VOLUME 81, NUMBER 24 PHYSICAL REVIEW LETTERS 14 BCeEMBER 1998

Do Naked Singularities Generically Occur in Generalized Theories of Gravity?

Kengo Maedd;* Takashi Torii-" and Makoto Narith*

'Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152, Japan
2Department of Physics, Rikkyo University, Nishi-lkebukuro, Toshima, Tokyo 171, Japan
(Received 19 August 1998

A new mechanism for causing naked singularities is found in an effective superstring theory. We
investigate the gravitational collapse in a spherically symmetric Einstein-Maxwell-dilaton system in the
presence of a pure cosmological-constant “potential,” where the system has no static black hole solution.
We show that once gravitational collapse occurs in the system, naked singularities necessarily appear in
the sense that the field equations break down in the domain of outer communications. This suggests that
in generalized theories of gravity, the nonminimally coupled fields generically cause naked singularities
in the process of gravitational collapse if the system has no static or stationary black-hole solution.
[S0031-9007(98)07856-9]
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The singularity theorem [1] states that the occurrencéave no regular initial spacelike hypersurface because of
of singularities is inevitable under some physical condi-the central singularities. Thus, the following question
tions in general relativity. There are two notable scenariosaturally arises. Does CCH really hold in generalized
where singularities may appear in our Universe. One is théneories of gravity? There is not much evidence deciding
initial singularity at the birth of the Universe and the otherthe matter yet because the above results do not take any
is the final stage of gravitational collapse. In the latterphysical process of the gravitational collapse from initial
case we believe that an event horizon is formed which enregular data into account.
closes all occurring singularities as the collapse proceeds, Although a large number of studies have been made
following the cosmic censorship hypothesis (CCH) [2].on finding static/stationary black-hole solution and inves-
CCH is classified into two types, the weak cosmic censortigating their thermodynamical properties and geometrical
ship hypothesis (WCCH) and the corresponding strong onstability and so on in generalized theories of gravity, only
(SCCH). WCCH says that observers at an infinity shouldew studies have so far been made on investigating gravi-
not see singularities while SCCH says that no observetational collapse. We should not overlook that the gravi-
should see them and the whole region of a space-time caational collapse in generalized theories of gravity will be
be uniquely determined by initial regular data. Mathemati-much different from that in general relativity. In gen-
cally, SCCH is equivalent to the statement that no Cauchsral relativity, the black-hole no-hair conjecture states that
horizon can be formed in a physical gravitational collapsethe matter fields are swallowed by a black hole and a

Recently many elegant results [3] suggest that SCCHpace-time asymptotically approaches the electrovacuum
holds for charged and/or rotating black holes due to th&err-Newman solution after gravitational collapse. On
destruction of the Cauchy horizon by the mass inflatiorthe other hand, the above aspects are not necessarily satis-
phenomenon. The general proof of CCH is, howeverfied in generalized theories of gravity because the dilaton
far from complete and many counterexamples have beefield couples to the curvature and/or other matter fields.
found in the framework of general relativity [4]. A In this Letter we investigate the gravitational collapse
new approach has been considered in the context dof the spherically symmetric Einstein-Maxwell-dilaton
generalized theories of gravity. Gibbons and Maeda [5kystem analytically in the presence of a pure positive
discovered the static black-hole solutions in the Einsteineosmological constant, which correspondsgto= 0 in
Maxwell-dilaton system, which comes from an effectivethe Liouville-type potential [8]. This system is interesting
superstring theory, and later Garfinkel, Horowitz, andbecause it has been proved that no static black-hole
Strominger [6] showed that the inner (Cauchy) horizonsolution exists for spherically symmetric space-times [9].
in the Reissner-Nordstrém solution is replaced by aSuch property seems to be general in the sense that
spacelike singularity. This suggests that the occurrencthere exists no asymptotically flat, asymptotically de
of the inner horizon is not generic and hence SCCH holdSitter, or asymptotically anti-de Sitter solution in the
if we take the effect of string theory into account. On thearbitrary exponential dilaton potential [8]. Furthermore,
other hand Horne and Horowitz [7] obtained the oppositat is known that there is a critical mass below which
result that extremal electrically charged nonstatic blackno asymptotically flat black-hole solution exists in the
hole solutions in the presence of a central charge haveystem which includes the Gauss-Bonnet term which was
timelike singularities. It seems, however, not to be aneglected in the former works [10,11]. In these systems
counterexample of SCCH in the sense that such solutiorthe following three interpretations are available: (i) The
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escape to infinity without forming a black-hole event Rov + R " IR
horizon (BEH); (ii) the space-time does not approach )
a stationary space-time and the matter fields oscillate

forever or, (iii) naked singularities are necessarily formed. 3 PR

If the case (i) is true for all initial data, we should find 2K (Ru®y + Rbuy + Rydy) = 0% 27, (5)
that the strong cosmic no-hair conjecture holds in thewvhereA , is a partial derivative ofA with respect toa.
present system. By investigating numerically, however;The constraint equations are

we confirmed that this is not the case and some initial

matter fields do not cause the gravitational collapse but RyRy e < Q2 2¢ AR2>
R? ’

- _ 2
data lead to the gravitational collapse, namely, a trapped Ryv + AvRy = ()R, 6)
surface forms [12]. This result is consistent with the A B ) 7
fact that the dilaton field satisfies the dominant energy Ryv + AyRy = —(¢v)'R. ()

condition in the Einstein frame. Then it is enoughwe consider the evolution of the field equations with
to consider only the cases (ii) and (jiii). Case (ii) initial regular data on a null characteristic hypersurface
seems incompatible with our naive expectation that aftefyhose boundary is a closed future-trapped surface (see
gravitational collapse, the space-time settles down to aRig. 1) because we are interested in the gravitational
asymptotically stationary space-time with a black hole. Ifcollapse. As shown in Theorem 1 of Ref. [13], the
case (iii) is true, we must say that CCH is violated evenrapped surface causes the formation of a BEH= Up

in generalized theories of gravity. null hypersurface) if there are no singularities observed
Using the double null coordinates, we will show that thefrom I*. For this initial value problem, we will show

field equations necessarily break down in the domain ofhe following theorem.

outer communications or at the BEH, once the gravitational Theorem.—Let us consider the dynamical evolution of

collapse has occurred. It is worth noting that “breakthe model (1) in a spherically symmetric space-time or

down” does not imply a coordinate singularity because ouequivalently for Egs. (3)—(7) with initial data on the char-

coordinates are, probably, the most extended coordinategteristic null hypersurfac&. Then, there id/; (= Uj)

in spherically symmetric space-times. It is also supporte@uch that the system of equations breaks dowti at U,

by numerical calculations which show the formation of We shall show the above theorem by contradiction

naked singularities in the system [12]. Thus, our resulbelow. First, we will consider the asymptotic behavior of

suggests that naked singularities generically occur in th@eld functions near the cosmological event horizon (CEH),

gravitational collapse of spherically symmetric systems. which is defined as a past Cauchy horizén (I *) when
The low-energy effective action (Einstein frame) of 3 BEH exists (see Ref. [14]). It is convenient to rescale

string theory as a dilaton model is the coordinatel/ such thatU is an affine parameter of
a null geodesic of the CEH, i.e) is constant along the
S = ] d*xJ=g [-R + 2(Ve)* + ¢ 22 F? + 2A], CEH. Hereafter we use a characte{= f(U)) instead

of U for parametrization to avoid confusion. Under such
) coordinates, Eq. (6) on the CEH is

whereR is the Ricci scalarg is a massless dilaton field, —Ru = (¢.)°R. (8)
A is a positive constant, anfi,, is the field strength
of the Maxwell field. The double-null coordinates for a
spherically symmetric space-time are

ds* = =2¢7NU,V)dUdV + R(U,V)*dQ, (2)

where 9, and 9, are future-ingoing and outgoing null Y

geodesics, respectively. The Maxwell equation is auto-
matically satisfied for a purely magnetic Maxwell field
F = Qsinddéd A d¢ (F* = 20%/R*), where Q is the /
magnetic charge and is Cartan’s wedge product. An marginal trapped
electrically charged solution is obtained by a duality rota- surface

tion from the magnetically charged one [5,6]. Therefore

we shall consider only a purely magnetic case in this Let-

ter. The dynamical field equations are . ‘ ¥ Initial pulse
2R yy [ Q%
Ay — R 2o udy t e A( R A, FIG. 1. A Penrose diagram in asymptotically de Sitter space-
time. N and AH are the characteristic hypersurface and the

(3)  apparent horizon of the black hole, respectively.
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If there are no singularities in—(I+) N J*(N), the null  large values ofi, L ~ L.. > 0 asymptotically. Differen-
geodesic generators of the BEH and the CEH are futuréating 2 by V in Eq. (15),

complete. Then, by the nondecreasing area law for the ReRy Ve LR

CEH and by existence of an upper bound of the area hy =L + 5 (f —dV — hc>. (16)

[14], lim,—. R = C; [hereafter,C;(i = 1,2,...) means a R v Re

positive constant], and hence future asymptotic behavioBy the relatione = dr ~ udV for large u [17], hy ~

of R, on the CEH is represented as follows [15]: L. + O(e) + O(u™%/?). Sincee is an arbitrary small
- value, asymptoticallyzy > 0 on the u = const null
Ry ~ Cou (@ >0). ) segmenfVl,u. Vel € Ue.
In the next step we investigate the behaviorgafe
Then, by Eq. (8) andR on BEH, just like the CEH case. We resc#ento
by~ u (10) v suchthat is an affine parameter and= const on the

BEH, while we leaveU unchanged. Since the area of
and hence lim... ¢(u) = const. We shall obtain the the BEH is nondecreasing and also has an upper bound as
asymptotic value ofR y on the CEH by solving Eq. (4) shown in [13,14], lij—< R = C3, andR, ~ C,v F~!
as (B > 0). This means that by Eq. (%, ~ v #/>"! as

" obtained in the CEH case. By replacimgby v in the
Ry = (f R du + RVli) = (11) argument of the CEH case and solving Egs. (4) and (5),
’ w Ri ’ R the asymptotic values op ; and Ry becomeRy ~ v
and¢ y ~ Csv, respectively.
Hence the first and third terms in the left-hand side of
the dilaton field Eq. (5) are negligible asymptotically and

whereR y|;, R; are initial values oR y, R onu = u;, re-
spectively, andk = —(1 — Q%e 2% /R?> — AR?)/2Re".
K must approach a positive constakit as u — « be-
causeR, ¢ — const and the expansioh, = Ry /R of lim ky = lim ¢, =Cs > 0. (17)
each outgoing null geodesic is positive (if it were negative

the area element() would becomd) along the outgoing
null geodesics). Then, the asymptotic valueraf is

We definek = ¢,. Consider an infinitesimally small
neighborhoodUjp of the BEH. There is a sma# such
that the timelike hypersurfacEg which is in the past of
Ry ~ Kxu>0. (12) the BEH by a fixed affine parameter distarcef ingoing
null geodesics intersecting the BEH is containedlU.
We shall also obtain the asymptotic value {f on the By the relation between the affine parameter dbdi.e.,

CEH by solving Eqg. (5) with the following solution: dU = €/v, k on Ty is asymptotically
“ HR R; klr, ~ klgen + kulgen(—dU)
Dy - (f o du + mn);, (13
Ui ! ~ leEH - C6E‘U_1 -~ (v_B/2 - C6 e)v_l. (18)
where¢ v|; is an initial value of¢ y onu = u; andH = This indicates that y is negative or’z for large values

(Q%¢ 2% — 2R3Ry ¢ ,)/2R*. H approaches a positive v (> v,). Now, consider each null segme¥it (u = u;):
constantH.. asu — % becauseR y ¢, ~ u~*/> — 0 by [Vc — €/u;, Vc] wherehy > 0 onN,, (see Fig. 2). If
Egs. (10) and (12). The asymptotic valuedy is one takesu; large enoughpN, intersectsTz(v > v;) at
u=urp. Let us take a sequence of,(J = 1,2,...,
L + 1) (L is a natural number large enough), whéie =

: G : (up — uy)/L and uy = u; + (J — 1)8u. Assume that

Next, let us consider an infinitesimally small neighbor- o

hood U, of the CEH which contains a timelike hypersur- ¢y > 00nN,(= N,,), foramoment, theny > 0onN,
faceTc such thaffc is in the past of the CEH by (> 0), " the same way asy > Ofn [Vlpw- Vel [18]. Hence
wheree is a fixed affine parameter distance along the outVe €an show thatp vly,,, = (¢vln, + hyly,6u) > 0.

going null geodesic intersecting the CEH [16]. We denoteon the other handp.y > 0 onu = u, by Eq. (14), hence

each point of the intersection df- and « = const hy- ¢ v > 0for eachu; by induction. This is a contradiction

: — because as we showedy < 0 onTg(u = ur).
gleorr?;rzi:ibfgﬁs?i}; Eg. (5), the solution of = ¢, It is worth commenting that the possibility of the

formation of null singularities on BEH, continuing 6
b ( fVc LR ) R¢ is not excluded from our theorem. In this case the BEH is
V 2

by ~ Hou > 0. (14)

= dV + hc (15) a singular null hypersurface even if WCCH holds (SCCH

R
¢ is, probably, violated).
where Rc and h¢c are values ofR and h at the Our theorem says that the case (ii) is not true, as we
CEH (V = V¢), respectively, andL = (Q%¢ 2¢~* —  expected. When we consider the dyon solution or a

2R3R ¢ v)/2R*. Since(R,¢v/R)ly. ~u~* — 0 for  rotating space-time, nontrivial 3-rank antisymmetric tensor
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FIG. 2. Timelike hypersurface$, Tc are displayed in the
neighborhoodsUy, Uc of BEH and CEH, respectively. A
null segmentV; is displayed by a thick line.e is a fixed affine

parameter distance along outgoing and ingoing null geodesics.
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It is enough to consider the case of the power law function
R, ~ u %! to show our theorem because it gives the
mildest dumping.

The neighborhood of CEH can be covered by Gaussian
null coordinates, ds* = —2drdn + f(dn)* + R?dQ,
wherer is an affine parameter of outgoing null geodesics
andf = 0 on the CEH. Thene = dr = const.

It seems reasonable to assume that the surface gravity of
CEH, . = —f,/2, is asymptotically constant. In this
case,e®” ~ u and hencedn ~ du/u. This indicates
thatdr ~ udV.

One can show thaR, < 0 on T. for large u by us-

ing Eg. (4). ThereforeR, < 0 inside T¢ because each
expansion of ingoing null geodesics froffr must de-
crease monotonically. Thus, we can easilyget> 0 by
considering each segmentVc — €/u;, Ve — €/u;] &

Ue, [Ve — €/uy, Vc] € Uc. The detailed proof can
be found in Ref. [12].
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