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A set of collective spin states is derived for a trapped Bose-Einstein condensate in which atoms
have three internal hyperfine spins. These collective states minimize the interaction energy among
condensate atoms, and they are characterized by strong spin correlations. We also examine the
internal dynamics of an initially spin-polarized condensate. The time scale of spin mixing is predicted.
[S0031-9007(98)07921-6]
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Bose-Einstein condensates (BEC) of atoms with intersince the trap is like a matter wave cavity, a more ap-
nal degrees of freedom are new forms of macroscopicallpropriate optical analogy is the 4-wave mixing in a high
coherent matter which exhibit rich quantum structuresfinesse cavity (i.e., a cavity QED system). With the help
In the case of BEC with two internal spin states [1,2],of the methods developed in a related cavity QED prob-
theoretical studies have predicted interesting phenomeriam [9,10], we are able to study the organization of spins
such as quantum entanglement of spins [3], suppressidn the condensate ground state. We find that there ex-
of quantum phase diffusion [4], and interference effectdsts a class of quantum superposition states which mini-
[5]. Recently, Stamper-Kuret al. [6] have realized an mize the interaction energy. These quantum states are
optically trapped BEC in which all three hyperfine statesrecognized as collective spin states which are character-
in the lowest energy manifold of sodium atoms are in-ized by strong correlations among different spin compo-
volved. Such a three-component condensate raises navents, and in some cases we find that the number of atoms
guestions regarding the more complex ground state stru@a an individual spin component shows large fluctuations.
ture [7,8] and internal spin dynamics. One of the keyln this paper we also examine tliternal dynamicsof
features here is that there are spin exchange interactiotise spin-mixing process arising from the nonlinear inter-
which constantly mix different condensate spin compo-actions between condensate atoms [11]. For an initially
nents while the system as a whole remains in the groundpin-polarized BEC, we predict the time scale at which
state. For example, two atoms with respective hyperfinspins become strongly mixed.
spins +1 and —1 interact and become two atoms with To begin we consider a dilute gas of trapped bosonic
hyperfine spin 0. Therefore an important problem is toatoms with hyperfine spiff = 1. The second quantized
determine how atoms organize their spins in the groundHamiltonian of the system is given lffi = 1)
state and how a spin-polarized BEC loses its polarization . V2 .
because of spin exchange interactions. H = Z/ d’x \If};(—— + VT>\Ifa

In this paper we approach the questions using an alge- a M

braic method found in quantum optics. By excluding ef- O T

fects of noncondensate atoms, we identify the fact that the + Z Qaﬁw] VWV, W, dx, (1)
interaction between spin components in a BEC is analo- R @By

gous to 4-wave mixing in nonlinear optics. However,where¥, (x = —1,0, 1) is the atomic field annihilation
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operator associated with atoms in the hyperfine spin state Here|F, Mr) is the total hyperfine spin state formed by
|f = 1,my = k). The summation indices in (1) run two atoms each with spifi = 1, andgr = 4wh’ar/M
through the values-1,0,1. The mass of the atom is with ar being thes-wave scattering length in the chan-
given by M, and the trapping potentid; is assumed to nel. The interaction (2) is based on rather general sym-
be the same for all three components. The interactions beretry assumptions of the system, because it preserves
tween atoms are characterized by the coefficiéhig,,  angular momentum and the rotation symmetry in hyper-
which are obtained from the two-body interaction modelfine spin space [8]. The model also makes use of&he

[8,11-13], potential approach which has been widely used in one-
2 F component dilute BEC.
UGLE) = 8G — %) D gr . |F,Mp)(F,M|. By expanding the total spin statg, M) in terms of ba-
F=0  Mp=—F sisvectord f = 1,my = a) ® | f = 1,my = B), we ob-
() | tain the Hamiltonian in the formH = J-Ié + H,, where
stV DV PO
Hs=> | &Vl —— + vy |0, + 2 Vi, ¥ dx, (3)
= 2M 2 e
Hy = 7](@?«1’?%% + L by 20 B - 28 By - 2
+ 20l oo+ 20T b)) @x (4)
!
Here A, = (go + 2g»)/3 and A, = (g» — go)/3 are de- v AP
fined. The HamiltoniadH is written as the sum of a sym- 2M TV ANIGE )b = nd, ©)

metric partJHs and a nonsymmetric paff,, where H
remains unchanged for any interchange of the spin comwhere u is the mean field energy or the chemical
ponent indices. potential.

In this paper we assume that the symmetric interaction Under the condition that atoms in different spin states
Hs is strong compared withH,. This occurs for atoms are described by the same wave function, we can approxi-
whose scattering lengths in differeiit channels have mate field operators at the zero temperature by
approximately the same values such that| > |A,]. A
Recent estimations have indicated tHdNa and®'Rb Y, =~ a,p(x) k=0,*1. (6)
atoms indeed have such a property [7,8,14]. With the
symmetric Hs being the dominant Hamiltonian, the Herea, is the annihilation operator associated with the
condensate wave functions,(¥) (x = 0, =1) for each condensate mode, and it satisfies the usual commutation
spin component are approximately described by the sanelation [a,.a,] = 0 and [a,,al] = 8.,. Using (5)
wave functione (¥), i.e., ¢ (x) = ¢ (x), which is defined and (6), Hs and H, have leading part¥, and H,,

by the Gross-Pitaevskii equation througt, | respectively,

Hg ~ uN — XN(N - 1) = Hy, (7)

Hy ~ N@lalaa, + atialiaa - 2afal aia-, + 2afadaja, + 2at ada a0 + 2adadaia

+2aiat a0a0) = H, . (8)
!

Hfrezx\ﬁ» f A [l dPx (i = s,a), andN = ata, + and L.= (&L&,] — affz])Aobey angular momentum
agag + al,a-; is the total number of atoms in the commutation relationsL,L-] = 2L, and[L,,L+] =
condensate. +L.. In other words, the operators;, L_ can be

Our goal is to find the quantum states that minimize thénterpreted as raising and lowering operators of a kind
energyH, + H,. SinceH, is a function ofN only, H, is  of “orbital angular momentum,” and. is the “z com-
a constant operator for a fixed number of atoms. Thereponent” in the standard notations. From the theory of
fore it is sufficient to look for the ground state &f,. It ~ angular momentumL> and L. have a complete set of
is quite remarkable that a similar structureféf also ap- common eigenvectong, m;) defined by

peared in nonlinear wave-mixing processes in cavity QED P2Lm) = 14+ 1) 1,my), (9)
[9]. We follow Refs. [9,10] and identify the algebraic .
structure of the system. We notice that the operators Lell,mpy = my|l,my), (10)

i_=2@la, +ala_)), i.=v2@la +a'a0), wherem; =0,+1,%2,... =l For a given total number
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of atoms N, the allowable values of are I = 0,2, 0.2
4,...,Nif Niseven, and = 1,3,5,...,N if N is odd. L (@) ]

With the help of the angular momentum operatdis, o1l ]
takes a very simple form, i oddk A

H, = Al (L* — 2N). (11) A of ]
This is the main result of the paper because the energy e even kT
spectrum ofH, is now solved. Equation (11) indicates 01 b
that|l, m;) are eigenstates @f, with the energye; I ]
o2l
Ef = A[I(1 + 1) — 2N]. (12) 0 100 200 300 400 500
The lowest energy state éf, depends on the sign of,. 1 —
In the following we discuss two cases: (A}, > 0 and L (b) 1 ‘
/ | -1 +1

(I AL <o. _ _ 06| B 0.3 ° /4

(I) AL, >0.—In this casel|l =0,m; = 0) is the i 1
ground state ofd,. Using the Fock stateBi;, ng,n—;) m) = 800 Jr——
defined by the number operators = 4! a; for the three B or 2 1
spin components (i.edi;|ni, no, n—1) = njlny, ng,n—1)), ? .
|l = 0,m; = 0) has the form 021 .. 1

[N/2] N
|l =0,m =0)= Z Arlk, N — 2k, k), (13) 0 100 200 700
k=0

where the amplitudes; obey the recursion relation FIG. 1. Amplitudes of Fock states associated with the ground
\/m states ofH, for N = 10’ atoms: (@A, >0; (b) A, <0.
Ap = —4| ——— A1 . (14)  The inset in (b) shows the normalized number fluctuations
N — 2k + 1 A; = (An;)*/(a;) in the three spin components = 0, =1)
as a function ofm;. Sub-Poisson distributions are defined

We see that the statl = 0,m; = 0) is a quantum by A; < 1.
superposition of a chain of Fock statgsN — 2k, k) in
which the numbers of atoms in the spihsand —1 are o .
equal. We stress that such a quantum statecisllactive ~ Here the summation indek runs over all physical Fock
spin state which cannot be expressed as product states $fteslk, N — 2k — m;, k + m;) (i.e., those with non-
individual atoms. The amplitudes; are arranged in such Negative numbers in each component). The simplest case
a way that the interaction energs, is almost completely 0f (15) is |l = N,m; = —N) = |N,0,0), and with this
canceled. This can be seen from the disappearance wfe can construct the ampAIitudeB;{ml) by repeatedly ap-
N? dependence in the energy #f,. It is not difficult  plying the raising operatoL,. To give an illustration,
to show that for the state (13), the average numberge plot in Fig. 1b the Fock state amplitud%’"’) for
Of atoms in each component are all equal, i) =  geveralm,’s. We see thatB!"’ has a narrow distri-
() = (A1) = N/3. Since A, are almost uniformly 1, tion which indicates well defined particle numbers in
distributed (see Fig. 1a), there are large fluctuations ofach spin component. It is interesting that all the de-
particle numbers in individual components although theyenerate states (15) have sub-Poisson number fluctua-
total particle numberV is fixed. More precisely, We {ons in each spin component (see the inset of Fig. 1b).

find that (Ang) =~ 2N//5 for N> 1, l.e., & SUPer- This feature is just the opposite of the previous case
Poisson distribution. Our further calculations indicate s ~

that a super-Poisson distribution of particle numbers is aaFinaIIy, let us look at the spin-mixing dynamics of an
common feature for low energy eigenstatestf when  initially spin-polarized condensate in which all atoms in
Ag = 0. / _ the condensate are prepared in the spin-0 state=aD,

(1) A; <0.—In this caseH, has2N + 1 degen- eq |4(0)) = |0,N,0). In this case two atoms in the spin-
erate ground states given Hy = N,m;) where m; = o gtate can be converted into one atom in the spitate
0,x1,%2,...., =N. The energy (12) of these states is ynq the other in the spin-(1) state. Assuming the spin-
AN(N — 1), and the general form ofl = N,m;) is  mixing process does not introduce appreciable changes of
given by shape of the spatial condensate wave function, we can use

Il = N,m)) = ZB;{’WM,N — 2k — myk + my). H; + H, as our approximate Hamiltonian to des_cripe the

P internal dynamics [15]. The internal state at timas
(15) given by
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FIG. 2. Time dependence of average number of atoms in thgIG. 3. Time dependence of average number of atoms in
spin-0 state normalized by the total number of ata¥hs The  the spin-0 state. The initial state of the system|yg0)) =
initial state of the system ig/(0)) = |0, N,0). We show three | /3 N/3,N/3), whereN = 300.

cases withvV = 102,103, 10*.

N
(1)) = e~ 10 Z Cre U+ — ) (16) a/AL). Itis worth further exploring the quantum dynam-
= ' | ics in the context of either BEC or cavity QED.
To conclude, we have examined the spin-mixing inter-
here C; = (I =0]0,N,0) and t) =[uN — . ’ . . ' 2
\;\V,N(NC_Z 1 <_ 2m)i, Nt | Iﬁ F’ig> 2 weepl)vr(eéent[{ge time action of a Bose-Einstein condensate with three internal

dependence of the particle number in the spin-0 compo‘?‘pin components. It is quite remarkable that the model

nent forN — 102, 10°, 10* cases. We see that the num- interaction (2) (which is based on general symmetry as-

ber of atoms in the spin-0 component becomes steady gp??tlons)hqarr]\ lead to a smtwplet Slgebrl?lct.repres'ent?t{on,
(o) = N /2 after a timer,. and from which we can construct the collective spin states

which minimize the interaction energy among conden-
~ ;_ (17) sate atoms. These collective states exhibit spin correla-
AN tions and characteristic particle number fluctuations which

This is the time scale for the spin-mixing processdepend crucially on the sign of,. We have also inves-
purely due to the nonlinear interaction between configated the spin-mixing dynamics due to the nonlinear in-
densate atoms [16]. In the Thomas-Fermi (layp (eraction between condensate atoms. The time scale of

limit, we find that for a spherical harmonic trap, mixing for an initially spin-polarized system is identified.
(g2 — g0)te = 5.INV1[(go + 2g5)/M /> where »  This study provides a theoretical treatment of the struc-

is trap frequency. Therefore becomes quite insensitive fuUré and dynamics of spinor BEC. However, our analysis

to N in the Thomas-Fermi limit. To give a realistic 'S limited to interactions between condensate atoms, and

example, for a sodium condensate with= 10* and it remains to be answered how noncondensate atoms will

w = 27 X370 Hz, we find thatz. is about 0.5 sec, decohere the condensate structure. In the future we hope

using the recent experimental value of the difference of0 address this question as well as to generalize our ap-

scattering lengthsi, — ap = 0.2 nm [7]. In Fig. 2 we proach to systems with other hyperfine spin values.

also see that an apparent damping of the individual spin We thank Professor J.H. Eberly and Professor

populations can be observed, even without dissipatiof®: Shlyapnikov for discussions. This research was

purely as a result of the nonlinear spin-mixing process. Supported by NSF Grants No. PHY-9415583 and
We remark that the spin-mixing dynamics can peNo. PHY-9457897, and by the David and Lucile Packard

quite different for different initial conditions. In Fig. 3, Foundation.

we give an example for the case when all three com-

ponents initially have the same atom numbers, i.e.,

l(0)) = IN/3,N/3,N/3). ltis quite surprising that the

particle number executes fast oscillations with a frequency 4

of the order ofA/,N, and then the system suddenly be- 2] gg \lgv;im&n’;h,\%sa'nﬁee\\ll\l‘;%ag 5225%1392' E Wieman

comes steady. This interesting behawor indicates that ~ 4 E A Cornell, Phys. Rev. LeB1, 1539 (1998).

there are complex quantum dynamics governed by thejg) 5. Cirac, M. Lewenstein, K. Molmer, and P. Zoller,

nonlinear interactior,. In fact, sinceH,, hgs a dlscretg Phys. Rev. A57, 1208 (1998).

spectrum, quantum recurrence or revival is expected in a4] C.K. Law, H. Pu, N.P. Bigelow, and J.H. Eberly, Phys.

much longer time scale (which is typically of the order of Rev. A58, 531 (1998).
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For an initially spin-polarized sodium condensate, our nu-
merical tests indicate that the single mode approximation
is good for particle numbeN up to 10° in a spherical
trap with a trap frequency 100 Hz. However, apprecia-
ble higher modes excitations may occur for largéror

for condensates with negative,. Detailed calculations
including the time evolution of the spatial wave functions
will be presented elsewhere.

Our further calculations indicate thaA7;) also become
steady fort > t.. These particle number fluctuations
(for r > t.) are found to be quite significantAn;) =
(Any) = (ARg)/2 = 0.18N.
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