in this range, the von Karman log law is
a good approximation toU(z) for R (or Ry) large
enough. This implies that, in this rangé(z) — U(z;) is

a function ofz/d only. It can be proven that, regardless
of how narrow the range, the latter property implies
via (12) thata/u. = a. coshé(1l — qo), b/u. = b.(1 —
g0)?, andé = £, with some absolute constants, b.., and
¢.. By comparing an experimental profile f& (or Ry)
large enough with the profile given by our formula (12),
we can obtain the values,, b., &., as well as the smallest
valuegq. for go. With these values, Eq. (12) becomes

) B _ coshé.(l — n/Ro)
¢ (1) = a. cosh&.(l q*{l coshé.(1 — ¢.) }
(13)

+ ¢o(R/Ro),
where ¢ is an explicit function ofR /R, only, andng =
g«Ry = n = Ry. We note that, for large Reynolds num-
5340

For larger Reynolds numbers, we use the experimental
data for pipe flow given in Ref. [7]. We note that the only
substantial difference between the mathematical treatment

25

FIG. 1. The mean-velocity profile in the channel for the
constanta VCHE (represented by the solid and dashed lines)
compared with the experimental data in Ref. [4].
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1 : : the Poiseuille-Hagen flow is recurrent on the attractor of
. the Navier-Stokes equation.

] We are grateful to R. Kraichnan, K.R. Sreenivasan,

and P. Constantin for constructive comments, and to

] D. Cioranescu for pointing out the relation between the

Camassa-Holm equations and the second-grade fluids.
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