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Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow
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We propose the viscous Camassa-Holm equations as a closure approximation for the Reynolds-
averaged equations of the incompressible Navier-Stokes fluid. This approximation is tested on turbulent
channel and pipe flows with steady mean. Analytical solutions for the mean velocity and the Reynolds
shear stress are consistent with experiments in most of the flow region. [S0031-9007(98)07958-7]
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Laminar Poiseuille flow occurs when a fluid in a
straight channel, or pipe, is driven by a constant upstre
pressure gradient, yielding a symmetric parabolic strea
wise velocity profile. In turbulent states, the mean strea
wise velocity profile remains symmetric, but is flattene
in the center because of the increase in velocity fluctu
tions. A lot of research has been carried out for turbule
channel flow, e.g., Refs. [1–6]; however, accurate me
surement of the mean velocity and the Reynolds stre
profiles, in particular for flows at high Reynolds number
is still an experimental challenge. In the case of pipe flo
recent experiments for measuring the mean-velocity p
file have been successfully performed at moderate to h
Reynolds numbers [7]. However, the fundamental unde
standing of how these profiles change as functions of t
Reynolds number is still missing.

In wall bounded flows it is customary to define
characteristic velocityup and Reynolds numberR0 by
up ­

p
jt0jyr and R0 ­ dupyn, wheret0 is the bound-

ary shear stress, densityr is unity, n is the molecular vis-
cosity of the fluid, andd is a characteristic macrolength
For instance, the channel half-width isd in channel flow,
and the pipe radius isd in pipe flow. Based on experi-
mental observation and numerical simulation, a piec
wise expression of the mean velocity across the chan
has been commonly accepted [8], for which the nond
mensional mean streamwise velocity,f ; Uyup, is as-
sumed to depend onh ; updyn and have three types
of behavior, depending on the distance away from t
wall boundaryd: a viscous sublayer, in whichf , h;
the von Kármán logarithmic “law of the wall,” in which
fshd ­ k21 ln h 1 A, where k . 0.41 and A . 5.5;
and a power law region, in whichf , hp , 0 , p , 1.
Alternatively, in [9] a single curve fitting over the whole
region is proposed. Yet another proposal [10] is a fam
of power laws that fit the data away from the viscous su
layer, and has the log law as an envelope.

In this paper we propose the viscous Camassa-Ho
equations (VCHE) [in Eq. (4)] as a closure approximatio
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for the Reynolds equations. Our primary aim is to
illustrate the connection between turbulence and th
VCHE. The analytic form of our profiles based on the
steady VCHE applies away from the viscous sublay
(but encompassing at least 95% of the flow region
and depends on two free parameters: the flux Reyno
numberR ­ duyn (where u is the mean flux) andR0.
Because of measurement limitations, most experimen
data are contained in this region. Let us remark th
we can further reduce the parameter dependence to o
free parameter by using a prescribed drag law for th
wall friction defined byD ­ 2R2

0yR2. For the remaining
wall region of the flow, we are unable to determine
the mean profile explicitly without further assumptions
However, we can show compatibility of the steady VCHE
with empirical and numerical velocity profiles in the
near-wall region [11]. The VCHE profiles are consisten
with data obtained from turbulent channel and pipe flo
measurements and simulations.

We begin our theoretical treatment by recalling th
Reynolds-averaged Navier-Stokes equations [8,12]:

≠kul
≠t

1 kul ? =kul ­ divkTl, divkul ­ 0 , (1)

where k?l denotes the ensemble average andkTl ­
2kplI 2 ku ≠ ul 1 ns=kul 1 =kulT d. Our approach
holds for both the channel and the pipe flows; howeve
for brevity we will give details only for the channel
case. For turbulent channel flow, the mean velocity
of the form kul ­ fUszd, 0, 0gT , with kpl ­ Psx, y, zd
and the Reynolds equations (1) reduce to divkTl ­ 0, or
equivalently,

2nU
00

1 ≠zkwul ­ 2≠xP ,

≠zkwyl ­ 2≠yP, ≠zkw2l ­ 2≠zP ,
(2)

where su, y, wdT is the fluctuation velocity in the in-
finite channelhsx, y, zd [ R3, 2d # z # dj. The s1, 3d
component of the averaged stress tensorkTl is given by
© 1998 The American Physical Society
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kT13l ­ 2nU 0szd 1 kwul. On the boundary, the velocity
components all vanish and one has the stress condition

7t0 ­ kT13ljz­6d ­ nU
0szdjz­6d , (3)

upon usingkwul ­ 0 at z ­ 6d. Hence, the Reynolds
equations implykwyl szd ; 0 and P ­ P0 2 t0xyd 2

kw2l szd, with integration constantP0.
The VCHE are

dv
dt

1 yj=uj 1 =p ­ n=2v , = ? u ­ 0 , (4)

where v ­ fI 2 s= ? ksldgu 2 ≠isksisjl≠jud, the
material derivativedydt ­ ≠y≠t 1 u ? =, and p is the
modified pressure,p ­ p 2 1y2juj2 2 1y2ksisjlu,iu,j ,
where p is the usual pressure. In Ref. [13], Eq. (4
with n ­ 0 is derived by decomposing Lagrangia
parcel trajectories into mean and fluctuating parts
Xssa, td ­ Xsa, td 1 sfXsa, td, tg and assuming isotropy
and homogeneity of the fluctuationss with components
si , i ­ 1, 2, and 3. Isotropy impliesksisjl ­ a2dij

with ksl ­ 0, wherea is a local length scale. Homo-
geneity, in addition to isotropy, implies thata is constant.
This derivation generalizes a one-dimensional integrab
dispersive shallow water model studied in [14] ton
dimensions and provides the interpretation ofa as the
typical mean amplitude of the fluctuations. Thus, it
clear that the solutions of VCHE are mean quantities.

Before comparing VCHE with Reynolds average
equations, we rewrite Eq. (4) (witha constant) in the
equivalent constitutive form,

du
dt

­ div T, T ­ 2pI 1 2nsI 2 a2=2dD

1 2a2 ÙD , (5)

with = ? u ­ 0, D ­ s1y2d s=u 1 =uT d, V ­
s1y2d s=u 2 =uT d, and corotational (Jaumann) derivativ
given by ÙD ­ dDydt 1 DV 2 VD. In this form, one
recognizes the constitutive relation for VCHE as a varia
of the rate-dependent incompressible homogeneous fl
of second grade [15,16], whose viscous dissipation, ho
ever, is modified by the Helmholtz operatorsI 2 a2=2d.
There is a tradition, at least since Rivlin [17], of modelin
turbulence by using continuum mechanics principle
such as objectivity and material frame indifference (s
also Ref. [18]). For example, this type of approach
taken in deriving Reynolds stress algebraic equati
models [19]. Rate-dependent closure models of me
turbulence have also been obtained by the two-sc
direct-interaction approximation approach [20] and b
the renormalization group method [21]. Since VCH
describe mean quantities, we propose to use (4) a
turbulence closure model and test this ansatz by apply
it to turbulent channel and pipe flows.

In the case of channel flow, we denote the veloci
u in (4) by U and seek its steady state solutions in th
form U ­ fUszd, 0, 0gT subject to the boundary condition
Us6dd ­ 0 and the symmetry conditionUszd ­ Us2zd.
)
n
as

le

is

d

e

nt
uid
w-

g
s,
ee
is
on
an
ale
y

E
s a
ing

ty
e

In this particular case, the steady VCHE reduces to

2nfs1 2 b0dUg00 1 nsa2U 0d000 ­ 2≠xp̃ ,

0 ­ 2≠yp̃ , 0 ­ 2≠zp̃ .
(6)

Here a2 ­ ks2
3l, b ­ ks3l, p̃ ­ p 1

R
fU 2 b0U 2

sa2U 0d0gU 0 dz, and the primes0d denotes az derivative.
Thus, for channel geometry,dvydt vanishes in (4) and
the remainingksisjl terms modify the pressure and dis
sipation. Comparing (2) and (6) identifies counterparts

U ­ U, ≠zkwul ­ nfsa2U 0d000 2 sb0Ud00g 1 p0 ,

≠zkwyl ­ 0, =sP 1 kw2ld ­ =sp̃ 2 p0xd ,
(7)

for a constantp0. Using the boundary condition and
reflection symmetry in this identification gives

kwyl szd ­ 0 ,

2kwul szd ­ 2p0z 2 nfsa2U 0d00szd 2 sb0Ud0szdg ,
(8)

and leaveskw2l undetermined up to an arbitrary functio
of z. A closure relation for2kwul involving U 000szd also
appears in Yoshizawa [20]; cf. also Eq. (8) of Ref. [4].

The general solution of the steady VCHE (6) witha con-
stant andb ­ 0 (i.e., assuming isotropy and homogenei
throughout the channel), subject to the above boundary
symmetry conditions, is

Uszd ­ a

"
1 2

coshszyad
coshsdyad

#
1 b

√
1 2

z2

d2

!
, (9)

with constantsa, b [22]. We show in [23] that any
time-dependent solution of (4), such thatusz, td ­
fUsz, td, 0, 0gT with Usz, td ­ Us2z, td and Us6d, td ­
0, converges exponentially in time to the solution (9) wi
the same mean flow and boundary shear stresses.

It is plausible to assume isotropy and homogene
away from the walls, and to consider the case whe
aszd ; a0 ; const andbszd ; 0 only in that part of
the channelhjzj # d0j away from the walls, for somed0,
0 , d0 , d, to be chosen appropriately. Given thata0
is the typical size of the fluctuations away from the wal
our basic assumptions are thata0yd is small and that
d 2 d0 is of the ordera0. In the part of the channe
jzj # d0, the solution of (6) with the same symmetr
property is given by a formula similar to Eq. (9),

Uszd ­ a

∑
1 2

coshszya0d
coshsd0ya0d

#
1 b

√
1 2

z2

d2
0

!
1 Us6d0d .

In the lower half of the channel, the mean velocityU
can be expressed in wall units using the notationfshd ­
Uszdyup, h ­ sz 1 ddy,p, with ,p ­ nyup ­ dyR0. In
this representation, the solution becomes

fshd ­
a
up

"
1 2

coshjs1 2 hyR0d
coshjs1 2 h0yR0d

#

1
b
up

"
1 2

√
1 2 hyR0

1 2 h0yR0

!2#
1 fsh0d , (10)
5339
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for h0 # h # R0, where j ­ dya and h0 ­ q0R0 ­
sd 2 d0dy,p , a0y,p ­ R0yj.

Using the definition of R and f, we have R ­RR0

0 fshd dh. Hence (10) gives

R ­
a0R0

up

√
1 2

tanhjs1 2 q0d
js1 2 q0d

!
1

2b0R0

3up

1 fsh0d sR0 2 h0d 1
Z h0

0
fshd dh ,

where a0 ­ as1 2 q0d and b0 ­ bs1 2 q0d. To com-
plete this computation it is sufficient to approximatef

on s0, h0d by the piecewise linear function equal toh
for 0 , h # hp and to f0 1 sh 2 h0df0

0 for hp #

h # h0, where f0 ­ fsh0d, f
0
0 ­ f0sh0d, and hp ­

sf0 2 h0f
0
0dys1 2 f

0
0d. We obtain

R
R0

ø
a0

up

"
1 2

tanhjs1 2 q0d
js1 2 q0d

#
1

2b0

3up

1 s1 2 q0df0

2 s1 2 f0
0d21sf0q0 2

1
2 q2

0R0f0
0 2

1
2 f2

0yR0d ,
(11)

where

f0
0 ­

aj

upR0
tanhfjs1 2 q0dg 1

2b
upR0

s1 2 q0d .

Using this and solving forf0, we obtain an explicit func-
tion f0 ­ f0sq0; RyR0; ayup, byup, jd. Thus Eq. (10)
becomes

fshd ­
a
up

"
1 2

coshjs1 2 hyR0d
coshjs1 2 h0yR0d

#

1
b
up

"
1 2

√
1 2 hyR0

1 2 h0yR0

!2#

1 f0

√
q0; R, R0;

a
up

,
b
up

, j

!
. (12)

All empirical data up to now suggest that there is
small rangesz1, z2d of positions within the channel such
that, for z in this range, the von Kármán log law is
a good approximation toUszd for R (or R0) large
enough. This implies that, in this range,Uszd 2 Usz1d is
a function ofzyd only. It can be proven that, regardless
of how narrow the range, the latter property implie
via (12) thatayup ø ap coshjs1 2 q0d, byup ø bps1 2

q0d2, andj ø jp with some absolute constantsap, bp, and
jp. By comparing an experimental profile forR (or R0)
large enough with the profile given by our formula (12)
we can obtain the valuesap, bp, jp, as well as the smallest
valueqp for q0. With these values, Eq. (12) becomes

fshd ­ ap coshjps1 2 qpd

"
1 2

coshjps1 2 hyR0d
coshjps1 2 qpd

#

1 bps1 2 qpd2

"
1 2

√
1 2 hyR0

1 2 qp

!2#
1 f0sRyR0d , (13)

wheref0 is an explicit function ofRyR0 only, andh0 ­
qpR0 # h # R0. We note that, for large Reynolds num-
5340
a

s

,

bers,f0sRyR0d has the following asymptotic formula:

f0sRyR0d ,
R
R0

2 C0 1
1
2

q2
0C0

0 ,

whereC0 andC0
0 depend only onap, bp, jp, andqp. The

ratio RyR0 can be determined from the empirical dra
laws. In this way, one can use our formula (13) to pred
the profile off for any Reynolds numbers.

In Fig. 1 we compare our profiles with experiment
data [4]. As the Reynolds numbers for these experime
are small,ayup and byup have not reached their theo
retical asymptotic values. These constants are there
allowed to vary slightly withR0 while holding jp and
qp constant to fit the data. Figure 2 compares the c
responding experimental and theoretical Reynolds sh
stresses. In Fig. 1 our theoretical mean-velocity profi
extend closer to the wall while still matching the empir
cal data; however, in Fig. 2 the corresponding Reyno
shear stresses do not so extend. Therefore, we take aqp

the least value that works for both.
Near the wall (i.e., in the region0 , h , qpR0)

the hypotheses of isotropy and homogeneity in the L
grangian fluctuations break down. Therefore,b fi 0 and
a depends onh. A heuristic argument givesb , sh0 2

hd2b0. To test whether our Eqs. (6) are still valid in thi
region, we observe that the statistical deduction of t
VCHE in the channel provides the following realizabi
ity condition:

b # a #

q
hs2R0 2 hd 1 2sR0 2 hdb . (14)

To check this condition we extrapolated [11] the expe
mental profiles in Fig. 1 into the near-wall region accor
ing to Panton [9] to obtaina from the first equation in (6).
We found that the realizability condition (14) can be sa
isfied for an appropriate choice ofb0. Thus, our closure
ansatz is consistent with Panton’s results as well.

For larger Reynolds numbers, we use the experimen
data for pipe flow given in Ref. [7]. We note that the on
substantial difference between the mathematical treatm
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FIG. 1. The mean-velocity profile in the channel for th
constant-a VCHE (represented by the solid and dashed line
compared with the experimental data in Ref. [4].



VOLUME 81, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 14 DECEMBER1998

of

,
to
e

,

-

.

.

r,
g

e
t
r

0

0.2

0.4

0.6

0.8

1

10 100 1000

<
uw

>
/τ

0

η

R0=714
989

1608

FIG. 2. Reynolds shear stress in the channel compared w
the experimental data in Ref. [4].

of the two types of flows is that, for pipes, the cos
function is replaced by the first modified Bessel functio
I0 (see Ref. [24]).

In Fig. 3 we compare our profiles with experimenta
data [7]. We obtainap, bp, jp, and qp by using the
experimental data forR ­ 98 812 and then we use the
von Kármán drag law for the calculation off0sRyR0d
in the formula for the pipe corresponding to (13) t
obtain profiles forR ­ 3 098 100 and 35 259 000. We
note that our predictions are consistent with the vo
Kármán log law [25] and the Barenblatt-Chorin power la
[10] in the appropriate regions, as well as resolving th
“chevron” near the center of the flow [26]. Our approac
shows a logarithmic profile for0.02R0 # h # 0.2R0 and
a chevron near the center of the pipe. The Barenbla
Chorin power law [10] may represent the transition in th
profile from the log law to the chevron. Moreover, th
chevron is due tobp fi 0 and may reflect the fact that
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FIG. 3. The mean-velocity profile in the pipe for the constan
a viscous Camassa-Holm equation compared with the expe
mental data of Zagarola [7].
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the Poiseuille-Hagen flow is recurrent on the attractor
the Navier-Stokes equation.
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