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Relationship between Quantum Decoherence Times and Solvation Dynamics
in Condensed Phase Chemical Systems
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A relationship between the time scales of quantum coherence loss and short-time solvent respon
a solute/bath system is derived for a Gaussian wave packet approximation for the bath. Decoher
and solvent response times are shown to be directly proportional to each other, with the proportion
coefficient given by the ratio of the thermal energy fluctuations to the fluctuations in the system-b
coupling. The relationship allows the prediction of decoherence times for condensed phase chem
systems from well-developed experimental methods. [S0031-9007(98)07929-0]
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Quantum processes in condensed phases are often s
ied by focusing on a small subset of degrees of freedo
and treating the rest as a bath. The subsystem of in
est may comprise a single molecule, a molecule plus
nearest surroundings, or even a single vibrational mo
within a molecule. The remaining degrees of freedo
form the bath. In the presence of system-bath interactio
the subsystem’s wave function evolves into a superpo
tion of quantum states. Because of an enormous den
of states in a macroscopic environment, small differenc
in the system-bath coupling lead to rapid divergence b
tween bath evolutions corresponding to different states
the subsystem. The reduced density matrix of the mic
scopic subsystem, obtained from the total density mat
by integrating over bath degrees of freedom, soon becom
diagonal [1]. Quantum states decohere [1–4]. The dec
herence rate is determined by the sensitivity of bath ev
lutions to the quantum state of the subsystem. Notab
this sensitivity also determines bath response to a pert
bation within the subsystem. In the context of the co
densed phase chemical physics, the rate of the solvent b
rearrangements following a perturbation of the solute su
system is described by a well-developed solvent respo
theory [5–7]. In this Letter, we establish for the first time
quantitative relationship between quantum coherence l
and the short-time solvent response.

The new relationship is important because a link b
tween solvation dynamics and decoherence is capable
providing valuable insights into both phenomena. Mo
ern techniques of the solvent response theory employ
the concepts of dielectric and mechanical relaxation [8,
and instantaneous normal modes [7] then become tra
ferable to the description of decoherence. The theory
short-time solvation can benefit from the recent theore
cal ideas on quantum Brownian motion [10,11] and qua
tum measurement [1,3,4]. Most importantly, current
available experimental means to measure quantum
herence loss [12–14] and short-time solvent respon
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[5,8,15] in a nonequilibrium system can be combined
A relationship between decoherence and solvation tim
scales further provides a tool to deconvolute the contr
bution of each effect on observed dynamics. The resul
presented below form a basis for evaluation of quantum
decoherence times in various solute-solvent systems bas
on the extensive solvent response data accessible fro
both experimental measurements and adiabatic molecu
dynamics simulations.

Following Ref. [16], we consider the direct product of
the systemS and bathB Hilbert spaces. For simplicity,
the system space is assumed to be two dimension
We consider two orthogonal statesf

S
1 and f

S
2 of the

system and a system-bath interaction that induces quantu
transitions in the combined system, with the bath sta
responding to that of the system:

fS
a ≠ fB

0 ! fS
a ≠ fB

a , a ­ 1, 2 , (1)

wheref
B
0 is the initial state of the bath. Transitions from

an arbitrary initial system statec1f
S
1 1 c2f

S
2 are then

described in terms of the reduced density matrix√
jc1j

2 c1cp
2

cp
1c2 jc2j

2

!
!

√
jc1j

2 c1cp
2sfB

2 jf
B
1 d

cp
1c2sfB

1 jf
B
2 d jc2j

2

!
.

(2)

Decoherence is defined [1,2] as decay of the nondiagon
matrix elements, which, for the reduced density matrix o
Eq. (2), is clearly determined by the decay of the inne
product of the bath statessfB

1 jf
B
2 d. Initially, the bath

wave functions coincide:fB
1 ­ f

B
2 ­ f

B
0 . Later on, the

bath wave functions correlated with the different state
of the system diverge, and the overlap integral decrease
It is not the decay of the nondiagonal matrix element
per sethat is most important from the practical point of
view, but rather it is the associated slowing down of quan
tum transitions [16–18], known as the quantum Zeno e
fect in the limit of infinitely fast decoherence [18]. The
lifetime of the quantum state in the presence of a bat
© 1998 The American Physical Society
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varies inversely with the decoherence time. This res
holds in the spin-boson model, where the bath is trea
as a set of harmonic oscillators [19,20], or in the froze
Gaussian formulation [21–23], where the bath wave fun
tion is approximated by a set of Gaussian wave pack
[24]. Within this Gaussian wave packet approximatio
the average decay of the overlap integral and correspo
ing nondiagonal matrix elements in Eq. (2) is described
the decoherence function given by Eq. (39) of Ref. [23]

Dstd ­ sfB
1 jfB

2 d ­ exp

"
2

*X
n

DF2
n

4anh̄2

+
t2

#
, (3)

where the angular brackets indicate thermal averagi
DFn ­ F1n 2 F2n is the difference in the quantum force
experienced by thenth bath degree of freedom, i.e., the
difference of energy gradients for the initial and fina
states of the subsystem taken in the direction of thenth
bath mode. In the adiabatic representation these are
Hellmann-Feynman forces

Fan ­ 2sfS
aj=nHjfS

ad, a ­ 1, 2 . (4)

We note that here we do not consider the dynamical
fect of the bath on the subsystem energy eigenvalues.
the presence of bath induced fluctuations in these valu
the phases ofc1 and c2 in Eq. (2) are randomized, and
a new “dephasing” contribution (see Refs. [23,25]) to th
decay of the off-diagonal elements of the reduced dens
matrix can potentially contribute as well. The dephasin
term, generally, decays slower than the nuclear overl
This term becomes important on the longer time sca
and when averaging of transition probabilities over man
states of slightly different energies is performed. Th
decay of the nuclear overlap is responsible for the qua
tum Zeno effect, while the “random-phase approximatio
for the product ofc1 and c2 leads to constant transition
rates, in particular, to the Fermi’s golden rule [26].

In the low temperature regime the widtha21y2
n of the

Gaussian wave packet in Eq. (3) equals the width of t
coherent state of a corresponding harmonic oscillator, i.
an ­ mnvnyh̄. For higher temperatures, the width of th
wave packet incorporates quantum thermal ensemble av
aging. The thermal width is analytic for harmonic baths

an ­
mnvn

h̄
tanh

µ
h̄vn

2kBT

∂
. (5)

For arbitrary baths, the width can be defined via th
thermal de Broglie wavelengthlT ­ s2p h̄2ymkBT d1y2.
An alternative expression for the thermal width is derive
in Ref. [21], Sec. IV by comparing the exact and Gaussi
wave packet results for the transition rate in a doubl
well system

an ­
mnvn

h̄
An ,

An ­

"
coth

√
h̄vn

2kBT

!
2

2kBT
h̄vn

#21

.

(6)
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This expression reduces to the coherent state width in
low temperature case, and gives

an ­
6mnkBT

h̄2 .

√
lT

6

!22

, (7)

in the high temperature limit. The last formula is pa
ticularly useful, since it yields a width which is indepen
dent of the frequency; Eq. (7) is designed [21] for use
molecular dynamics simulations, where thermal averagi
over bath states is performed classically.

Turning to solvation dynamics, the response of th
solvent bath to a quantum transition within the solu
subsystem characterizes the rate of solvent adjustmen
a change in the state of the solute and is quantified by
normalized correlation functionC of the energy gapU
between the initial and final quantum states [8,27]. Th
fluctuation-dissipation theorem relates this nonequilibriu
solvent response to the regression of fluctuationsdU
of the gapU in equilibrium, e.g., before the quantum
transition or after the solvent has already stabilized t
newly created state,

Cstd ­
kdUstd ? dUs0dl

ksdUd2l
. (8)

The short-time solvation dynamics that is of relevance
the present discussion, the so-called Gaussian or iner
response, depends solely on the change in the solu
solvent coupling due to the quantum transition. Th
microscopic short-time expression forCstd has been
obtained in Ref. [27] [Eqs. (2.18), (2.19)] by expandin
Cstd in a set of independent modes, and in time yielding

Cstd ­ exp

"
2

kBT
k2sdUd2l

*X
n

sU 0
nd2

+
t2

#
, (9)

whereU 0
n is the derivative ofU with respect to thenth

mass-weighted solvent coordinate

U 0
n ­ m21y2

n
dU
dxn

­ m21y2
n DFn . (10)

The decoherencetD and Gaussian solvationtg time
scales are given by the variances of the decoherenceDstd
and solvent responseCstd functions of Eqs. (3) and (9),
respectively. The structure of the equations is clea
similar, and by comparison we obtain"

tD

tg

#2

­
2kBT

ksdUd2l

P
n DF2

nsmnd21P
n DF2

nsanh̄2d21 . (11)

With the high temperature limit expression for the widt
[Eq. (7)] the formula simplifies to"

tD

tg

#2

­
12skBT d2

ksdUd2l
­

6kBT
l

. (12)

Here,2l is the Stokes shift defined as the difference b
tween the equilibrium absorption and emission maxim
The Stokes shift arises due to the fact that equilibriu
5295
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solvent configuration stabilizing the first and the secon
quantum states differ. The energies of the states are
the same in the two equilibria. The equilibrium absorp
tion of the first state does not coincide with the equilib
rium emission from the second state, leading to a Stok
shift. Within a linear response regime, the Stokes shift
related [20] to the fluctuations in the quantum energy ga
by the fluctuation-dissipation theorem:ksdUd2l ­ 2lkBT .
Equation (12) establishes direct proportionality betwee
the short-time evolution of decoherence and of solvent r
sponse. In the high temperature limit for the bath the pr
portionality coefficient is determined by the ratio of the
thermal energy fluctuationsskBT d2 to the fluctuations in
the system-bath couplingksdUd2l. The latter can be ex-
pressed in terms of the Stokes shift in the linear respon
regime. We note that the dependences are sensible: H
temperatures accelerate solvation dynamics; large equi
rium fluctuations in the coupling, as well as large Stoke
shifts, are indicative of fast decoherence.

Equation (12) should be compared with Eq. (5.4) fo
the decoherence time given in Ref. [1]:

tD ­ g21slT yDxd2. (13)

Here,g21 is the relaxation time, equivalent totg in our
notation. lT is the thermal de Broglie wave length.Dx is
the “distance” between the initial and final states, relate
to the Stokes shift. Apart from a possible proportionalit
coefficient, 6kBTyl of Eq. (12) equals toslT yDxd2 of
Eq. (13). The ratio of the decoherence and solvatio
times enters the two equations in qualitatively differen
ways: quadratically in Eq. (12) and linearly in Eq. (13)
The expression for the decoherence time derived in th
Letter is valid in the short-time limit for anindividual
quantum event and is closely related to the quantu
Zeno effect. On the other hand, the golden rule relat
result of Ref. [1] is obtained from a master equation
where averaging over anensembleof quantum events
is performed. Further discussion on the origins of th
quadratic and linear forms of the decay rate can be fou
in Ref. [26].

We note that the relationship between the decohe
ence and solvation time scales presented above using
Gaussian wave packet approximation for the bath wa
function also necessarily pertains to the spin-boson mod
The spin-boson Hamiltonian describes a two-level syste
linearly coupled to a harmonic bath [19]

HSB ­ 2
1
2

h̄Dsx 1
1
2

U0sz

1
X
n

√
1
2

mnvnx2
n 1

p2
n

2mn

!
1

1
2

q0sz

X
n

cnxn ,

(14)

where,U0 andq0 are the energy and coordinate displace
ments between the pair of potential minima,D is the in-
trinsic coupling between the two quantum states,cn is the
system-bath coupling constant, andsz, sx are the Pauli
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matrices. The terms containingsz describe the energy
gap

USB ­ U0 1 q0

X
n

cnxn . (15)

According to Eqs. (9) and (10), the short-time solven
response function of the spin-boson model is

CSB ­ exp

∑
2

1
2

kBT
ksdUd2l

X
n

q2
0c2

n

mn
t2

#
. (16)

The decoherence function can be extracted from the Fer
golden rule result for the spin-boson problem [Eqs. (3.2
(3.35), and (3.36) of Ref. [19] ]

DSB ­ expf2sq2
0yp h̄dQ2stdg , (17)

with

Q2std ­
Z `

0

Jsvd s1 2 cosvtd
v2 cothsh̄vy2kBT d dv ,

(18)

and

Jsvd ­
p

2

X
n

c2
n

mnvn
dsv 2 vnd . (19)

The short-time expansion ofQ2std gives

DSB ­ exp

"
2

1
4

X
n

q2
0c2

n

mnh̄vn
cothsh̄vny2kBT dt2

#
(20)

­ exp

"
2

1
4

X
n

q2
0c2

n

anh̄2 t2

#
, (21)

with an as in Eq. (5). The expression in Eq. (21) is a
specific case of Eq. (3) withDFn ­ 2q0cn. Comparison
of Eqs. (16) and (21) leads to the relationship given i
Eq. (11) between the decoherence and Gaussian sol
tion times.

We can directly test Eq. (12) for the case of relaxa
tion following transition from the first excited to the
ground state of the hydrated electron, whose time d
pendent properties are well studied theoretically (se
Refs. [21–23,25,29], and references therein). Based
a molecular dynamics trajectory for the first excite
state of the hydrated electron [28], the equilibrium en
ergy gap U is 0.56 eV and the fluctuation in the en-
ergy gapksdUd2l1y2 is 0.21 eV, which corresponds to a
1.7 eV Stokes shift (2l) at room temperature. This Stokes
shift corresponds closely to that found in nonadiabat
simulations [30]. The short-time component of the so
vent response functionCstd of Eq. (8) is found to be char-
acterized by a 10.6 fs Gaussian time scaletg. From these
data, the decoherence timetD of the first excited state
of the hydrated electron calculated via Eq. (12) is 4.5 f
This estimate falls within the previously reported range o
2.7–5.1 fs [21–23], with the value of 5.1 fs obtained in
the high temperature approximation for Eq. (6).
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The properties of the solute and the nature of the qua
tum transition define the difference in the solute-solve
potential for the initial and final states and, therefore, dete
mine the magnitude of the Stokes shift in the relationsh
(12) between the decoherence and solvation times. Intr
sic solvent properties also, to some extent, affect the ma
nitude of the Stokes shift. However, the major solven
influence on the duration of quantum coherence is due
solvent’s ability to respond to a perturbation in the solut
i.e., as reflected in the rate of solvent responsetg. Based
on the success above for the hydrated electron, one can
dress other systems, which will demonstrate the variabil
of decoherence times. For a styryl dye in methanol [31
experiment yields an estimatedtg of 40 fs and a Stokes
shift of 115 nm yielding a decoherence time of 6.8 fs
Acetonitrile [CH3 CN], the next solvent in a logical se-
ries exhibits a 100 fs experimental short-time solvent r
sponse [32]. Simulation of the electronic transition of th
betaine-30 molecule in acetonitrile is characterized by
similar 91 fs short-time solvation [33]. The value fortg,
together with the 0.16 eV electronic energy gap fluctuatio
evaluated along the ground state trajectory [33], leads v
Eq. (12) to a substantially longer 49 fs decoherence tim
Compared to the protic solvents, acetonitrile is much le
effective in destroying quantum coherence.

In summary, we have presented an analytical relatio
ship between the time scale for quantum decoherence a
that governing the short time response of solvent to a p
turbation in the solvent-solute coupling. The proportion
ality constant relating these requires knowledge of on
the Stokes shift associated with the change in solute sta
The expression successfully reproduces results obtained
rectly by other routes, and allows the prediction of decohe
ence times for other solution systems. It is expected th
since the required input data is becoming readily acce
sible experimentally for even the most rapidly respondin
condensed phase environments, the derived relation will
very valuable to advancing the study of both decoheren
and condensed phase chemical dynamics more genera
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