VOLUME 81, NUMBER 24 PHYSICAL REVIEW LETTERS 14 BCeEMBER 1998

Decoherence of Bose-Einstein Condensates in Traps at Finite Temperature
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The phase diffusion of the order parameter of trapped Bose-Einstein condensates at temperature
kgT > ha is determined, which gives the fundamental limit of the linewidity of an atom
laser. In addition a prediction of the number fluctuations in the condensate and their correlation
time 7. is made and a general relation farwr. is derived from the fluctuation-dissipation relation.
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Bose-Einstein condensation in a weakly interactinga trapped Bose-Einstein condensate at zero temperature
Bose gas in three dimensions in the thermodynamic limitvas considered, which is due to thermodynamic fluctua-
of an infinitely extended system is a second order phasgons é u of the chemical potentiak in a finite system
transition in which an order parameter, the macroscopievith fixed particle number. An extension of this mecha-
wave function, appears spontaneously with a fixed but amism to finite temperature has also been proposed [6].
bitrary phase, turning the global(l) symmetry respon- This effect is not a “phase diffusion” but corresponds to
sible for particle-number conservation into a broken oran effect of inhomogeneous broadening, and is even re-
hidden symmetry [1]. The rigidity of the phase of the or- versible in “revivals.” The experiments are done at “high”
der parameter against local perturbations and the absentmmperaturekz7T > hi® and evenkgT > u, where @
of any phase diffusion gives rise to the Goldstone modess the geometrical mean of the three main trap frequen-
which take the form of collisionless (zero) sound or hy-cies. One would expect a proper phase-diffusion process
drodynamic sound, respectively, depending on whetheto occur in such a regime due to the interaction of the
the sound frequency is in the collisionless mean-fieldcondensate with a thermal bath of collective modes and
regime or in the collision-dominated regime [1,2]. quasiparticles, but so far an understanding of this process

In finite systems, and thus also in all trapped Boseseems lacking (see, however, [7]). This gap in our un-
gases, sharp phase transitions are impossible and hidddarstanding of Bose-Einstein condensates in traps at finite
symmetries in a rigorous sense cannot appear [1]. Nevetemperature is particularly painful, because the fundamen-
theless a macroscopic wave function describing a Bosdal limit of the linewidth of an atom laser depends on it:
Einstein condensate (BEC) still exists, as is now firmlythere is not yet a “Schawlow-Townes” formula [8] for the
established by the experiments [3]. However, for the genlinewidth of an atom laser, because its derivation requires
eral reason mentioned, the phase of the macroscopic waweprior understanding of phase diffusion in Bose-Einstein
function cannot be stable but must undergo a diffusiorcondensates.
process, which restores the(l) symmetry over suffi- In the present paper | outline a theory of dissipation and
ciently long time intervals [1]. This diffusion process is thermal fluctuations in a trapped Bose-Einstein conden-
therefore different from the Goldstone modes mentionedate which is used to determine the phase-diffusion con-
before, which are oscillations around a fixed value of thestant, and from it, the linewidth of a trapped Bose-Einstein
phase and do not restore the symmetry [1,2]. condensate as a function of temperature. The result ob-

Recently a first attempt has been made to measure thained explains the experimentally observed robustness of
stability of the phase of the macroscopic wave function inthe phase. | find it convenient to present first a phe-
a trapped BEC. In an experimental setup of considerablaomenological framework for the theory, in the form of
ingenuity [4] the relative phase of two BEC’s was mea-Langevin equations in which dissipation appears via phe-
sured using a time-domain separated oscillatory field conrromenological parameters and the fluctuation-dissipation
densate interferometer. Over the time interval of 100 mselation is invoked to determine the fluctuations. Then
scanned in the experiment the relative phase was found the phenomenological parameters are fixed by drawing
be robust. At first sight this experimental result may seenon known microscopic results for the damping of collec-
surprising since decoherence of entangled states of mariye modes and calculating the new transport coefficient
atoms should be extremely rapid. Then, however, one reén the Langevin equation of the condensate. It is found
alizes that there is so far no clear theoretical predictiorio result primarily from scattering of thermally excited
of the decoherence time of Bose-Einstein condensates tollective modes (phonons) off the condensate. This
traps against which the aforementioned experiment, or excoefficient then determines the phase-diffusion constant
tensions of it which will surely follow, could be checked. and the fundamental linewidth of an atom laser via a
In a number of papers [5] the dispersion of the phase oSchawlow-Townes-type formula.
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The weakly interacting Bose gas in a trap in standardhe condensate. Here | ignore the possibility of the oc-
notation is described by the Hamiltonian currence of squeezing in the thermal bath of uncondensed
s aa| B2, Uo ~ 4~ | 5 particles. Then only a single new phenomenological co-
H = j d’xip —%V + V) —u+ X Yoy efficient Ty, a dimensionless but surely temperature de-
(1)  pendent number, remains to be determined below.
As a short digression let us also extend the equations
nof motion of the quasiparticles to include dissipation

sate means that manyV{ > 1) particles occupy the and fluctuation within a phepomenologicgl Markqf_fian
normalized single-particle stateyo(x) of lowest en- framework [15]. .It is convenient to do this by writing
ergy w satisfying [9] —(B2/2m)Vido + [V(x) + quantum Langevin equations [16(5])

UoNolol*Tro = pmipo. A . OHY .

The number density of the condensate rig(x) = ihé, = (1 —il}) dar + () (3)
Noltho(x)I*. Both g(x) andN, are functions ofu. In the with Gaussian Langevin-force operators satisfying
following we turn this around and considgr a function 2 () =0, (F,@), ("] = 22T, w,8(t — 1)),
of Ny. The presence of the highly occupied condensat%n’a by the,fluctljatiz)nydissipation theorem "
mode makes the decomposition of the Heisenberg field "~ | . ’
operator) (x, 1) = [ao(t)o(x) + &'(x, 1)]e” /" useful, (FyOF, (1)) = 20°T, 0,7,8(t — t)8,,,  (4)
where we shall follow the tradition starting with Bogoli- with the Planck distributiori, = (e##® — 1)~!. The
ubov [10] and describe the condensate classically, rememshenomenological coefficientE, have the meaning of
bering, however, tha¥, = |ao|* is the particle numberin  gne-half of the inverseQ-factor of mode », I', =
the condensates’(x, #) is the field operator for the parti- (20,)~!, and remain to be determined below.
cles outside the condensate. The Hamiltonian then splits Byt et us now consider how number fluctuations and
according toH = Ho + H; + Hy + H; + Hy, Where  the phase diffusion of the condensate in equilibrium
H, (n = 0,1,2,3,4) comprises the terms @i which are follows from (2). Its deterministic part describes the
of nth order in¢’, )", respectively. The equation of relaxation of the condensate to the minimum of the
motion for the condensate amplitude receives contri-  free energyF of the condensate &io) = (|ag|?). The
butions fromH, to Hs. For a discussion of various mi- particle number fluctuation$Ny = |aol?> — (laol?) in

croscopic approximation schemes, see [11]. equilibrium, after linearizing (2) i® N, are found to have
Quasiparticle operatorsa,,a,; are defined by the correlation function

the standard Bogoliubov transformation’ 1) = /
g . ) (BNo(EN (1)) = (BN TV (5)
the usual Bogoliubov—-de Gennes equations [11], angvith the correlation timer. = (R(SN3)/2To(NoYksT)

The total number of atom¥ is fixed. w is the chemical
potential. The presence of a Bose-Einstein conde

dolu,(x)é, (1) + vilx)a,)(r)], where u,, v, satisfy

the @, obey the Heisenberg equations of moti@n =  which could in principle be measured by taking the
+[AY, a,] with A" = Lo, (&) d, — [|v,(x)]?d*x].  Fourier transformation in time of time-resolved situ
Again |u,|?, |v,|?, andw, are functions ofag|?. phase-contrast images of the condensate. On a time

In order to derive a phenomenological equation ofscale very much larger than the correlation timethe
motion for the condensate alone we turn to the fregohaseyp, of the condensate in equilibrium, i.e., the phase
energyF (lag|?) of a fluctuation oflag|? from equilibrium.  of ay = /Ny e'#°, satisfies the Langevin equation of a
Expanded to second order around its minimum it takes th¥Viener process with diffusion constant
form ) - Dy = ksT(To + Tg")/(RNo). (6)

2y _ (eol® = ({lexol*))

BF(|a0| ) - 2
2(8Np)
with (Jaol?) = N — (N'), (6Ng) = (N2 — (N')?, where
N' = [dxd' (x))/(x). The expectation valuegV’)
and (§N3) (which turns out to be anomalously large
~N*%/3) have recently been evaluated within the Bogoliu- Av = kT(Ly + T'g")/(2A(No)) = kT /(ANo). (7)
bov theory [12] and can therefore here be consideregy,q general relation betweexw andr.,

i.e., {[eo(t) — ¢o(0)*) = D,t.  The expectation
value {ao(z)) then decays exponentially according to
(ap(1)) = [Ny e 27" with the linewidth Av given by
the Schawlow-Townes-type formula

as known. The equation of motion ofy near thermal )
equilibrium can now be written with the help &f(|a|?) Ay = ksT ( r{6Ny) 2<N0>kBTTC) (8)
in the general form [13] 21i{No) \ 2(No)kpT 7, H(SNGY )’
oy OF follows from our phenomenological theory, which is
ihéo = (I = ilo) dag  Fol) ) independent of the yet unknown coefficidnf and holds
with Gaussian white noisgy(t) satisfying for the general value ofzT (outside the critical region).
(Fo(t)) = 0, (Fo(1)Fo(0)) = 2hkgTT(6(r) Equation (8) is a general consequence of the fluctuation

determined so as to ensure the correct equilibrium disdissipation relation for the condensate in the absence of
tribution [14] p(a, ag) = Zy ' exd —F(lag|?)/ksT] for ~ squeezing in the bath of uncondensed atoms.
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Let us now determine the numbed, I', from M@ describes Beliaev scattering where an incoming
microscopic considerations, starting with, for » # 0.  thermal quasiparticl& is absorbed, an atom is kicked out
We shall here confine our attention to the dampingof the condensate, and two quasiparticleg. are emitted
of the low-lying collective modes in the collisionless into the thermal bath. The factdy2 in (9) accounts for
regime, even though our phenomenological frameworkhe indistinguishability of pairg, u and w, ».
may still be used in the collision-dominated regime. In the phonon part of the excitation spectrum we have
Furthermore, we confine ourselves to the experimentally,, ~ —y, ~ w;‘/z_ Furthermore, in that low-energy re-
relevant regimekg7 > p. The damping of the low- gjon the statistical factdr - -] in (9) is well approximated
lying collective modes in this regime is due to Landaupy (kz7)%(w, — w, — w,)/*w,,0,., where the fre-
damping, described by a part &f;, and was calculated quency difference in the nominator becomed F// in
for spatially homogeneous condensates first by Szépfalusiie product with thes functions, which express energy
and Kondor [17] Their result written for our coeficient conservation. Anywhere else the small enawyis neg-

T, yields T, = A,(kgT/u) (noa®)'/>. The numerical |igible. The frequency factors in the denominator, to-
coefficientA, turns out to be independent of in the  gether with similar factors in the denominator coming
spatially homogeneous system, and its value there is [18tom the matrix elements, make the phonon contribution
A, = 37%/4. However, a similar expression fdf, o the sums in (9) the dominant one, at least in large con-
was even shown to hold for the collective excitations indensateS, and we shall therefore concentrate on this con-
traps [19] wheren is the condensate density(0) in the  tribution in the following. This frequency range has a
center of the trap and, is a numerical coefficient which natural upper cutoff at. /7, where the collective phonons
depends on the trap geometry and the mode function fajo over smoothly into particlelike excitations. In finite
mode ». For the dipole moded, must vanish by the condensates also a natural lower cutoff exists at about the

Kohn theorem [20]. - trap frequency, where the phonon wavelength becomes
The coefficientl’y is unknown so far and needs to be comparable with the size of the condensate.

calculated from scratch. Here we shall determine the tem- \we shall evaluate the sums in (9) in the usual
perature dependence &% for large quasihomogeneous Thomas-Fermi and local density approximation [21]
condensates for which the local density approximation ISor u), vy, w),, integrating over the wave vectors of the

applicable, collecting the trap dependenceldfin a di-  phonons in an interval implied by the cutoffs. We obtain
mensionless prefactor which we leave undetermined. Coin this way

lisions of quasiparticles with the condensate changing the

3 2
particle numbetay|? in the condensate b&lg()l? = *1 y = _w (AF|aol?)
are described byf; = [d3xUg[aopo(d'*)?d’" + H.c. Q2m)’h
In such processes the energy changes only by a tiny y f/ dw,dw,
amountAF = 9F/alaol? (of the order ofkzT /1/(SNE)). w,0,(0, + ©,)

However, processes described By involve three quasi- Clearly the contribution near the lower cutoff a

particles besides one condensate particle, and they caminates in the double frequency integral. After its

therefore take up, from a slightly perturbed condensate,, 5 ,ation. and usingo = 47 ha/m anddy = \ii/ma

an arbitrarily small amourt F Oflts free gnergy. . to introduce thes-wave scattering length and the zero-
By the golden rule the ratg = d{|agl*)/dt is given point amplituded,, we obtain to leading order ifi@/u

by 5 | dlagl?)/dt = vy = —=2(To/B){(IF /dlexo|?) |aol*) with
T
Y= 2 5 M, P — 0, — w, + AF/R) 181n2 ( aksT \’
VLK I‘O = Ap _ . (10)
@ T doh
- |MV,u,K|| d(we — w, — Wy — AF/h))

T ~ B _ Here Ay depends on the trap geometry and is of order
X [y + 1) = (A, + D (A, + Dacd. (9 1 in an isotropic trap. For the experimentally realized

The relevant matrix elements are condensateF, < 1 is implied by (10).
o _ 3 . 1« In order to give a practically useful estimate of the
Micop ZUOQO/ d*xipovy (uty + 3v,v,) phase-diffusion rate let us compare the linewidih
+ (v o ) of the condensate with the directly measurable inverse
’ lifetime 7! of a collective modex with frequency of
M(Vz,l,,( — 2U0a0j d3xabouf,(v;v,< + %MZMK) ordero. We find forl'y < 1
/0 (p/kpT)?
+ (v o ). A = . 11
(v = YTk T A0A2881n2 |:<No)[n0(0)a3]3/2 (11)

MY describes a Landau-scattering process in which one
atom is scattered out of the condensate by the absorption For u/kzT = 107!,{Ny) = 10°,no(0)a® =3 X 1076

of the two quasiparticleg, . out of and the emission of the factor[---] on the right hand side of (11) is about
the new quasiparticla into the thermal bath. Likewise 2. This may explain the experimentally observed [4]
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robustness of the phase. Another way to put our result[7] In a recent paper D. Jacksoft al., Phys. Rev. A58,
is to note that up to a numerical prefactor the relation 1450 (1998) use a quantum kinetic theory to compute

holo/u ~ ]“i = (20,)"? holds. Hence, according to intensity and amplitude fluctuations of a Bose conden-
(7) forTy < 1 sate interacting with uncondensed particles, but ignor-
— (A2 ~ 12 ing contributions from quasiparticle excitations, which |

Av = (4, /Ag36In2) (ksT @O/ 1(No)) (12) find here to be essential and even dominating in large

whereQ,. is known experimentally. condensates.

In conclusion, we have provided a theory of ther- [g] A L. Schawlow and C.H. Townes, Phys. ReM2 1940
mally generated phase diffusion in Bose-Einstein (1958); H. Haken, Z. Phy€.82, 346 (1965); M. O. Scully
condensates and determined a temperature dependent and W.E. Lamb, Phys. Rel59, 208 (1967).
Schawlow-Townes-type formula for the linewidttw of [9] E.P. Gross, Nuovo Cimenta20, 454 (1961); L.P.
the condensate. This is also the minimum linewidth of an ~ Pitaevskii, Zh. Eksp. Teor. Fiz40, 646 (1961) [Sov.
atom laser based on the Bose-Einstein condensate. We Phys. JETPL3, 451 (1961)]
have also calculated the correlation timeof the particle  [10] A Griffin, Phys. Rev. B53, 9341 (1996).
number fluctuations in the condensate which should b&-1l It is not sufficient to usefo(|laol*) in place of F as

measurable. Last but not least we have derived a relation either (||} or (§Ng) would then be given correctly for
) T + 0.

(8)_between this correlation tim_and Fhe_ Iin(_awidthAv_ [12] N. Bogoliubov, J. Phys. USSRL 23 (1947).

yvhlch follows from the_fluctuatlpn—dlss_lpatlon rel_atlon [13] S. Giorgini, L.P. Pitaevskii, and S. Stringari, Phys. Rev.

independently of any microscopic detail, but subject to "~ |ett. 80, 5040 (1998).

the assumption of negligible squeezing in the thermaj14] L.D. Landau and E. M. LifshitzStatistical Physic¢Perg-

bath seen by the condensate. Removing this restriction amon Press, Oxford, 1958).

will be the subject of a more detailed paper. [15] The present phenomenological treatment is similar in spirit
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