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Dynamics and Selection of Giant Spirals in Rayleigh-Bénard Convection
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For Rayleigh-Bénard convection of a fluid with Prandtl numbers ­ 1.4, we report experimental and
theoretical results on a pattern selection mechanism for cell-filling, giant, rotating spirals. We show
the pattern selection in a certain limit can be explained quantitatively by a phase-diffusion mechan
This mechanism for pattern selection is very different from that for spirals in excitable med
[S0031-9007(98)07905-8]
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Spiral patterns are found in many pattern-forming sy
tems [1]. Famous examples include cardiac arrhythmi
of the heart [2], the aggregation of starving slime mol
amoebae [3], and the Belousov-Zhabotinsky chemical r
action [4]. Many of these systems can be classified
excitable media in which the core of the spiral, like a
pacemaker, selects the temporal and spatial evolution
the outward traveling spiral waves [4]. In this Letter we
present a detailed experimental study of a driven, diss
pative system in which the formation of spirals can b
attributed to a qualitatively different mechanism actin
far away from the spiral’s core. In particular, we show
for Rayleigh-Bénard convection (RBC) of a small Prand
number fluid that the rotation of giant, multiarmed spiral
can be captured using concepts based on nonlinear ph
equations [5–10]. These concepts should be univers
and preliminary evidence indicates that similar reasonin
may also apply to the spiral pattern formation in vibratin
granular layers [11] and in gas discharges [12].

As stated earlier [13], the rigid rotation of a giant
finite spiral of radiusrd necessitates that the spiral wave
which propagate from the spiral’s core are annihilated
r ­ rd by a circular motion of the outer defect. Thus
the pattern simply consists of stationary, concentric rol
for r . rd . This balancing mechanism has been place
on a more precise theoretical framework by Cross an
Tu (CTC) [7,8]. They argue that the rotation of a spira
requires the reconciliation of two competing selectio
principles acting far away from the spiral’s core: (1
wavelength selection by climb of the outer defect an
(2) the emission of radially traveling waves due to targe
selection. These arguments have been successfully tes
within generalized Swift-Hohenberg (SH) models fo
axisymmetric spirals [7–10] and have also been extend
to multiarmed spirals [9]. However, the generalized S
model used in these studies containsad hocparameters,
and its stability regime deviates substantially from that fo
RBC [14]. As Cross [8] has pointed out in his concluding
remarks, serious conceptual uncertainties remain as we
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In this Letter, we present the first quantitative expe
mental and theoretical analysis of giant rotating spir
in RBC. For axisymmetric, multiarmed spirals in large
aspect-ratio cells we find good quantitative agreem
between experimental measurements and theore
predictions. However, for the frequent case of no
axisymmetric spirals our measurements are in confl
with the proposed target selection mechanism and, a
consequence, CTC’s invasive chaos idea as a tenta
explanation of spiral defect chaos (SDC) [15] requir
refinement.

Rayleigh-Bénard convection occurs in a horizontal flu
layer of heightd heated from below when the tempera
ture differenceDT exceeds a critical valueDTc. For
e ­ sDTyDTc 2 1d . 0, a pattern of convection rolls
with wave numberk ø pyd develops [14]. Recent large
aspect-ratio experiments using pressurized gases reve
interesting nonrelaxational pattern evolution. For mod
atee Bodenschatzet al. [13] found giant rotating spirals
similar to those described here, while Morriset al. [15]
found the spatiotemporal chaotic state of SDC.

As shown in Fig. 1, our experiment consisted of six c
cular convection cells filled with pressurized CO2 gas. The
convective pattern was visualized with the shadowgra
technique [16]. The experimental setup including param
ters is described in detail in Ref. [17]. In most expe
mental runs reported here we increasede quasistatically
starting from below onset of convection (e ­ 0). Upon
crossing onset, small amplitude axisymmetric target p
terns developed in all cells due to weak static sidew
forcing. (We achieved this by a step in the cells’ sid
walls [17].) Abovee ø 0.4 the initially axisymmetric tar-
get moved off-center, compressing the pattern on one s
while dilating it on the other. The appearance of this ins
bility is consistent with theoretical predictions [6]. Upo
further increases ine the target moved farther off-cente
until the wave number in the compressed region increa
beyond the skewed-varicose (SV) instability [14] and
defect pair would nucleate to decrease the wave num
© 1998 The American Physical Society
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FIG. 1. Shadowgraph image of the six convection cells fo
e ­ 0.98. Dark corresponds to warm up-flow, while light
corresponds to cold down-flow. The cells used in the analys
are numbered from 1 to 4. Cell 3 contains a “PanAm” patte
and cell 2 contains spiral defect chaos.

One of the defects then moved to the center while th
other glided radially outward before coming to rest at
distancerd from the geometrical center. The pattern the
relaxed to an on-center, one-armed rotating spiral of rad
rd . (While this instability was observed fore ø 0.5 in the
largest cell, it was slightly postponed in the smaller cells
Above e ø 0.55 we observed a behavior reminiscent o
the target instability in which the spiral’s core would mov
off-center. Fore , 0.64 we observed stable, rotating, off-
center spirals (see Fig. 3 below) which with each increa
in e would move further off-center. Eventually, the wave
number in the compressed region increased beyond the
instability and defect pairs nucleated. The pattern then d
veloped into a three- or four-armed spiral, into the so-calle
“PanAm” pattern, or into spiral defect chaos. Examples
the latter two are shown in Fig. 1 in cell 3 and cell 2, re
spectively. We note that stability properties of spirals ha
not been addressed experimentally nor theoretically pr
to our investigations.

For a few additional runs, we jumped the contro
parameter from below the onset of convection (e , 0) to
above (e . 0). As the jump was increased, we observe
targets, one-armed spirals, multiarmed spirals, PanA
patterns, and SDC. Interestingly, we observed tw
armed spirals only when we employed this procedur
Otherwise, the general trend withe observed using the
two methods was similar. We note that whene was
quasistatically decreased starting from SDC or PanA
patterns, we observed PanAm patterns, not targets, e
close to onset. This shows that the static sidewall forcin
was very weak.

Let us initially focus on the one-armed spiral. Figure
shows the average velocitiesyd of the outer defects for
an experimental run with one-armed spirals in cells 1–
r
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FIG. 2. Average velocityyd of the outer defect vse for one-
armed spirals. The size of the on-center spirals is given
Ref. [18]. The dashed line represents a linear fit to the o
center data.

(The velocities are normalized in terms ofdytT , wheretT

is the vertical thermal diffusion time scale.) Note that th
spirals had a variety of different sizesrd . We measured
yd by tracking the path of the outer defect with a Fourie
demodulation technique [19,20]. For on-center spirals t
averaged defect velocities of spirals in cells 1–3 obey
the same linear relationshipyd ­ 0.64se 2 0.09d. For
values ofe with off-center spirals,yd changed abruptly.
(The spiral in cell 4 showed deviations from this behavio
possibly due to its small size.) We also measured t
rotation frequencyv of the spirals and found that the dat
are well described byv ­ ydyrd. This dependence on
spiral size differs markedly from the size independence
v observed for spirals in excitable media [4].

The first part of CTC’s argument is that the behavio
of the outer defect of a spiral can be considered as
dislocation climbing in a (slightly curved) roll pattern with
a radial wave numberqsrd in analogy to the simpler case
of a dislocation climbing with the velocityyd in a straight
roll pattern with background wave numberq. This latter
case was considered theoretically in the framework of t
Swift-Hohenberg model [5]. Based on the phase diffusio
equation which captures the behavior far from the defe
the defect velocityyd was found to obey the relation [21]

yd ­ bsed fq 2 qdsedg , (1)

whereqd is the zero-velocity wave number.
In order to compare with this theoretical prediction on

first needs a sensible definition of a background wa
number qsrd. Crucial to this was the observation tha
the time average of anm-armed spiral (when performed
over a duration equal to a multiple of the rotation period
yielded a target pattern. This is exemplified in Fig. 3(B
for the one-armed off-center spiral shown in Fig. 3(A
As shown below, choosing the radial wave numberqsrd
of the target pattern as the background wave numberq in
Eq. (1) appeared to work quite well.

The occurrence of a target pattern after averaging ov
a rotating spiral can be rationalized by the followin
approximate calculation. A one-armed, finite spiral can
described satisfactorily by a modified Archimedean spir
5335
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FIG. 3. (A) Off-center one-armed spiral and (B) the averag
over one rotation period overlaid with the defect position
at constant time intervalsDt ­ 8.7tT for e ­ 0.62 and
s ­ 1.38.

i.e., fs$r , td ­ Asrd cossq r 2 f 1 fd 2 vtd, where q
is the wave number of the underlying target withou
defects,Asrd is the amplitude, andr is the radial distance
from the spiral’s center. The phasesf ­ arctans yyxd
and fd ­ arctanfs y 2 yddysx 2 xddg are polar angles
centered about the spiral’s core at$r ­ s0, 0d and the outer
defect position$rdstd ­ sxd , ydd, respectively. It is not
difficult to show that the time average of such a rigidl
rotating spiral givesIsr, rdd ­ 2pAsrdJ1sryrdd cossqrd,
whereJ1 is the first Bessel function of the first kind. We
note that the corresponding average of an Archimede
spiral (fd ­ 0) would vanish.

Using the above definition of the background wav
number qsrd, we tested Eq. (1) using experimental ve
locities obtained from off-center, one-armed spirals ov
a wide range of values ofe. The slower defect mo-
tion in the dilated regions and the faster motion in th
compressed regions seen in Fig. 3B are consistent w
Eq. (1). For a quantitative test we measuredqsrd at the
defect positions by fitting small regions to concentric ro
patterns [20]. (The method of Ref. [23] produced sim
lar values.) We then plottedyd versusq for each value
of e and found that the data were well described by
linear relationship, allowing us to determine the param
tersbsed andqdsed using a least-squares fitting procedur
[24]. These data are shown in Fig. 4. Using simulatio
of the three-dimensional Boussinesq equations [25],
also measured defect velocitiesyd as a function of back-
ground wave numberq for defects moving in straight roll
patterns. Again, we found a linear relationship betwe
yd and q and determinedbsed andqdsed. As shown in
Fig. 4, the numerically determined values forbsed and
qdsed are in excellent agreement with the experimen
Using the simulations, we also analyzed off-center, on
armed spirals [26] and found excellent agreement betwe
experiment and theory [27].

The second part of CTC’s argument—selection b
circular traveling waves—relies on the fact that awa
from the core of the spiral the wave fronts deviate on
slightly from circular and are thus well approximated a
targets. It has been shown that targets prefer a spec
5336
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FIG. 4. (A) b and (B) qd vs e for single-armed, off-center
spirals, compared with numerical simulations of defects in
straight roll pattern.

wave numberqtsed [6], and that a target with a wave
number differing fromqtsed will attempt to adjust its
wave number by emitting circular waves of frequenc
vtsed. Using the nonlinear Cross-Newell phase-diffusio
equation [6], one finds

vt ­ ased fqtsed 2 qgyr , (2)

wherea ­ 2Dksqtd, Dksqd is the parallel diffusion con-
stant, andr is the distance from the center of the targe
The numerical value of the parametera can be calculated
from the growth ratessqt , Kd of a longitudinal modula-
tion with wave numberK of a pattern with wave number
qt asa ­ f22ssqt , KdyK2g jK!0 [6].

Using geometrical arguments, CTC showed that a on
armed spiral requires

yd ­ vtrd , (3)

where, again,yd is the velocity of the defect at radius
rd. We used Eqs. (3) and (2) and the generalizati
to multiarmed spirals [9] to determinea. From the
investigations above and a similar analysis form-armed,
on-center spirals, we measured the average defect velo
yd . For each cell we determinedqt by extrapolating
the azimuthal average ofqtsed at the defect positions
from on-center targets at lowere to the largere where
we observed them-armed, on-center spirals. We foun
that sqt 2 qcd , e [20]. The data forqt was in good
agreement with the numerical predictions by Buell an
Catton [28]. The remaining unknown background wav
numberq was measured from the underlying target, aga
azimuthally averaged over the defect positions. With th
information we determineda for one-, two-, three-, and
four-armed on-center spirals. The data are summariz
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FIG. 5. a vs e for single- and multiarmed spirals. The shape
of the symbols correspond to the four different cells. Th
level of gray in the symbols distinguishes between the numb
of arms in the spirals. One-armed spirals are clear, tw
armed are gray, three-armed are dark gray, and four-armed
black. The numerically determined value ofa is plotted as a
dashed line.

in Fig. 5. It shows that for the larger cells and th
multiarmed spiralsa agrees well with the theoretical
value numerically determined from the growth rate o
the Eckhaus instability using a Galerkin code (dashe
line). The discrepancies become significant for one-arm
spirals in the smaller cells 3 and 4.

For the frequently occurring off-center spirals we foun
that the rotating spirals had regions where the local wa
number was larger than that of the stationary targe
This observation indicates that a “local” interpretation o
Eq. (2) (negativevt) is not reasonable. Rotating spirals
are important structure elements of SDC [15,23]. Most
they are one-armed and often off-center. In this case t
target selection becomes unreliable and as a conseque
CTC’s invasive chaos idea as an explanation of SDC h
to be reconsidered.

In summary, our analysis presents the first quantitati
test of Eq. (1) [5] and Eq. (2) [7–9] in a real physica
system. Giant multiarmed spirals are exceptionally we
suited for the study of dislocation dynamics in RBC; on
can follow the defect trajectories for very long times and
in addition, the background wave number is natural
defined by the time average of the spiral.
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