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Do Naked Singularities Generically Occur in Generalized Theories of Gravity?
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A new mechanism for causing naked singularities is found in an effective superstring theory. We
investigate the gravitational collapse in a spherically symmetric Einstein-Maxwell-dilaton system in the
presence of a pure cosmological-constant “potential,” where the system has no static black hole solutio
We show that once gravitational collapse occurs in the system, naked singularities necessarily appea
the sense that the field equations break down in the domain of outer communications. This suggests t
in generalized theories of gravity, the nonminimally coupled fields generically cause naked singularitie
in the process of gravitational collapse if the system has no static or stationary black-hole solution
[S0031-9007(98)07856-9]
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The singularity theorem [1] states that the occurren
of singularities is inevitable under some physical cond
tions in general relativity. There are two notable scenari
where singularities may appear in our Universe. One is t
initial singularity at the birth of the Universe and the othe
is the final stage of gravitational collapse. In the latt
case we believe that an event horizon is formed which e
closes all occurring singularities as the collapse procee
following the cosmic censorship hypothesis (CCH) [2
CCH is classified into two types, the weak cosmic censo
ship hypothesis (WCCH) and the corresponding strong o
(SCCH). WCCH says that observers at an infinity shou
not see singularities while SCCH says that no observ
should see them and the whole region of a space-time
be uniquely determined by initial regular data. Mathema
cally, SCCH is equivalent to the statement that no Cauc
horizon can be formed in a physical gravitational collaps

Recently many elegant results [3] suggest that SCC
holds for charged and/or rotating black holes due to t
destruction of the Cauchy horizon by the mass inflatio
phenomenon. The general proof of CCH is, howeve
far from complete and many counterexamples have be
found in the framework of general relativity [4]. A
new approach has been considered in the context
generalized theories of gravity. Gibbons and Maeda [
discovered the static black-hole solutions in the Einste
Maxwell-dilaton system, which comes from an effectiv
superstring theory, and later Garfinkel, Horowitz, an
Strominger [6] showed that the inner (Cauchy) horizo
in the Reissner-Nordström solution is replaced by
spacelike singularity. This suggests that the occurren
of the inner horizon is not generic and hence SCCH hol
if we take the effect of string theory into account. On th
other hand Horne and Horowitz [7] obtained the oppos
result that extremal electrically charged nonstatic blac
hole solutions in the presence of a central charge ha
timelike singularities. It seems, however, not to be
counterexample of SCCH in the sense that such solutio
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have no regular initial spacelike hypersurface because
the central singularities. Thus, the following questio
naturally arises. Does CCH really hold in generalize
theories of gravity? There is not much evidence decidin
the matter yet because the above results do not take a
physical process of the gravitational collapse from initia
regular data into account.

Although a large number of studies have been ma
on finding static/stationary black-hole solution and inves
tigating their thermodynamical properties and geometric
stability and so on in generalized theories of gravity, onl
few studies have so far been made on investigating gra
tational collapse. We should not overlook that the grav
tational collapse in generalized theories of gravity will b
much different from that in general relativity. In gen-
eral relativity, the black-hole no-hair conjecture states th
the matter fields are swallowed by a black hole and
space-time asymptotically approaches the electrovacu
Kerr-Newman solution after gravitational collapse. O
the other hand, the above aspects are not necessarily sa
fied in generalized theories of gravity because the dilato
field couples to the curvature and/or other matter fields.

In this Letter we investigate the gravitational collaps
in the spherically symmetric Einstein-Maxwell-dilaton
system analytically in the presence of a pure positiv
cosmological constant, which corresponds tog1 ­ 0 in
the Liouville-type potential [8]. This system is interesting
because it has been proved that no static black-ho
solution exists for spherically symmetric space-times [9
Such property seems to be general in the sense t
there exists no asymptotically flat, asymptotically d
Sitter, or asymptotically anti-de Sitter solution in the
arbitrary exponential dilaton potential [8]. Furthermore
it is known that there is a critical mass below which
no asymptotically flat black-hole solution exists in the
system which includes the Gauss-Bonnet term which w
neglected in the former works [10,11]. In these system
the following three interpretations are available: (i) Th
© 1998 The American Physical Society
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matter fields do not cause the gravitational collapse b
escape to infinity without forming a black-hole even
horizon (BEH); (ii) the space-time does not approac
a stationary space-time and the matter fields oscilla
forever or, (iii) naked singularities are necessarily forme
If the case (i) is true for all initial data, we should find
that the strong cosmic no-hair conjecture holds in th
present system. By investigating numerically, howeve
we confirmed that this is not the case and some initi
data lead to the gravitational collapse, namely, a trapp
surface forms [12]. This result is consistent with th
fact that the dilaton field satisfies the dominant energ
condition in the Einstein frame. Then it is enoug
to consider only the cases (ii) and (iii). Case (ii
seems incompatible with our naive expectation that aft
gravitational collapse, the space-time settles down to
asymptotically stationary space-time with a black hole.
case (iii) is true, we must say that CCH is violated eve
in generalized theories of gravity.

Using the double null coordinates, we will show that th
field equations necessarily break down in the domain
outer communications or at the BEH, once the gravitation
collapse has occurred. It is worth noting that “brea
down” does not imply a coordinate singularity because o
coordinates are, probably, the most extended coordina
in spherically symmetric space-times. It is also support
by numerical calculations which show the formation o
naked singularities in the system [12]. Thus, our resu
suggests that naked singularities generically occur in t
gravitational collapse of spherically symmetric systems.

The low-energy effective action (Einstein frame) o
string theory as a dilaton model is

S ­
Z

d4x
p

2g f2R 1 2s=fd2 1 e22fF2 1 2Lg ,

(1)

whereR is the Ricci scalar,f is a massless dilaton field,
L is a positive constant, andFmn is the field strength
of the Maxwell field. The double-null coordinates for a
spherically symmetric space-time are

ds2 ­ 22e2lsU, V ddUdV 1 RsU, V d2dV , (2)

where ≠U and ≠V are future-ingoing and outgoing null
geodesics, respectively. The Maxwell equation is aut
matically satisfied for a purely magnetic Maxwell field
F ­ Q sinudu ^ df sF2 ­ 2Q2yR4d, where Q is the
magnetic charge and̂ is Cartan’s wedge product. An
electrically charged solution is obtained by a duality rota
tion from the magnetically charged one [5,6]. Therefor
we shall consider only a purely magnetic case in this Le
ter. The dynamical field equations are

l,UV 2
2R,UV

R
­ 2f,Uf,V 1 e2l

√
Q2e22f

R4 2 L

!
,

(3)
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R,UV 1
R,UR,V

R
­ 2

e2l

2R

√
1 2

Q2e22f

R2 2 LR2

!
,

(4)

2R3sR,Uf,V 1 Rf,UV 1 R,V f,Ud ­ Q2e22f2l, (5)

whereA,a is a partial derivative ofA with respect toa.
The constraint equations are

R,UU 1 l,UR,U ­ 2sf,Ud2R , (6)

R,VV 1 l,V R,V ­ 2sf,V d2R . (7)

We consider the evolution of the field equations wit
initial regular data on a null characteristic hypersurfac
whose boundary is a closed future-trapped surface (s
Fig. 1) because we are interested in the gravitation
collapse. As shown in Theorem 1 of Ref. [13], the
trapped surface causes the formation of a BEH (U ­ UB

null hypersurface) if there are no singularities observe
from I 1. For this initial value problem, we will show
the following theorem.

Theorem.—Let us consider the dynamical evolution
the model (1) in a spherically symmetric space-time o
equivalently for Eqs. (3)–(7) with initial data on the char-
acteristic null hypersurfaceN . Then, there isU1 s# UBd
such that the system of equations breaks down atU ­ U1

We shall show the above theorem by contradictio
below. First, we will consider the asymptotic behavior o
field functions near the cosmological event horizon (CEH
which is defined as a past Cauchy horizonH2sI 1d when
a BEH exists (see Ref. [14]). It is convenient to resca
the coordinateU such thatU is an affine parameter of
a null geodesic of the CEH, i.e.,l is constant along the
CEH. Hereafter we use a characteru sss­ fsUdddd instead
of U for parametrization to avoid confusion. Under suc
coordinates, Eq. (6) on the CEH is

2R,uu ­ sf,ud2R . (8)

FIG. 1. A Penrose diagram in asymptotically de Sitter spac
time. N and AH are the characteristic hypersurface and th
apparent horizon of the black hole, respectively.
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If there are no singularities inJ2sI 1d > J1sNd, the null
geodesic generators of the BEH and the CEH are futu
complete. Then, by the nondecreasing area law for t
CEH and by existence of an upper bound of the ar
[14], limu!` R ­ C1 [hereafter,Cisi ­ 1, 2, . . .d means a
positive constant], and hence future asymptotic behav
of R,u on the CEH is represented as follows [15]:

R,u , C2u2a21 sa . 0d . (9)

Then, by Eq. (8)

f,u , u2ay221, (10)

and hence limu!` fsud ­ const. We shall obtain the
asymptotic value ofR,V on the CEH by solving Eq. (4)
as

R,V ­

√Z u

ui

KR
Ri

du 1 R,V ji

!
Ri

R
, (11)

whereR,V ji , Ri are initial values ofR,V , R on u ­ ui, re-
spectively, andK ­ 2s1 2 Q2e22fyR2 2 LR2dy2Rel.
K must approach a positive constantK` as u ! ` be-
causeR, f ! const and the expansionu1 ; R,V yR of
each outgoing null geodesic is positive (if it were negativ
the area elementdV would become0 along the outgoing
null geodesics). Then, the asymptotic value ofR,V is

R,V , K`u . 0 . (12)

We shall also obtain the asymptotic value off,V on the
CEH by solving Eq. (5) with the following solution:

f,V ­

√Z u

ui

HR
Ri

du 1 f,V ji

!
Ri

R
, (13)

wheref,V ji is an initial value off,V on u ­ ui andH ­
sQ2e22f2l 2 2R3R,V f,udy2R4. H approaches a positive
constantH` asu ! ` becauseR,V f,u , u2ay2 ! 0 by
Eqs. (10) and (12). The asymptotic value off,V is

f,V , H`u . 0 . (14)

Next, let us consider an infinitesimally small neighbor
hoodUC of the CEH which contains a timelike hypersur
faceTC such thatTC is in the past of the CEH bye s. 0d,
wheree is a fixed affine parameter distance along the ou
going null geodesic intersecting the CEH [16]. We deno
each point of the intersection ofTC and u ­ const hy-
persurface bypsud. By Eq. (5), the solution ofh ; f,u
along eachu ­ const is

h ­

√
2

Z VC

V

LR
RC

dV 1 hC

!
RC

R
, (15)

where RC and hC are values of R and h at the
CEH (V ­ VC), respectively, andL ­ sQ2e22f2l 2

2R3R,uf,V dy2R4. Since sR,uf,VyRdjVC , u2a ! 0 for
5272
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large values ofu, L , L` . 0 asymptotically. Differen-
tiating h by V in Eq. (15),

h,V ­ L 1
RCR,V

R2

√Z VC

V

LR
RC

dV 2 hC

!
. (16)

By the relatione ­ dr , udV for large u [17], h,V ,
L` 1 Osed 1 Osu2ay2d. Since e is an arbitrary small
value, asymptoticallyh,V . 0 on the u ­ const null
segmentfV jpsud, VCg , UC.

In the next step we investigate the behavior off, f,V
andR on BEH, just like the CEH case. We rescaleV into
y such thaty is an affine parameter andl ­ const on the
BEH, while we leaveU unchanged. Since the area o
the BEH is nondecreasing and also has an upper bound
shown in [13,14], limy!` R ­ C3, and R,y , C4y2b21

sb . 0d. This means that by Eq. (7)f,y , y2by221 as
obtained in the CEH case. By replacingu by y in the
argument of the CEH case and solving Eqs. (4) and (
the asymptotic values off,U and R,U becomeR,U , y

andf,U , C5y, respectively.
Hence the first and third terms in the left-hand side

the dilaton field Eq. (5) are negligible asymptotically and

lim
y!`

k,U ­ lim
y!`

f,yU ­ C6 . 0 . (17)

We definek ; f,y. Consider an infinitesimally small
neighborhoodUB of the BEH. There is a smalle such
that the timelike hypersurfaceTB which is in the past of
the BEH by a fixed affine parameter distancee of ingoing
null geodesics intersecting the BEH is contained inUB.
By the relation between the affine parameter anddU, i.e.,
dU ~ eyy, k on TB is asymptotically

kjTB , kjBEH 1 k,U jBEHs2dUd

, kjBEH 2 C6 e y21 , sy2by2 2 C6 edy21. (18)

This indicates thatf,V is negative onTB for large values
y s. y1d. Now, consider each null segmentNu su $ uI d:
fVC 2 eyuI , VCg whereh,V . 0 on NuI (see Fig. 2). If
one takesuI large enough,Nu intersectsTBsy . y1d at
u ­ uF . Let us take a sequence ofNuJ sJ ­ 1, 2, . . . ,
L 1 1d (L is a natural number large enough), wheredu ­
suF 2 uIdyL and uJ ­ uI 1 sJ 2 1ddu. Assume that
f,V . 0 onNJs; NuJ d, for a moment, thenh,V . 0 onNJ

in the same way ash,V . 0 on fV jpsud, VCg [18]. Hence
we can show thatf,V jNJ11 > sf,V jNJ 1 h,V jNJ dud . 0.
On the other hand,f,V . 0 on u ­ uI by Eq. (14), hence
f,V . 0 for eachuJ by induction. This is a contradiction
because as we showedf,V , 0 on TBsu ­ uFd.

It is worth commenting that the possibility of the
formation of null singularities on BEH, continuing toi1

is not excluded from our theorem. In this case the BEH
a singular null hypersurface even if WCCH holds (SCC
is, probably, violated).

Our theorem says that the case (ii) is not true, as
expected. When we consider the dyon solution or
rotating space-time, nontrivial 3-rank antisymmetric tens
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FIG. 2. Timelike hypersurfacesTB, TC are displayed in the
neighborhoodsUB, UC of BEH and CEH, respectively. A
null segmentNJ is displayed by a thick line.e is a fixed affine
parameter distance along outgoing and ingoing null geodesic

fields inevitably appear. However, we expect that suc
fields do not change our result drastically. This implie
that if there are no static/stationary black-hole solution
naked singularities generically occur in the process
gravitational collapse in generalized theories of gravity.

Since the model under consideration is the low energ
limit of string theory, we cannot exclude the possibility
that higher curvature terms and higher ordera0 correc-
tions, wherea0 is the inverse string tension, may preven
the space-time from causing naked singularities. How
ever, the theory is useful near the Planck scale. Thu
we can at least say thatstring theory predicts existence of
space-time points with very high curvature in the doma
of outer communications. This picture is quite different
from that of general relativity because it is strongly be
lieved that space-time points with high curvature do no
appear generically in the outer region of a black hole.
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