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Phase Slips and Phase Synchronization of Coupled Oscillators

Zhigang Zheng,1,2 Gang Hu,1,2 and Bambi Hu1,3

1Department of Physics and Center for Nonlinear Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong, C
2Department of Physics, Beijing Normal University, Beijing 100875, China

3Department of Physics, University of Houston, Houston, Texas 77204
(Received 29 June 1998)

The behaviors of coupled oscillators, each of which has periodic motion with random natural
frequency in the absence of coupling, are investigated. Some novel collective phenomena are revealed.
At the onset of instability of the phase-locking state, simultaneous phase slips of all oscillators and
quantized phase shifts in these phase slips are observed. By increasing the coupling, a bifurcation tree
from high-dimensional quasiperiodicity to chaos to quasiperiodicity and periodicity is found. Different
orders of phase synchronizations of chaotic oscillators and chaotic clusters play the key role for
constructing this tree structure. [S0031-9007(98)07916-2]

PACS numbers: 05.45.+b, 87.10.+e
rs,
lar
le
ly
iza-

to
uch
and

e

se
e

to

ior
e

The investigation of coupled oscillators has attracte
constant interest for many decades [1]. The rich collectiv
behaviors of these systems, such as mutual entrainme
self-synchronization, and so on, are observed in ma
fields, e.g., coupled laser systems, Josephson junct
arrays, biological and chemical oscillators, etc. [2–10
In early studies, interest was focused on coupled osc
lators, of which each is periodic without coupling. Re
cently, the investigation has been extended to coupl
chaotic systems (i.e., individual systems are chaotic wit
out coupling). Significant phenomena were found, suc
as phase synchronization of two mutually coupled chao
oscillators [11,12] and clustering and cluster-cluster sy
chronization of multiple coupled chaotic units for loca
[13] and global [14] couplings.

In this Letter, we study the followingN coupled
oscillators with the nearest coupling,

Ùui ­ vi 1
K
3

fsinsui11 2 uid 1 sinsui21 2 uidg , (1)

i ­ 1, 2, . . . , N , where K , ui, and vi are the coupling
strength, the angle of modulo2p, and the natural fre-
quency of theith oscillator, respectively. Model (1) has
been extensively investigated in the past several decad
Here we concentrate on the dynamical behavior of the sy
tem. In particular, we are interested in the characteris
features of the motions of individual oscillators, i.e., th
microscopic motions, in the regime of desynchronizatio
of the phase-locking state, which have not yet been we
investigated by the previous works. Several novel fe
tures of this system are found. First, we find simultaneo
phase slips of all oscillators at the onset of desynchroniz
tion of the phase-locking state, and quantized phase sh
in these slips are observed. Moreover, we find the i
teresting cascade behavior of coupling-induced chaos a
a nice tree structure of transitions from quasiperiodicit
to chaos to quasiperiodicity and periodicity. Then ric
behaviors of synchronizations between chaotic oscillato
and chaotic clusters, which have attracted much attenti
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recently for the coupled Rossler and Lorenz oscillato
can be also identified for the rather old as well as popu
system (1), of which the individual oscillators have simp
periodic motions without coupling. These findings great
enlarge the application perspectives of chaos synchron
tion. These features of phase dynamics are expected
be observable in practical systems by experiments, s
as coupled laser arrays, Josephson junction chains,
coupled electrical circuits.

In Eq. (1) the periodic boundary conditionui1N std ­
uistd is applied. Without losing generality we scalevi

such that
NX

i­1

vi ­ 0 . (2)

It is well known that for a givenN andhvi , i ­ 1, . . . , Nj,
there is a critical couplingK ­ Kc. For K . Kc, phase
locking can be observed, and then we haveh Ùui ­ 0, i ­
1, . . . , Nj, and eachui is locked to a fixed value. For
K , Kc, no phase locking exists, andÙui std are no longer
zero. In [8–10], it is found that if we define an averag
frequency as

vi ­ lim
T!`

1
T

Z T

0

Ùuistd dt , (3)

synchronization between different oscillators, in the sen
of vi ­ vj, i fi j, can be observed in the region wher
strict phase locking ofÙui ­ 0 is broken. It is interesting
to investigate how the various oscillators are led
complete synchronization (phase locking forK . Kc) via
a sequence of bifurcations by increasing the couplingK
from K ­ 0.

In order to get a general idea about the global behav
of the system, we first measure the following two positiv
macroscopic quantitiesR andV:

R ­
1
N

É
NX

j­1

eiuj

É
, V ­

NX
i­1

jvij . (4)
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It is clear thatR is time dependent beyond the phase
locking region. Then we further measure its time avera
as an order parameter:

kRl ­ lim
T!`

1
T

Z T

0
Rstd dt . (5)

In Figs. 1(a) and 1(c), we plotV vs K for N ­ 5 and
15, respectively. In both cases, natural frequencies
randomly chosen from a normal Gaussian distributio
The actual frequencies can be seen in Fig. 3(a)
N ­ 5 and Fig. 3(b) forN ­ 15 at K ­ 0, respectively.
These natural frequencies are used for all figures in t
Letter. We found, for the given natural frequencie
Kc ­ 5.08 for N ­ 5 andKc ­ 6.22 for N ­ 15. When
K . Kc we have identicallyV ­ 0, and then complete
synchronization (phase locking) is justified. In Figs. 1(b
and 1(d) we do the same as in Figs. 1(a) and 1(
respectively, with the measured quantity replaced
kRl. In computing Fig. 1, initial conditions ofujs0d
are randomly chosen, and then in the shaded region
Fig. 1(d) the coexistence of multiple attractors of phas
locking states is justified forK . Kc. In Fig. 1, the
quantity T in Eqs. (4) and (5) is taken sufficiently long
in our simulations so that the fluctuations due to fini
T are invisible. It is interesting to observe that sever
discontinuities appear in the regionK , Kc, indicating
that, apart from the apparent phase-locking transitio
some additional transitions exist even beforeKc.

For the microscopic quantities, it is natural to study th
velocities of various oscillators. In Figs. 2(a) and 2(b
we present the motions ofÙui vs t for N ­ 5 and different
K ’s. ForK ­ 0, Ùui must be equal to the constantvi, and
for small K [see Fig. 2(a)]Ùui varies oscillatorily around
its natural frequency. AsK increases, the oscillations
of Ùui become large, and the oscillation centers of a

FIG. 1. V and kRl defined in Eqs. (4) and (5) plotted vsK
for N ­ 5 and 15. The natural frequencies are shown in Fig.
at K ­ 0. Kc ­ 5.08 and 6.22 forN ­ 5 and N ­ 15. For
K . Kc, phase locking can be observed, and the shaded reg
in (d) indicates the coexistence of multiple attractors of phas
locking states.
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oscillators shift close to each other. An interesting feat
is that near the onset of synchronization [see Fig. 2(b
we can find simultaneous phase slips, i.e., all oscillat
keep in the phase-locking condition (OFF state) for
long time, and then simultaneous bursts of all oscillat
(ON state) break the locking state. After a short firin
all oscillators calm down again simultaneously to anoth
phase-locking state and then repeat the same pro
periodically. AsK gets closer toKc, the length of the
OFF statet becomes longer. We find a clear scalin
betweent andKc 2 K:

t ~ sKc 2 Kd20.5. (6)

The above features of synchronized actions of ph
slips can be well understood by an intuitive explanatio
Suppose various oscillators can be locked to a set
phasesui sKd for K $ Kc. Then all solutions satisfying

ui11 sK , md 2 ui sK , md ­ ui11sKd 2 uisKd 1 2pmi

(7)
with m ­ sm1, . . . , mj , . . . , mN d andmi being any integer,
must also be phase-locking solutions of (1). By reduc
K lower than Kc, all the above solutions lose the
stability via the saddle-node bifurcation. AtK ­ Kc,
there exists a heteroclinic path linking some of the abo
solutions, which has the lowest potential, and is attract
(the existence of such a heteroclinic path can be rigorou
proven for N ­ 2). For K , Kc, and jK 2 Kcj ø 1,
the system takes such a periodic path, which stays
the vicinity of one of the above stationary solution
for a long time, and escapes away from this soluti
(simultaneous phase slips for all oscillators) and th
approaches to the vicinity of the next stationary soluti
along the heteroclinic path ofK ­ Kc; this produces the
periodic pulses of Fig. 2(b). The scaling property of tim

FIG. 2. (a),(b) The time evolutions ofÙui plotted for N ­ 5
and two different K. Near the onset of the instability o
the phase-locking state [(b)], simultaneous phase slips of
oscillators are clearly seen. (c),(d) Someuistd plotted against
t near Kc. (c) K ­ 5.07, N ­ 5; (d) K ­ 6.212, N ­ 15.
Quantization of phase shifts for all oscillators at each phase
is justified.
5319
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length of the OFF statet can also be computed since
for the saddle-node bifurcation we have a universal for
Ùx ­ sKc 2 Kd 1 x2. The time t for x to move from
x ­ 0 to x ! ` readst ~

R`

0
dx

sKc2Kd1x2 ­
p

2
p

Kc2K ; this
explains our observation of the scaling law of Eq. (6).

It is interesting to compute the phase shifts for variou
oscillators in each phase slip pulse in Fig. 2(b). LetDui

represent the phase shift ofui during each pulse. From
(1) and (2) we have

NX
i­1

Dui ­ 0 . (8)

We argue that any two adjacent fixed points in a heter
clinic path atK ­ Kc takemi ­ 0 or 61 in Eqs. (7); i.e.,

Dui11 2 Dui ­ 0 or 62p (9)

for i ­ 1, . . . , N 2 1. Considering both conditions (8)
and (9),Dui can take only quantized values

Dui ­ 0, 6
2p

N
, 6

4p

N
, . . . , 6

2sN 2 1dp
N

, 62p . (10)

The concrete value for eachDui depends on the particular
distribution of vi. In Figs. 2(c) and 2(d) the phase
shifts observed in all pulses fully agree with our heurist
argument. Further considering Fig. 3, the phase shifts
Fig. 2 can be exactly predicted (see [15]). One mo
conclusion from the above analysis is that at the ons
of instability of the phase-locking state, all velocitie
vj have the scalingvj ~

p
Kc 2 K, and the ratios

between differentvj must be quantized to discrete
rational numbers.

As we further reduceK to values considerably smaller
than Kc, no more phase-locking exists, and no appa
ent synchronization can be observed directly forÙuj std.
However, some other implicit synchronization—phas
synchronization—can still be found. To get a gener
idea, we plotvi defined in (3) vsK for N ­ 5 and 15
in Figs. 3(a) and 3(b), respectively, by varyingK from
K ­ 0 to K . Kc. Interesting behavior of transition tree
for phase synchronization is clearly shown. Though som
synchronizations can be expected from the observations
frequency plateaus reported in previous papers [8–10]
number of characteristic features revealed in these tre
are novel and interesting. Three kinds of transitions c
be observed in these trees. First, if twoadjacentoscil-
lators (or adjacent clusters of oscillators) have close fr
quencies, they can be easily synchronized by increas
K. In this case, one always finds two branches mergi
to a single one (indicated byA). Second, if twononad-
jacentoscillators (or two nonadjacent clusters) have clos
frequencies while the oscillators between them have co
siderably different frequencies, one can find the nonad
cent oscillators can also be synchronized to each oth
i.e., nonlocal clusters can be formed, and these nonlo
clusters can quickly bring the oscillators between them
the synchronized status and form a solidly larger synchr
nized cluster. In this case, the transition may be from tw
5320
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to one or from multiple branches to one (indicated b
B). An oscillator, which is synchronized to a cluster fo
certainK, can bedesynchronizedfrom the original cluster
by increasingK. This desynchronization always happen
at an edge oscillator of a cluster, due to the competitio
between two neighbor clusters [indicated byC; see 2nd
and 3rd oscillators of Fig. 3(b)]. It is obvious thatC is
the inverse ofA. The transitions of typesB andC have
never been realized before.

The most interesting and novel finding is the nature o
these synchronizations. The motions in these synchr
nization trees may be very different. They can be pe
riodic, quasiperiodic, and chaotic. In Fig. 4(a), we tak
N ­ 15 and plot the largest Lyapunov exponent of th
system vsK. In a large interval ofK, we find the posi-
tive Lyapunov exponent, indicating chaos. Thus, in th
region phase synchronizations of chaotic oscillators a
identified. Recently, the phase synchronization of couple
chaotic systems has attracted great attention [11]. He
the major difference between our system and the previo
chaos synchronization is that our oscillators are period
without coupling, and chaos is induced by the coupling
while in the latter case the individual systems are chao
without coupling. Moreover, we find that these coupling
induced chaotic motions of different oscillators may hav

FIG. 3. Transition trees of synchronization for averaged ve
locities versusK. (a) N ­ 5; (b) N ­ 15. Note the existence
of three kinds of transitions labeled byA, B, andC.
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FIG. 4. (a) The largest Lyapunov exponent of the coupl
oscillators plotted againstK, N ­ 15. (b)–(f ) give the maps
of Ùu1 sn 1 1d vs Ùu1 snd for K ­ 6.0, 3.0, 1.5, 0.9, and0.01.

different levels of synchronizations by varying the cou
pling, and the cascade of synchronization forms a treel
structure of Fig. 3.

In Figs. 4(b) to 4(f) we plot the maps ofÙu1 snd to
Ùu1 sn 1 1d, where Ùu1 (n) is the Ùu1 value at the time
t when u1std crosses the angles2np with n being an
integer. ForK . Kc, we have fixed point solution, and
the map is fixed atÙu1 snd ­ Ùu1 sn 1 1d ­ 0. For K
slightly smaller thanKc we have a periodic solution
represented by the finite number of dots in Fig. 4(b
Period 8 can be easily understood from Fig. 2(d). T
period of the total system is15t, where t is the time
interval between the two adjacent slips, and the change
u1 in 15t is 216p. This leads to the period-8 solution
of Fig. 4(b). Two-frequency torus can be identified i
the three-cluster regime [see Fig. 4(c)]. For very sm
K, we can find high-dimensional quasiperiodicity [e.g
Fig. 4(f)]. Chaos is prevailing in theK region between
Figs. 4(c) and 4(f) [see Figs. 4(d) and 4(e), and Fig. 4(a
Many periodic windows are found in the quasiperiod
and chaotic regions, which will be investigated in deta
in our forthcoming extended paper.

The entire variation from high-dimensional quasiper
odicity (for very small K) to periodic motion sK ,

Kc, jK 2 Kcj ø 1d through various orders of chaos syn
chronizations can be vitally seen in Figs. 3 and 4. Starti
from the high-dimensional quasiperiodicity forK ø 1,
by increasingK various neighboring oscillators with close
frequencies start to form clusters via phase synchroni
tion, and chaos is induced near the first synchronizati
Then in each cluster, different oscillators perform diffe
ent chaotic motions, while having the identical windin
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number. The winding numbers for different chaotic clus
ters are different. When further increasingK, adjacent
chaotic clusters can be synchronized to form larger clu
ters, until two large clusters are formed when the mo
tion becomes periodic. This tree picture of the transition
is expected to be the same for general large number
coupled nonidentical oscillators, which are periodic i
bare case.

Since system (1) qualitatively describes practical situ
ations in wide fields, ranging from physics and chemistr
to biology, the findings in this Letter are expected to be o
general significance, and they can be used for understa
ing the mechanisms of rich collective behaviors of cou
pled systems. Laser arrays, Josephson junction chains,
coupled electrical circuits may be ideal candidates for e
perimentally revealing the features explored in this Lette
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