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A relationship between the time scales of quantum coherence loss and short-time solvent response for
a solute/bath system is derived for a Gaussian wave packet approximation for the bath. Decoherence
and solvent response times are shown to be directly proportional to each other, with the proportionality
coefficient given by the ratio of the thermal energy fluctuations to the fluctuations in the system-bath
coupling. The relationship allows the prediction of decoherence times for condensed phase chemical
systems from well-developed experimental methods. [S0031-9007(98)07929-0]

PACS numbers: 31.70.Dk, 42.50.Lc, 78.47.+p, 82.20.Wt

Quantum processes in condensed phases are often st(i§;8,15] in a nonequilibrium system can be combined.
ied by focusing on a small subset of degrees of freedonA relationship between decoherence and solvation time
and treating the rest as a bath. The subsystem of intescales further provides a tool to deconvolute the contri-
est may comprise a single molecule, a molecule plus itsution of each effect on observed dynamics. The results
nearest surroundings, or even a single vibrational modpresented below form a basis for evaluation of quantum
within a molecule. The remaining degrees of freedondecoherence times in various solute-solvent systems based
form the bath. Inthe presence of system-bath interactiongn the extensive solvent response data accessible from
the subsystem’s wave function evolves into a superposiboth experimental measurements and adiabatic molecular
tion of quantum states. Because of an enormous densityynamics simulations.
of states in a macroscopic environment, small differences Following Ref. [16], we consider the direct product of
in the system-bath coupling lead to rapid divergence bethe systemS and bathB Hilbert spaces. For simplicity,
tween bath evolutions corresponding to different states ahe system space is assumed to be two dimensional.
the subsystem. The reduced density matrix of the microwe consider two orthogonal states; and ¢> of the
scopic subsystem, obtained from the total density matrixystem and a system-bath interaction that induces quantum
by integrating over bath degrees of freedom, soon becoméagansitions in the combined system, with the bath state
diagonal [1]. Quantum states decohere [1-4]. The decaesponding to that of the system:
herence rate is determined by the sensitivity of bath evo- s B _, 45 B —
lutions to the quantum state of the subsystem. Notably, $a @ o $a @ a. a=12 @)
this sensitivity also determines bath response to a pertutvheresy is the initial state of the bath Transmons from
bation within the subsystem. In the context of the con-an arbitrary initial system state; i + c2¢> are then
densed phase chemical physics, the rate of the solvent batigscribed in terms of the reduced density matrix
rearrangements following a perturbation of the solute sub- |C1 2 ¢k e crci(dB1 o)
system is described by a well-developed solvent response ciea( Pl B o
theory [5—7]. Inthis Letter, we establish for the first time a 1R 2
quantitative relationship between quantum coherence loss (2)
and the short-time solvent response. Decoherence is defined [1,2] as decay of the nondiagonal

The new relationship is important because a link bematrix elements, which, for the reduced density matrix of
tween solvation dynamics and decoherence is capable &q. (2), is clearly determined by the decay of the inner
providing valuable insights into both phenomena. Mod-product of the bath state(s;’;l |¢2) Initially, the bath
ern techniques of the solvent response theory employingave functions coincidep? = ¢ = ¢¢. Later on, the
the concepts of dielectric and mechanical relaxation [8,9]bath wave functions correlated with the different states
and instantaneous normal modes [7] then become transf the system diverge, and the overlap integral decreases.
ferable to the description of decoherence. The theory oft is not the decay of the nondiagonal matrix elements
short-time solvation can benefit from the recent theoretiper sethat is most important from the practical point of
cal ideas on quantum Brownian motion [10,11] and quanview, but rather it is the associated slowing down of quan-
tum measurement [1,3,4]. Most importantly, currentlytum transitions [16—18], known as the quantum Zeno ef-
available experimental means to measure quantum cdect in the limit of infinitely fast decoherence [18]. The
herence loss [12—-14] and short-time solvent responskfetime of the quantum state in the presence of a bath

CICZ |Cz|2

5294 0031-900798/81(24)/5294(4)$15.00 © 1998 The American Physical Society



VOLUME 81, NUMBER 24 PHYSICAL REVIEW LETTERS 14 BCeEMBER 1998

varies inversely with the decoherence time. This resulfhis expression reduces to the coherent state width in the
holds in the spin-boson model, where the bath is treatetbw temperature case, and gives

as a set of harmonic oscillators [19,20], or in the frozen 6 knT o\ 7
Gaussian formulation [21—23], where the bath wave func- a, = —= = (—T) , (7)
tion is approximated by a set of Gaussian wave packets h 6

[24]. Within this Gaussian wave packet approximation,in the high temperature limit. The last formula is par-
the average decay of the overlap integral and correspongicylarly useful, since it yields a width which is indepen-
ing nondiagonal matrix elements in Eq. (2) is described byjent of the frequency; Eq. (7) is designed [21] for use in
the decoherence function given by Eq. (39) of Ref. [23] molecular dynamics simulations, where thermal averaging
AF2 over bath states is performed classically.
D(t) = (¢71¢3) = exp[—<z 1 ,'1.12> 2] 3) Turning to solvation dynamics, the response of the
mo solvent bath to a quantum transition within the solute
where the angular brackets indicate thermal averagingubsystem characterizes the rate of solvent adjustment to
AF, = Fi, — Fy, is the difference in the quantum forces a change in the state of the solute and is quantified by the
experienced by theth bath degree of freedom, i.e., the normalized correlation functiod of the energy gag/
difference of energy gradients for the initial and final between the initial and final quantum states [8,27]. The
states of the subsystem taken in the direction of/itte  fluctuation-dissipation theorem relates this nonequilibrium
bath mode. In the adiabatic representation these are tts®lvent response to the regression of fluctuatidis
Hellmann-Feynman forces of the gapU in equilibrium, e.g., before the quantum
Fan = —(¢3|V,H|$5), a=12. (4) transition or after the solvent has already stabilized the

We note that here we do not consider the dynamical efpewly created state,

fect of the bath on the subsystem energy eigenvalues. In 8)
the presence of bath induced fluctuations in these values, ((8U)?)

the phases of; and ¢, in Eq. (2) are randomized, and » . . . :
a new “dephasing” contribution (see Refs. [23,25]) to theThe short-time solvation dynamics that is of relevance in

d . . the present discussion, the so-called Gaussian or inertial
ecay of the off-diagonal elements of the reduced densnyesponse depends solely on the change in the solute-
matrix can potentially contribute as well. The dephasmgsolvent c’oupling due to the quantum transition. The

term, generally, decays slower than the nuclear overlag,

This term becomes important on the longer time scalemicroSCOpiC short-time expression forC(s) has been
es important ng obtained in Ref. [27] [Egs. (2.18), (2.19)] by expanding
and when averaging of transition probabilities over many

states of slightly different energies is performed. Thec(t) in a set of independent modes, and in time yielding
decay of the nuclear overlap is responsible for the quan- c) = exp[ kgT <Z(Uﬁ)2>12] )

clo — 8V - 5U©)

tum Zeno effect, while the “random-phase approximation” B (2(8U)?)

for the product ofc; andc;, leads to constant transition L L )

rates, in particular, to the Fermi's golden rule [26]. where U, is the derivative ofL_] with respect to the:th
In the low temperature regime the widt]'/? of the mass-weighted solvent coordinate

Gaussian wave packet in Eq. (3) equals the width of the , 1 dU _in

coherent state of a corresponding harmonic oscillator, i.e., U, = m, dx, =m, ""AF,. (10)

a, = m,w,/h. For higher temperatures, the width of the ] ) ]

wave packet incorporates quantum thermal ensemble aver- The decoherence, and Gaussian solvation, time

aging. The thermal width is analytic for harmonic baths Scales are given by the variances of the decohergrice
and solvent respons€g(r) functions of Egs. (3) and (9),

n

a, = M On tanl'< ho, ) (5) respectively. The structure of the equations is clearly
h 2kpT similar, and by comparison we obtain
For arbitrary baths, the width can be defined via the 2 ) 4
thermal de Broglie wavelength; = 27 h2/mkgT)"/2, [T_D} - 2kBT2 2 Ai"(m"g —. (11)
An alternative expression for the thermal width is derived Tg ((8U)2) 3., AF3(a,h?)

in Ref. [21], Sec. IV by comparing the exact and GaussiaRjith the high temperature limit expression for the width
wave packet results for the transition rate in a doubIeIEq_ (7)] the formula simplifies to

well system 2 5
o, {T_D} _ 12(k3T2) _ 6ksT 12)
n hi nos Tg <(8U) > A
fw 2ksT -1 (6) Here,2A is the Stokes shift defined as the difference be-
A, = [cotf(zk "T> T e } tween the equilibrium absorption and emission maxima.
B n

The Stokes shift arises due to the fact that equilibrium
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solvent configuration stabilizing the first and the secondmatrices. The terms containing, describe the energy
quantum states differ. The energies of the states are ngap

the same in the two equilibria. The equilibrium absorp-

tion of the first state does not coincide with the equilib- Usg = Uy + qOchxn. (15)
rium emission from the second state, leading to a Stokes n

by the fluctuation-dissipation theoreé U)?) = 2AkpT.

2
Equation (12) establishes direct proportionality between Csp = ex;{—l kgT Z qoc, o) (16)
the short-time evolution of decoherence and of solvent re- 2 ((8U)?*) 45 my '

sponse. In the high temperature limit for the bath the pro- . .
portionality coefficient is determined by the ratio of the The decoherence function can be extracted from the Fermi

thermal energy fluctuation&zT)? to the fluctuations in golden rule result for the spin-boson problem [Egs. (3.2),
the system-bath couplin§5U)?). The latter can be ex- (3.35), and (3.36) of Ref. [19]]

pressed in terms of the Stokes shift in the linear response Dsp = exd—(g3/7h)Qx(1)], (17)
regime. We note that the dependences are sensible: ng\rllth

temperatures accelerate solvation dynamics; large equili v

rium fluctuations in the coupling, as well as large Stokes “J(w) (1 — coswt)
shifts, are indicative of fast decoherence. (1) = f w2 cothfiow/2ksT) dw ,

Equation (12) should be compared with Eq. (5.4) for (18)
the decoherence time given in Ref. [1]:

> = v ' (Ar/Ax) (13) and
. . . . . 2

Here,y~! is the relaxation time, equivalent tq in our J _ T Cn Sl — 19
notation. Ar is the thermal de Broglie wave lengtiAx is (@) 2 ; m,w, (@ = @), (19)

the “distance” between the initial and final states, relate . . .
to the Stokes shift. Apart from a possible proportionalitydrhe short-time expansion @,(r) gives

coefficient, 6kgT /A of Eq. (12) equals tqAr/Ax)? of 1 qic?

Eq. (13). The ratio of the decoherence and solvation PsB = exp[—z mpfio, coth(fiw,/2ksT)e* | (20)
times enters the two equations in qualitatively different " 2 5

ways: quadratically in Eq. (12) and linearly in Eq. (13). — xp[—l 90¢n tz} 1)
The expression for the decoherence time derived in this 4 4= a,i* |’

Letter is valid in the short-time limit for amndividual
quantum event and is closely related to the quantu
Zeno effect. On the other hand, the golden rule relate

result of Ref._[l] is obtained from a master equatlon,Eq_ (11) between the decoherence and Gaussian solva-
where averaging over aensembleof quantum events tion times

is performed. Further discussion on the origins of the We can directly test Eq. (12) for the case of relaxa-
quadratic and linear forms of the decay rate can be founﬂon following transition from the first excited to the

in Ref. [26]. ;
. . ground state of the hydrated electron, whose time de-
We note that the relationship between the deCOher'endent properties are well studied theoretically (see

ence and solvation time scales presented above using t fs. [21—23,25,29], and references therein). Based on

fGau§S|an|wave packe} app;oxlm?tl?hn for_ thg bath W%Vi molecular dynamics trajectory for the first excited
unction aiso necessartly pertains to In€ Spin-doson Mode4; e of the hydrated electron [28], the equilibrium en-

The spin-boson Hamiltonian describes a two-level systerrérgy gapU is 0.56 eV and the fluctuation in the en-
linearly coupled to a harmonic bath [19] ergy gap{(6U)*"? is 0.21 eV, which corresponds to a

with a, as in Eq. (5). The expression in Eg. (21) is a
pecific case of Eq. (3) witAF, = —goc,. Comparison
f Egs. (16) and (21) leads to the relationship given in

Hep — 1 FAo. + 1 Uoor 1.7 eV Stokes shift{\) at room temperature. This Stokes
2 T2 ¢ shift corresponds closely to that found in nonadiabatic
1 2 1 simulations [30]. The short-time component of the sol-

+ Z(E m,w,x> + 2’; ) + 5 900 Zc,,xn, vent response functio@i(z) of Eq. (8) is found to be char-

acterized by a 10.6 fs Gaussian time scale From these
(14) data, the decoherence time of the first excited state
where,U, and g, are the energy and coordinate displace-of the hydrated electron calculated via Eq. (12) is 4.5 fs.
ments between the pair of potential minima,is the in-  This estimate falls within the previously reported range of
trinsic coupling between the two quantum statgsis the  2.7-5.1 fs [21-23], with the value of 5.1 fs obtained in
system-bath coupling constant, and, o, are the Pauli the high temperature approximation for Eq. (6).
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