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Decoherence of Bose-Einstein Condensates in Traps at Finite Temperature
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The phase diffusion of the order parameter of trapped Bose-Einstein condensates at temp
kBT ¿ h̄v̄ is determined, which gives the fundamental limit of the linewidthDn of an atom
laser. In addition a prediction of the number fluctuations in the condensate and their corre
time tc is made and a general relation forDntc is derived from the fluctuation-dissipation relation
[S0031-9007(98)07932-0]
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Bose-Einstein condensation in a weakly interactin
Bose gas in three dimensions in the thermodynamic lim
of an infinitely extended system is a second order pha
transition in which an order parameter, the macroscop
wave function, appears spontaneously with a fixed but
bitrary phase, turning the global Us1d symmetry respon-
sible for particle-number conservation into a broken
hidden symmetry [1]. The rigidity of the phase of the o
der parameter against local perturbations and the abse
of any phase diffusion gives rise to the Goldstone mod
which take the form of collisionless (zero) sound or hy
drodynamic sound, respectively, depending on wheth
the sound frequency is in the collisionless mean-fie
regime or in the collision-dominated regime [1,2].

In finite systems, and thus also in all trapped Bo
gases, sharp phase transitions are impossible and hid
symmetries in a rigorous sense cannot appear [1]. Nev
theless a macroscopic wave function describing a Bo
Einstein condensate (BEC) still exists, as is now firm
established by the experiments [3]. However, for the ge
eral reason mentioned, the phase of the macroscopic w
function cannot be stable but must undergo a diffusio
process, which restores the Us1d symmetry over suffi-
ciently long time intervals [1]. This diffusion process is
therefore different from the Goldstone modes mention
before, which are oscillations around a fixed value of th
phase and do not restore the symmetry [1,2].

Recently a first attempt has been made to measure
stability of the phase of the macroscopic wave function
a trapped BEC. In an experimental setup of considera
ingenuity [4] the relative phase of two BEC’s was mea
sured using a time-domain separated oscillatory field co
densate interferometer. Over the time interval of 100 m
scanned in the experiment the relative phase was found
be robust. At first sight this experimental result may see
surprising since decoherence of entangled states of m
atoms should be extremely rapid. Then, however, one
alizes that there is so far no clear theoretical predicti
of the decoherence time of Bose-Einstein condensates
traps against which the aforementioned experiment, or
tensions of it which will surely follow, could be checked
In a number of papers [5] the dispersion of the phase
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a trapped Bose-Einstein condensate at zero temperat
was considered, which is due to thermodynamic fluctu
tions dm of the chemical potentialm in a finite system
with fixed particle number. An extension of this mecha
nism to finite temperature has also been proposed [
This effect is not a “phase diffusion” but corresponds t
an effect of inhomogeneous broadening, and is even
versible in “revivals.” The experiments are done at “high
temperaturekBT ¿ h̄v̄ and evenkBT ¿ m, where v̄

is the geometrical mean of the three main trap freque
cies. One would expect a proper phase-diffusion proce
to occur in such a regime due to the interaction of th
condensate with a thermal bath of collective modes a
quasiparticles, but so far an understanding of this proce
seems lacking (see, however, [7]). This gap in our un
derstanding of Bose-Einstein condensates in traps at fin
temperature is particularly painful, because the fundame
tal limit of the linewidth of an atom laser depends on it
there is not yet a “Schawlow-Townes” formula [8] for the
linewidth of an atom laser, because its derivation requir
a prior understanding of phase diffusion in Bose-Einste
condensates.

In the present paper I outline a theory of dissipation an
thermal fluctuations in a trapped Bose-Einstein conde
sate which is used to determine the phase-diffusion co
stant, and from it, the linewidth of a trapped Bose-Einste
condensate as a function of temperature. The result o
tained explains the experimentally observed robustness
the phase. I find it convenient to present first a phe
nomenological framework for the theory, in the form o
Langevin equations in which dissipation appears via ph
nomenological parameters and the fluctuation-dissipati
relation is invoked to determine the fluctuations. The
the phenomenological parameters are fixed by drawi
on known microscopic results for the damping of collec
tive modes and calculating the new transport coefficie
in the Langevin equation of the condensate. It is foun
to result primarily from scattering of thermally excited
collective modes (phonons) off the condensate. Th
coefficient then determines the phase-diffusion consta
and the fundamental linewidth of an atom laser via
Schawlow-Townes-type formula.
© 1998 The American Physical Society
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The weakly interacting Bose gas in a trap in standa
notation is described by the Hamiltonian

H 
Z

d3xĉ1

(
2

h̄2

2m
=2 1 V sxd 2 m 1

U0

2
ĉ1ĉ

)
ĉ .

(1)
The total number of atomsN is fixed. m is the chemical
potential. The presence of a Bose-Einstein conde
sate means that many (N0 ¿ 1) particles occupy the
normalized single-particle statec0sxd of lowest en-
ergy m satisfying [9] 2sh̄2y2md=2c0 1 fV sxd 1

U0N0jc0j
2gc0  mc0.

The number density of the condensate isn0sxd 
N0jc0sxdj2. Bothc0sxd andN0 are functions ofm. In the
following we turn this around and considerm a function
of N0. The presence of the highly occupied condensa
mode makes the decomposition of the Heisenberg fie
operatorĉsx, td  fa0stdc0sxd 1 ĉ 0sx, tdge2imty h̄ useful,
where we shall follow the tradition starting with Bogoli-
ubov [10] and describe the condensate classically, reme
bering, however, thatN0  ja0j

2 is the particle number in
the condensate.̂c 0sx, td is the field operator for the parti-
cles outside the condensate. The Hamiltonian then sp
according to H  H0 1 H1 1 H2 1 H3 1 H4, where
Hn (n  0, 1, 2, 3, 4) comprises the terms ofH which are
of nth order in ĉ 0, ĉ 01, respectively. The equation of
motion for the condensate amplitudea0 receives contri-
butions fromH0 to H3. For a discussion of various mi-
croscopic approximation schemes, see [11].

Quasiparticle operators ân , â1
n are defined by

the standard Bogoliubov transformation̂c 0sx, td P
nfunsxdânstd 1 yp

nsxdâ1
n stdg, where un, yn satisfy

the usual Bogoliubov–de Gennes equations [11], a
the ân obey the Heisenberg equations of motionÙ̂an 
i
h̄ fĤsnd, âng with Ĥsnd  h̄vnfâ1

n ân 2
R

jynsxdj2d3xg.
Again junj2, jynj2, andvn are functions ofja0j

2.
In order to derive a phenomenological equation o

motion for the condensate alone we turn to the fre
energyFsja0j

2d of a fluctuation ofja0j
2 from equilibrium.

Expanded to second order around its minimum it takes t
form

bFsja0j
2d 

sja0j
2 2 kja0j

2ld2

2kdN2
0 l

with kja0j
2l  N 2 kN̂ 0l, kdN2

0 l  kN̂ 02l 2 kN̂ 0l2, where
N̂ 0 

R
d3xĉ 01sxdĉ 0sxd. The expectation valueskN̂ 0l

and kdN2
0 l (which turns out to be anomalously large

,N4y3) have recently been evaluated within the Bogoliu
bov theory [12] and can therefore here be consider
as known. The equation of motion ofa0 near thermal
equilibrium can now be written with the help ofFsja0j

2d
in the general form [13]

ih̄ Ùa0  s1 2 iG0d
≠F
≠a

p
0

1 F0std (2)

with Gaussian white noiseF0std satisfying
kF0stdl  0, kFp

0 stdF0s0dl  2h̄kBTG0dstd
determined so as to ensure the correct equilibrium d
tribution [14] rsa0, a

p
0d  Z21

0 expf2Fsja0j
2dykBT g for
rd

n-
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the condensate. Here I ignore the possibility of the o
currence of squeezing in the thermal bath of uncondens
particles. Then only a single new phenomenological c
efficient G0, a dimensionless but surely temperature de
pendent number, remains to be determined below.

As a short digression let us also extend the equatio
of motion of the quasiparticles to include dissipatio
and fluctuation within a phenomenological Markoffian
framework [15]. It is convenient to do this by writing
quantum Langevin equations [16]

ih̄ Ù̂an  s1 2 iGnd
≠Ĥsnd

≠â1
n

1 F̂nstd (3)

with Gaussian Langevin-force operators satisfyin
kF̂nstdl  0, kfF̂nstd, F̂1

n0 st0dgl  2h̄2Gnvndst 2 t0ddnn0

and, by the fluctuation dissipation theorem,

kF̂1
n stdF̂n0st0dl  2h̄2Gnvnn̄ndst 2 t0ddnn0 (4)

with the Planck distribution̄nn  seb h̄vn 2 1d21. The
phenomenological coefficientsGn have the meaning of
one-half of the inverseQ-factor of mode n, Gn 
s2Qnd21, and remain to be determined below.

But let us now consider how number fluctuations an
the phase diffusion of the condensate in equilibrium
follows from (2). Its deterministic part describes the
relaxation of the condensate to the minimum of th
free energyF of the condensate atkN0l  kja0j

2l. The
particle number fluctuationsdN0  ja0j

2 2 kja0j
2l in

equilibrium, after linearizing (2) indN0, are found to have
the correlation function

kdN0stddN0st0dl  kdN2
0 le2jt2t0jytc (5)

with the correlation timetc  sh̄kdN2
0 ly2G0kN0lkBT d

which could in principle be measured by taking th
Fourier transformation in time of time-resolvedin situ
phase-contrast images of the condensate. On a ti
scale very much larger than the correlation timetc the
phasew0 of the condensate in equilibrium, i.e., the phas
of a0 

p
N0 eiw0 , satisfies the Langevin equation of a

Wiener process with diffusion constant

Dw  kBT sG0 1 G21
0 dysh̄kN0ld , (6)

i.e., kfw0std 2 w0s0dg2l  Dwt. The expectation
value ka0stdl then decays exponentially according to
ka0stdl 

p
kN0l e2Dnt with the linewidth Dn given by

the Schawlow-Townes-type formula

Dn  kBT sG0 1 G21
0 dys2h̄kN0ld $ kBTysh̄N0d . (7)

The general relation betweenDn andtc,

Dn 
kBT

2h̄kN0l

√
h̄kdN2

0 l
2kN0lkBTtc

1
2kN0lkBTtc

h̄kdN2
0 l

!
, (8)

follows from our phenomenological theory, which is
independent of the yet unknown coefficientG0 and holds
for the general value ofkBT (outside the critical region).
Equation (8) is a general consequence of the fluctuati
dissipation relation for the condensate in the absence
squeezing in the bath of uncondensed atoms.
5263
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Let us now determine the numbersG0, Gn from
microscopic considerations, starting withGn for n fi 0.
We shall here confine our attention to the dampi
of the low-lying collective modes in the collisionles
regime, even though our phenomenological framew
may still be used in the collision-dominated regim
Furthermore, we confine ourselves to the experiment
relevant regimekBT ¿ m. The damping of the low-
lying collective modes in this regime is due to Landa
damping, described by a part ofH3, and was calculated
for spatially homogeneous condensates first by Szépfa
and Kondor [17]. Their result written for our coeficien
Gn yields Gn  AnskBTymd sn0a3d1y2. The numerical
coefficient An turns out to be independent ofn in the
spatially homogeneous system, and its value there is
An  3p3y2y4. However, a similar expression forGn

was even shown to hold for the collective excitations
traps [19] wheren0 is the condensate densityn0s0d in the
center of the trap andAn is a numerical coefficient which
depends on the trap geometry and the mode function
mode n. For the dipole modesAn must vanish by the
Kohn theorem [20].

The coefficientG0 is unknown so far and needs to b
calculated from scratch. Here we shall determine the te
perature dependence ofG0 for large quasihomogeneou
condensates for which the local density approximation
applicable, collecting the trap dependence ofG0 in a di-
mensionless prefactor which we leave undetermined. C
lisions of quasiparticles with the condensate changing
particle numberja0j

2 in the condensate byDja0j
2  61

are described byH3 
R

d3xU0fa0c0sĉ 01d2ĉ 0 1 H.c.g.
In such processes the energy changes only by a

amountDF  ≠Fy≠ja0j
2 (of the order ofkBTy

q
kdN2

0 l).
However, processes described byH3 involve three quasi-
particles besides one condensate particle, and they
therefore take up, from a slightly perturbed condensa
an arbitrarily small amountDF of its free energy.

By the golden rule the rateg  dkja0j
2lydt is given

by

g  2
2p

h̄2

X
n,m,k

1
2

kjMs1d
k,nmj2dsvk 2 vn 2 vm 1 DFyh̄d

2 jM
s2d
nm,kjj

2dsvk 2 vn 2 vm 2 DFyh̄dl

3 fn̄n n̄msn̄k 1 1d 2 sn̄n 1 1d sn̄m 1 1dn̄kg . (9)
The relevant matrix elements are

Ms1d
k,nm  2U0a0

Z
d3xc0ynsup

kum 1
1
2 yp

kymd

1 sn $ md ,

Ms2d
nm,k  2U0a0

Z
d3xc0up

nsyp
myk 1

1
2 up

mukd

1 sn $ md .
Ms1d describes a Landau-scattering process in which
atom is scattered out of the condensate by the absorp
of the two quasiparticlesn, m out of and the emission o
the new quasiparticlek into the thermal bath. Likewise
5264
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Ms2d describes Beliaev scattering where an incomi
thermal quasiparticlek is absorbed, an atom is kicked ou
of the condensate, and two quasiparticlesn, m are emitted
into the thermal bath. The factor1y2 in (9) accounts for
the indistinguishability of pairsn, m andm, n.

In the phonon part of the excitation spectrum we ha
ul . 2yl , v

21y2
l . Furthermore, in that low-energy re

gion the statistical factorf· · ·g in (9) is well approximated
by skBT d2svk 2 vn 2 vmdyh̄2vnvmvk, where the fre-
quency difference in the nominator becomes6DFyh̄ in
the product with thed functions, which express energ
conservation. Anywhere else the small energyDF is neg-
ligible. The frequency factors in the denominator, t
gether with similar factors in the denominator comin
from the matrix elements, make the phonon contribut
to the sums in (9) the dominant one, at least in large c
densates, and we shall therefore concentrate on this
tribution in the following. This frequency range has
natural upper cutoff atmyh̄, where the collective phonon
go over smoothly into particlelike excitations. In finit
condensates also a natural lower cutoff exists at about
trap frequencyv̄, where the phonon wavelength becom
comparable with the size of the condensate.

We shall evaluate the sums in (9) in the usu
Thomas-Fermi and local density approximation [2
for ul, yl, vl, integrating over the wave vectors of th
phonons in an interval implied by the cutoffs. We obta
in this way

g  2
9A0m3sU0kBT d2

s2pd3h̄8 kDFja0j
2l

3
Z Z dvn dvm

vnvmsvn 1 vmd
.

Clearly the contribution near the lower cutoff at̄v

dominates in the double frequency integral. After
evaluation, and usingU0  4p h̄2aym andd0 

p
h̄ymv̄

to introduce thes-wave scattering lengtha and the zero-
point amplituded0, we obtain to leading order in̄hv̄ym

dkja0j
2lydt  g  22sG0yh̄d ks≠Fy≠ja0j

2d ja0j
2l with

G0  A0
18 ln 2

p

√
akBT
d0h̄v̄

!2

. (10)

Here A0 depends on the trap geometry and is of ord
1 in an isotropic trap. For the experimentally realiz
condensatesG0 ø 1 is implied by (10).

In order to give a practically useful estimate of th
phase-diffusion rate let us compare the linewidthDn

of the condensate with the directly measurable inve
lifetime t21

k of a collective modek with frequency of
orderv̄. We find forG0 ø 1

Dntk 
v̄yvk

A0Ak288 ln 2

"
smykBT d2

kN0l fn0s0da3g3y2

#
. (11)

For mykBT  1021, kN0l  106, n0s0da3  3 3 1026

the factor f· · ·g on the right hand side of (11) is abou
2. This may explain the experimentally observed [
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robustness of the phase. Another way to put our res
is to note that up to a numerical prefactor the relatio
h̄v̄G0ym , G2

k  s2Qkd22 holds. Hence, according to
(7) for G0 ø 1

Dn  sA2
kyA036 ln 2d skBTv̄Q2

kymkN0ld , (12)
whereQk is known experimentally.

In conclusion, we have provided a theory of the
mally generated phase diffusion in Bose-Einste
condensates and determined a temperature depen
Schawlow-Townes-type formula for the linewidthDn of
the condensate. This is also the minimum linewidth of
atom laser based on the Bose-Einstein condensate.
have also calculated the correlation timetc of the particle
number fluctuations in the condensate which should
measurable. Last but not least we have derived a relat
(8) between this correlation timetc and the linewidthDn

which follows from the fluctuation-dissipation relation
independently of any microscopic detail, but subject
the assumption of negligible squeezing in the therm
bath seen by the condensate. Removing this restrict
will be the subject of a more detailed paper.
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