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Hopf Bifurcation from Chaos and Generalized Winding Numbers of Critical Modes
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In the study of chaos, Lyapunov exponents have been successfully used in describing the expansion
and contraction rates of various modes. In this Letter, generalized winding numbers are defined in
association with the corresponding Lyapunov exponents to characterize the rotation behavior of these
modes during the evolution. A Hopf bifurcation from chaos, namely, a blowout bifurcation with certain
finite typical frequency, is revealed. The frequency of the motion after the bifurcation is justified to
be equal to the generalized winding number of the critical transverse mode, for which the Lyapunov
exponent crosses zero at the bifurcation. [S0031-9007(98)07798-9]

PACS numbers: 05.45.+b

In the past several decades, the investigation of chaotisy the GWN of the critical transverse mode of the refer-
behavior has assumed a central role in nonlinear sciencence chaotic state.
The study of the Lyapunov exponent spectrum is one of First, let us consider the Lorenz model;
the foundations of chaos analysis [1,2]. Lyapunov expo-

nents represent the important behavior of average expan- =0y —x),

sion (or contraction) rates of various typical modes around y=px —y—xz, (1)
a chaotic attractor. Another very important feature, the .

average rotation rate of these modes, has been considered =Xy - pz.

much less. In Refs. [3,4], the authors considered the influAt ¢ = 10 and 8 = 1, the system is in the chaotic
ence of external noise on Hopf bifurcations of nonchaotiaegion for p > 24 (of course, many periodic windows
deterministic systems, and rotation rates were computed igan be found in this region). In Fig. 1(a), we plot the
association with Lyapunov exponents. Recently, the inthree Lyapunov exponents of the chaotic attractopys
vestigation of the average phase frequency of chaos (whiohith A, A; characterizing the expansion and contraction
is, actually, the winding number of chaotic trajectories ofmodes, respectively, andh, = 0 representing the mode
continuous dissipative systems) has become a very integlong the trajectory. The modes corresponding to various
esting problem [5-8]. In this Letter, we will generalize );, i = 1,2,3, can be defined by the standard method
these ideas to consider the average phase frequenciesweéll-known in computing Lyapunov spectrum. Here,
various modes, which will be called generalized windingwe go further to specify the average rotations, i.e.,
numbers (GWN), corresponding to different Lyapunov ex-the GWNSs, of these modes. The computation of these
ponents of chaotic systems. These GWNs take the windingverage frequencies can be performed in the same way
number studied so far as its special case (the winding nunmas [5-8]. We can either compute the zero crossings of a
ber in Refs. [5-8] is identified to the GWN of the special given variable, e.g.Ax; or Ay;, or compute the average
mode of zero Lyapunov exponent). frequency of an angle, such ag(¢),tand;) = Ay;/Ax;,
Another interesting problem in the chaos study is thewhereAx; andAy; are the infinitesimal orbit deviations of
topological change of chaos with variation of a systemhe ith mode corresponding to thith Lyapunov exponent
parameter. Recently, a new bifurcation (namely, blowoutA;. Thus, the GWN(w;) is defined as the average
bifurcation leading to on-off intermittency), characterizedfrequency,
by the largest transverse Lyapunov exponent crossing L [T,
zero, has attracted much attention [9,10]. However, in (w;) = lim — ] 0;(t)dt . (2)
this study, only the transverse Lyapunov exponent is con- == T Jo
sidered, and the rotation behavior (or, say, winding numin computation, we use very largefor approximation.
ber) of the unstable transverse mode has escaped fromThe above computations of phase frequencies are ex-
attention. We find that this rotation feature, described byactly the same as those used for the conventional phase
the corresponding GWN, is very important for characterproblem [5-8]. However, a key difference is that we are
izing the behavior of the on-off intermittent state just aftercomputing the winding numbers of various modes corre-
the blowout bifurcation. Specifically, we find a typical sponding to all Lyapunov exponents, while the winding
Hopf bifurcation from chaos, after which a regular mo- number computed until now dealt with the trajectory itself
tion is born from chaos, whose frequency is determineanly, corresponding to the single mode.of= 0.
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M @] 095F resent the diffusive and gradient couplings, respectively.
0 7; We keepp = 28,¢ = 14,N = 4, and haver changed,
4] 0.90 and study the topological change of the system state. For
L 8} Aoss| small r, we have synchronous chads,j, ) = 5(z), j =
12 ¢ 1,2,3,4, wheres(¢) is a chaotic orbit of the single Lorenz

model. Asr increases past a critical valug = 7.945,
L the synchronization breaks. The first four Lyapunov ex-
#onos oy ® » XN ponents of the coupled systems are plotted in Fig. 2(a),

0.80

030 . @ where the first two are the same as those of the single

site Lorenz model before bifurcation since all of the sites
are synchronized to each other. Theg (a long, while
elementary, computation can show that, correspond

to the first space mode with wave numlder= 1 having

N = 4 as its space period) can be changed by varying
At r = r. = 7945, A34 (i.e., the largest transverse Lya-
punov exponents of the given synchronous chaotic state)

FIG. 1. (a) The three Lyapunov exponents of the LorenzS0Me up to zero, |nd|cat|ng a kind of blowout bifurcation.
model (1) plotted vsp. o = 10 and 8 = 1 (which will be N Fig. 2(b), we plot(w;),i = 1,2,3,4 vs r. It seems
used for all of the following figures). Some period windows that (w3 4) ((w3) = (w4)) are not interesting before the
are not shown due to the rough resolution of the parametebifurcation, since the third and fourth modes damp expo-

changes. (b)—(d) The three generalized winding numbers Otﬁentially by the rate*:+ during the system evolution, and

(2) corresponding to the three Lyapunov exponents gfai,, ; ;
and A3, respectively. The solid, dashed, and circled lines aredo not affect the asymptotic behavior of the synchronous

computed by counting the zero crossingsfof. and Ay;, and phaotic state. However, this quantity is of key importance
computingd; () with tan6; = Ay;/Ax;, respectively. All three 1N deter.mlnlng the dynamlc feature of the system after the
curves are identical within the computation precision in thebifurcation, as we will see later.
chaos region. In Fig. 3(a), we plotx(1,7) — x(2,7) vsr atr = 7.95,
which is slightly larger tharr.. While desynchroniza-
tion appears, the variation clearly shows certain charac-
In Figs. 1(b), 1(c), and 1(d), we pld;), i = 1,2,3, teristic frequency. In Figs. 3(b) and 3(c), we plot the
vs p, corresponding to the\;, i = 1,2,3, respectively. spectrum ofx(1,¢) right before and after the instability
The following interesting points can be observed. (i) Theof the reference synchronous state. It is interesting to
results obtained by computing the zero crossingd.of  find a sharp peak in Fig. 3(c) (which is absent before the
Ay;, and the average frequency 6f(r) with tan(f;) = instability) exactly at(ws4) of Fig. 2(b). In Fig. 3(d),
Ay;/Ax; are identical to each other within the com- we eliminate the component of synchronous chaos, and
puting precision in the chaos region. (ii) The conven-plot the spectrum ofc(1,7) — x(2,¢), where the spec-
tional winding number computed in early papers is justrum peak at{ws4) is very clearly manifested. All of
(w2) in our case, corresponding o = 0. (iii) General- the facts (i) double identical Lyapunov exponents cross-
ized winding numbers corresponding to negative expoing zero at the critical point in Fig. 2(a); (ii) the two
nents seem to be useless, and have been ignored in adjual frequencies (the generalized winding numbers now)
previous papers. However, as a bifurcation from chao$w;) = (w,) existing before the bifurcation; (iii) the clear
takes place, some of these winding humbers become of
crucial importance for predicting the behavior of the state
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after the bifurcation; this is the focus of the following part ~ *°[ N @)
of the present Letter. ot !
Now let us consider the coupled Lorenz systems: 0l
x(j) = oly(j) — x(j)], ey r,
() = px()) = y(j) = x(z()) —
+ (6 + r) [x(] + 1) — x(])] (3) VT T r7.és; 767 7es U9s0 7o 72 lF7.'93 784 795
+ (e = n)x(j — 1) — x(j)], FIG. 2. (a) The first four Lyapunov exponents of the coupled
(5 — . N . Lorenz systems (3) plotted v&. N =4, e = 14, andp =
() = x(y(j) = Bz(), 28. For r > r. = 7945 (at r.,A34 come up to zero), the
i=12,...,N, synchronous chaos loses its stability. (b) The generalized
- o winding numbers corresponding to the Lyapunov exponents of
where the periodic boundary conditioi(j + N,?) =  (a) obtained by computing the average rotating frequency of

u(j,0),u(t) = (x(1),y(t),z(1))", is applied. € andr rep-  6;(r) with tan(9;) = Ay;(j = 1)/Ax;(j = 1).
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FIG. 3. (a)x(1,7) — x(2,¢) plotted vst at r = 7.95 slightly larger tharn-.. Desynchronization appears, and the variation contains
certain regular oscillation clearly. (b) The spectrumxo¢f, ) at » = 7.93 slightly smaller than-.. (c) The spectrum ok(1,¢)

at r = 7.95 slightly larger thanr.. In (c), a new sharp peak far away from the continuous chaotic spectrum of (b) appears,
which has frequency exactly equal to the generalized winding num{agrs in Fig. 2(b). (d) The spectrum of(1,z) — x(2,1)

at r = 7.95. The characteristic frequency is shown in a clearer way. dey= {[x(1) + x(3)] — [x(2) + x(4)]}/2 plotted vs:.

Both the unstablé = 1 mode and the synchronous chaos are eliminated by the plus and minus operations, respectively. A typical
on-off intermittency is identified for the remaining irregular desynchronous components. (f)—(h) The same as Figs. 2(a), 2(b), and
3(d), respectively, where the nonlinear coupling (5) is applied= 14, = 7.5 for (f), (g), and (h); and> = 0.178 > b. = 0.174

for (h). Hopf bifurcation from chaos is again identified for the nonlinear coupling case.

delta-function-like spectrum after the bifurcation andequation of (3) by a factor

(iv) the accordance of the delta-peak frequency with the 2 2 .

GWN of the critical mode before the bifurcation [compare |4 DG+ yG) + 20)7] 5)
the peak in Fig. 3(d) with théws4) in Fig. 2(b)] show 1+ [x(j)? + y(j)? + 2(/)]

clearly a Hopf bifurcation from chaos. In Ref. [11], the and treath as a bifurcation parameter. The results
authors found an unusually fast oscillation mode comin ’

. . . bserved are essentially the same as in the linear coupling
from synchronous chaos, the bifurcation mechanism was Figs. 3(f).3 d3(h
however, not clear. This mode is nothing but a wave withdas‘e [see Figs. 3(f),3(g), and 3( )].' . .
' ’ In summary, we have found an interesting Hopf bifur-

spatial wave ”“mbe’* 1 and time O.SC'”at'.on frequency cation from chaos, of which the characteristic frequency
of (w3 4), appearing after the Hopf bifurcation from chaos
> and the wave number (they represent the temporal and
atr = re. . .
spatial orders of the inhomogeneous component of the

In Fig. 3((.1)’ we f'nd. that the spectrum Qf(l’[.) . state after bifurcation) are identified to the generalized
x(2,t) contains some irregular components besides thg

periodic motion of frequencyws4). Since the unstable winding number and the wave n_umber_ of the C”F'Cal
mode isk — 1, x(1) andx(3) [aIéOx(z) and x(4)] must transverse modes at the blowout bifurcation, respectively.

have opposite phases for the unstable mode. Therefor'é'owever' some open problems sill exist. First, the com-

in x(1) + x(3) and x(2) + x(4) the component of the putation of th_e ge_nerallzed Wlndlng numbers s_hows very
\ large fluctuations in the on-off intermittency region. Sec-

unstable mode can be effectively ruled out. Moreover, th%nd one often comoutes the average phase frequency of a

synchronous chaos can be canceledaifl) + x(3)] — ' P ge p q y

. chaotic trajectory by analyzing a single observable. It is
[x(2) + x(4)]. Therefore, the quantity known that the frequencies computed from different ob-

§h ={x(1) + x3)] = [x(2) + x#]/2 (4  servables may be different. To overcome this difficulty,
can well represent the component in the desynchronousome “natural” observables are suggested to represent the
part of motion apart from the unstable mode. In Fig. 3(e)phase structure of the system [5,8]. Fortunately, one can
we plot 64 vs r; a typical on-off intermittency is iden- easily find these natural observables for some well-known
tified. We believe that an oscillation with well-defined chaotic systems, such as Lorenz equations, Rossler equa-
frequency together with random on-off intermittency aretions, Duffing system, and so on. However, it turns out
what we can observe after a Hopf bifurcation from chaosto be difficult to find these natural observables for more

In Egs. (3), we use linear couplings. It is emphasizeccomplicated high-dimensional chaos, e.g., spatiotemporal
that the above features of Hopf bifurcation from chaos are&haos. This difficulty exists also for the computation of
robust against the perturbations of nonlinear couplingsgeneralized winding numbers. Therefore, these problems
For instance, we can multiply the coupling in the secondare open for further investigation.
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