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Phase Slips and Phase Synchronization of Coupled Oscillators
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The behaviors of coupled oscillators, each of which has periodic motion with random natural
frequency in the absence of coupling, are investigated. Some novel collective phenomena are revealed.
At the onset of instability of the phase-locking state, simultaneous phase slips of all oscillators and
quantized phase shifts in these phase slips are observed. By increasing the coupling, a bifurcation tree
from high-dimensional quasiperiodicity to chaos to quasiperiodicity and periodicity is found. Different
orders of phase synchronizations of chaotic oscillators and chaotic clusters play the key role for
constructing this tree structure. [S0031-9007(98)07916-2]

PACS numbers: 05.45.+b, 87.10.+e

The investigation of coupled oscillators has attractedecently for the coupled Rossler and Lorenz oscillators,
constant interest for many decades [1]. The rich collectivean be also identified for the rather old as well as popular
behaviors of these systems, such as mutual entrainmersystem (1), of which the individual oscillators have simple
self-synchronization, and so on, are observed in manperiodic motions without coupling. These findings greatly
fields, e.g., coupled laser systems, Josephson junctienlarge the application perspectives of chaos synchroniza-
arrays, biological and chemical oscillators, etc. [2—10]tion. These features of phase dynamics are expected to
In early studies, interest was focused on coupled oscilbe observable in practical systems by experiments, such
lators, of which each is periodic without coupling. Re-as coupled laser arrays, Josephson junction chains, and
cently, the investigation has been extended to coupledoupled electrical circuits.
chaotic systems (i.e., individual systems are chaotic with- In Eq. (1) the periodic boundary conditiahy(¢) =
out coupling). Significant phenomena were found, suctv;(r) is applied. Without losing generality we scalg
as phase synchronization of two mutually coupled chaotisuch that
oscillators [11,12] and clustering and cluster-cluster syn- N
chronization of multiple coupled chaotic units for local Z w; =0. (2)

[13] and global [14] couplings. i=1

In this Letter, we study the_ followingv coupled |t js well known that for a givewN and{w;,i = 1,...,N},
oscillators with the nearest coupling, there is a critical couplink = K.. ForK > K., phase

. K . ] locking can be observed, and then we h@@e= 0,i =

0; = w; + ?[Sln(9i+1 = 0:) +sin0i-1 — 60)], (1) 1 .. N}, and eachs; is locked to a fixed value. For
K < K., no phase locking exists, am (¢) are no longer
zero. In [8-10], it is found that if we define an average
frequency as

i =1,2,...,N, whereK, 6;, and w; are the coupling
strength, the angle of moduld7, and the natural fre-
quency of theith oscillator, respectively. Model (1) has
been extensively investigated in the past several decades. o 1 (T.
Here we concentrate on the dynamical behavior of the sys- @; = lim T ] 0i(r)dr,

T—0

3)
tem. In particular, we are interested in the characteristic

features of the motions of individual oscillators, i.e., thesynchronization between different oscillators, in the sense
microscopic motions, in the regime of desynchronizatiorof @; = @;, i # j, can be observed in the region where
of the phase-locking state, which have not yet been welstrict phase locking of); = 0 is broken. It is interesting
investigated by the previous works. Several novel feato investigate how the various oscillators are led to
tures of this system are found. First, we find simultaneousomplete synchronization (phase locking for> K_) via
phase slips of all oscillators at the onset of desynchronizea sequence of bifurcations by increasing the coupkng
tion of the phase-locking state, and quantized phase shiffsom K = 0.

in these slips are observed. Moreover, we find the in- In order to get a general idea about the global behavior
teresting cascade behavior of coupling-induced chaos araf the system, we first measure the following two positive
a nice tree structure of transitions from quasiperiodicitymacroscopic quantitie® and(}:

to chaos to quasiperiodicity and periodicity. Then rich N

behaviors of synchronizations between chaotic oscillators R = 1 Z el
and chaotic clusters, which have attracted much attention N | =

N
. 0= lail (4)
i=1
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It is clear thatR is time dependent beyond the phase-oscillators shift close to each other. An interesting feature
locking region. Then we further measure its time averagés that near the onset of synchronization [see Fig. 2(b)],

as an order parameter: we can find simultaneous phase slips, i.e., all oscillators
1 T keep in the phase-locking condition (OFF state) for a

(R) = lim — f R(t)dt. (5) long time, and then simultaneous bursts of all oscillators

r—=T (ON state) break the locking state. After a short firing

In Figs. 1(a) and 1(c), we plofl vs K for N = 5 and  all oscillators calm down again simultaneously to another

15, respectively. In both cases, natural frequencies arehase-locking state and then repeat the same process
randomly chosen from a normal Gaussian distributionperiodically. AsK gets closer tok,, the length of the
The actual frequencies can be seen in Fig. 3(a) foPFF stater becomes longer. We find a clear scaling
N = 5 and Fig. 3(b) forN = 15 atK = 0, respectively. betweenr andk, — K:

These natural frequencies are used for all figures in this 7o (K, — K)03, (6)

Letter. We found, for the given natural frequencies, i i
K. = 5.08for N = 5andk, = 6.22 for N = 15. When The above features of synchronized actions of phase

K > K. we have identicallyd = 0, and then complete Slips can be well understood by an intuitive explanation.

synchronization (phase locking) is justified. In Figs. 1(b)SUPPOse various oscillators can be locked to a set of
and 1(d) we do the same as in Figs. 1(a) and 1(C)phase59,- (K) for K = K.. Then all solutions satisfying
respectively, with the measured quantity replaced byg,., (K, m) — 6; (K,m) = 8,+,(K) — 0;(K) + 27m;

(R). In computing Fig. 1, initial conditions o#;(0)

are randomly chosen, and then in the shaded region of (7)

Fig. 1(d) the coexistence of multiple attractors of phaseWithm = (mi,....m;, ..., my) andm; being any integer,

locking states is justified fok > K,.. In Fig. 1, the must also be phase-locking solutions of_(l). By reduci_ng
quantity T in Egs. (4) and (5) is taken sufficiently long K lower than K., all the above solutions lose their

in our simulations so that the fluctuations due to finiteStability via the saddle-node bifurcation. A = K.,
T are invisible. It is interesting to observe that several€re exists a heteroclinic path linking some of the above

discontinuities appear in the regidd < K., indicating solutions, which has the lowest potential, and is attracting
that, apart from the apparent phase-locking transition(,the existence of such a heteroclinic path can be rigorously

some additional transitions exist even beféte proven forN =2). For K < K., and|K — K.| <1,
For the microscopic quantities, it is natural to study thetn€ System takes such a periodic path, which stays in
velocities of various oscillators. In Figs. 2(a) and 2(b),[he Vvicinity of one of the above stationary solutions

we present the motions ok vst for N = 5 and different fo_r a long time, and escapes away f_rom this solution
K's. EorK = 0. 0. must be equal to the constant, and (simultaneous phase slips for all oscillators) and then
. ) 1 H

for small K [see Fig. 2(a)]éi varies oscillatorily around approaches to the vicinity of the next stationary solution

) ) I along the heteroclinic path & = K_; this produces the
its natural frequency. A increases, the oscillations 2 . X .
of 6; become large, and the oscillation centers of aIIperIOdIC pulses of Fig. 2(b). The scaling property of time
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FIG. 2. (a),(b) The time evolutions of; plotted forN = 5

FIG. 1. Q and(R) defined in Egs. (4) and (5) plotted v§ and two differentK. Near the onset of the instability of
for N = 5 and 15. The natural frequencies are shown in Fig. 3the phase-locking state [(b)], simultaneous phase slips of all
atK = 0. K. =508 and 6.22 forN =5 andN = 15. For oscillators are clearly seen. (c),(d) Somér) plotted against

K > K., phase locking can be observed, and the shaded regiannear K.. (c) K = 5.07, N =5; (d) K = 6.212, N = 15.

in (d) indicates the coexistence of multiple attractors of phaseQuantization of phase shifts for all oscillators at each phase slip
locking states. is justified.
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length of the OFF state can also be computed since to one or from multiple branches to one (indicated by

for the saddle-node bifurcation we have a universal fornB). An oscillator, which is synchronized to a cluster for

x = (K. — K) + x>. The timer for x to move from certaink, can bedesynchronizettom the original cluster

x = 0tox — o readsr « [, (K,.—dﬁ = ﬁ this by increasingk. This desynchronization always happens

explains our observation of the scaling law of Eq. (6).  at an edge oscillator of a cluster, due to the competition
It is interesting to compute the phase shifts for variousoetween two neighbor clusters [indicated 6y see 2nd

oscillators in each phase slip pulse in Fig. 2(b). A&  and 3rd oscillators of Fig. 3(b)]. It is obvious thatis

represent the phase shift 6f during each pulse. From the inverse ofA. The transitions of type8 and C have

(1) and (2) we have never been realized before.
N The most interesting and novel finding is the nature of
Z Ag; =0. (8)  these synchronizations. The motions in these synchro-
i=1

) ) o nization trees may be very different. They can be pe-
We argue that any two adjacent fixed points in a heterorjggic, quasiperiodic, and chaotic. In Fig. 4(a), we take
clinic path atk = K. takem; = 0 or =1in Egs. (7);i.e., N = 15 and plot the largest Lyapunov exponent of the
AO;y1 — AG; =0 or =27 (9) system vsK. In a large interval ofK, we find the posi-
for i = 1,...,N — 1. Considering both conditions (8) tive. Lyapunov exponent, in.dicating chaqs. Thys, in this
and (9),A6; can take only quantized values region phase synchronizations of chao'qc Qscnlators are
v dar AN - Dar |dentlfled. Recently, the phase synchromza’qon of coupled
A9; =0, x— +— ., x————— +24. (10) chaotic systems has attracted great attention [11]. Here
N N N the major difference between our system and the previous
The concrete value for eadtw; depends on the particular chaos synchronization is that our oscillators are periodic
distribution of w;. In Figs. 2(c) and 2(d) the phase without coupling, and chaos is induced by the coupling,
shifts observed in all pulses fully agree with our heuristicwhile in the latter case the individual systems are chaotic
argument. Further considering Fig. 3, the phase shifts invithout coupling. Moreover, we find that these coupling-
Fig. 2 can be exactly predicted (see [15]). One mordnduced chaotic motions of different oscillators may have
conclusion from the above analysis is that at the onset
of instability of the phase-locking state, all velocities

w; have the scalingw; « /K. — K, and the ratios 2
between differentw; must be quantized to discrete 1 =5
rational numbers. 142 A

As we further reduc& to values considerably smaller
than K., no more phase-locking exists, and no appar-
ent synchronization can be observed directly for(z). §~ | 4
However, some other implicit synchronization—phase ¥
synchronization—can still be found. To get a general
idea, we plotw; defined in (3) vsK for N = 5 and 15

in Figs. 3(a) and 3(b), respectively, by varyig from
K = 0toK > K,. Interesting behavior of transition tree 13 @
for phase synchronization is clearly shown. Though some -3 ' ) ' J '

sl . 0 2 4 6
synchronizations can be expected from the observations of 154
frequency plateaus reported in previous papers [8—10], a Sl N=I5
number of characteristic features revealed in these trees 1.0 diga ~

are novel and interesting. Three kinds of transitions can

be observed in these trees. First, if tedjacentoscil- 2
lators (or adjacent clusters of oscillators) have close fre- &~
guencies, they can be easily synchronized by increasing'\cx’ ]
K. In this case, one always finds two branches merging 515
to a single one (indicated by). Second, if twononad- :
jacentoscillators (or two nonadjacent clusters) have close  -1.0 1
frequencies while the oscillators between them have con- (b)
siderably different frequencies, one can find the nonadja- =151 T T r T . r r
cent oscillators can also be synchronized to each other, 0 2 4 6 8

i.e., nonlocal clusters can be formed, and these nonlocal K

clusters can quickly bring the oscillators between them %G, 3. Transition trees of synchronization for averaged ve-
the synchronized status and form a solidly larger synchropcities versus. (a) N = 5; (b) N = 15. Note the existence
nized cluster. In this case, the transition may be from twaf three kinds of transitions labeled iy B, andC.

 ¢ : A
W AN

\ (12-15,1-3)
(12-15,1,2)
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0.04]® 0o ) ® number. The winding numbers for different chaotic clus-
0.02 102 o ters are different. When further increasikg adjacent
‘0_00 q‘?g‘s‘ Km60 - chaotic clusters can be synchronized to form larger clus-
0123456 06 04 02 00 ters, until two large clusters are formed when the mo-
= ‘1’: ; tion becomes periodic. This tree picture of the transitions
§-1:e is expected to be the same for general large number of
20 coupled nonidentical oscillators, which are periodic in
a0 bare case.
3 12 Since system (1) qualitatively describes practical situ-
& :g et i ations in wide fields, ranging from physics and chemistry
ISR s 1.04 .03 to biology, the findings in this Letter are expected to be of
b(m 6,(n) general significance, and they can be used for understand-

FIG. 4. (a) The largest Lyapunov exponent of the coupledjng the mechanisms of rich collective peha\_/iors Of. cou-
oscillators plotted against, N = 15. (b)—(f) give the maps Pled systems. Laser arrays, Josephson junction chains, and
of 6, (n + 1) vs 8, (n) for K = 6.0, 3.0, 1.5, 0.9, and0.01. coupled electrical circuits may be ideal candidates for ex-
perimentally revealing the features explored in this Letter.
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chronizations can be vitally seen in Figs. 3 and 4. Starting 5] From Fig. 3(a) and Egs. (7) and (8), we have
from the high-dimensional quasiperiodicity féf < 1, S 2a5A0; = —A6; = 4A0;, i = 1,2,4,5, and Ag, —

by increasingk various neighboring oscillators with close A6y = 27, which lead to Af; = -7, and A6, =
frequencies start to form clusters via phase synchroniza- 27 ; — | 5 4'5. The same computation from Fig. 3(b)
tion, gnd chaos is mduged near thfa first synchronlz_anon. leads to BM":“‘JI = TAO;_17—3, AO, — AO; = 27,
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