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A set of collective spin states is derived for a trapped Bose-Einstein condensate in which a
have three internal hyperfine spins. These collective states minimize the interaction energy am
condensate atoms, and they are characterized by strong spin correlations. We also examin
internal dynamics of an initially spin-polarized condensate. The time scale of spin mixing is predic
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Bose-Einstein condensates (BEC) of atoms with inte
nal degrees of freedom are new forms of macroscopica
coherent matter which exhibit rich quantum structure
In the case of BEC with two internal spin states [1,2
theoretical studies have predicted interesting phenom
such as quantum entanglement of spins [3], suppress
of quantum phase diffusion [4], and interference effec
[5]. Recently, Stamper-Kurnet al. [6] have realized an
optically trapped BEC in which all three hyperfine state
in the lowest energy manifold of sodium atoms are i
volved. Such a three-component condensate raises
questions regarding the more complex ground state str
ture [7,8] and internal spin dynamics. One of the ke
features here is that there are spin exchange interact
which constantly mix different condensate spin comp
nents while the system as a whole remains in the grou
state. For example, two atoms with respective hyperfi
spins 11 and 21 interact and become two atoms wit
hyperfine spin 0. Therefore an important problem is
determine how atoms organize their spins in the grou
state and how a spin-polarized BEC loses its polarizat
because of spin exchange interactions.

In this paper we approach the questions using an al
braic method found in quantum optics. By excluding e
fects of noncondensate atoms, we identify the fact that
interaction between spin components in a BEC is ana
gous to 4-wave mixing in nonlinear optics. Howeve
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since the trap is like a matter wave cavity, a more a
propriate optical analogy is the 4-wave mixing in a hig
finesse cavity (i.e., a cavity QED system). With the he
of the methods developed in a related cavity QED pro
lem [9,10], we are able to study the organization of spi
in the condensate ground state. We find that there
ists a class of quantum superposition states which m
mize the interaction energy. These quantum states
recognized as collective spin states which are charac
ized by strong correlations among different spin comp
nents, and in some cases we find that the number of ato
in an individual spin component shows large fluctuation
In this paper we also examine theinternal dynamicsof
the spin-mixing process arising from the nonlinear inte
actions between condensate atoms [11]. For an initia
spin-polarized BEC, we predict the time scale at whic
spins become strongly mixed.

To begin we consider a dilute gas of trapped boson
atoms with hyperfine spinf ­ 1. The second quantized
Hamiltonian of the system is given bysh̄ ­ 1d

H ­
X
a

Z
d3x Ĉy

a

√
2

=2

2M
1 VT

!
Ĉa

1
X

a,b,m,n

Vabmn

Z
Ĉy

aĈ
y
bĈmĈn d3x , (1)

whereĈk sk ­ 21, 0, 1d is the atomic field annihilation
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operator associated with atoms in the hyperfine spin st
j f ­ 1, mf ­ kl. The summation indices in (1) run
through the values21, 0, 1. The mass of the atom is
given byM, and the trapping potentialVT is assumed to
be the same for all three components. The interactions
tween atoms are characterized by the coefficientsVabmn

which are obtained from the two-body interaction mode
[8,11–13],

Us $x1, $x2d ­ ds$x1 2 $x2d
2X

F­0

gF

FX
MF­2F

jF, MFl kF, MF j .

(2)
h
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HerejF, MFl is the total hyperfine spin state formed b
two atoms each with spinf ­ 1, andgF ; 4p h̄2aFyM
with aF being thes-wave scattering length in theF chan-
nel. The interaction (2) is based on rather general sy
metry assumptions of the system, because it prese
angular momentum and the rotation symmetry in hyp
fine spin space [8]. The model also makes use of thed

potential approach which has been widely used in o
component dilute BEC.

By expanding the total spin statejF, MFl in terms of ba-
sis vectorsj f ­ 1, mf ­ al ≠ j f ­ 1, mf ­ b l, we ob-
tain the Hamiltonian in the formH ­ HS 1 HA, where
HS ­
X
a

Z
d3x Ĉy

a

√
2

=2

2M
1 VT

!
Ĉa 1

ls

2

X
a,b

Z
Ĉy

aĈ
y
bĈaĈb d3x , (3)

HA ­
la

2

Z
sĈy

1 Ĉ
y
1 Ĉ1Ĉ1 1 Ĉ

y
21Ĉ

y
21Ĉ21Ĉ21 1 2Ĉ

y
1 Ĉ

y
0 Ĉ1Ĉ0 1 2Ĉ

y
21Ĉ

y
0 Ĉ21Ĉ0 2 2Ĉ

y
1 Ĉ
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21Ĉ1Ĉ21

1 2Ĉ
y
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y
0 Ĉ1Ĉ21 1 2Ĉ

y
1 Ĉ

y
21Ĉ0Ĉ0d d3x. (4)
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Herels ; sg0 1 2g2dy3 andla ; sg2 2 g0dy3 are de-
fined. The HamiltonianH is written as the sum of a sym-
metric partHS and a nonsymmetric partHA, whereHS

remains unchanged for any interchange of the spin co
ponent indices.

In this paper we assume that the symmetric interacti
HS is strong compared withHA. This occurs for atoms
whose scattering lengths in differentF channels have
approximately the same values such thatjlsj ¿ jlaj.
Recent estimations have indicated that23Na and 87Rb
atoms indeed have such a property [7,8,14]. With t
symmetric HS being the dominant Hamiltonian, the
condensate wave functionsfks $xd sk ­ 0, 61d for each
spin component are approximately described by the sa
wave functionfs$xd, i.e.,fks $xd ­ fs$xd, which is defined
by the Gross-Pitaevskii equation throughHS ,
m-

on

e

me

√
2

=2

2M
1 VT 1 lsNjfj2

!
f ­ mf , (5)

where m is the mean field energy or the chemica
potential.

Under the condition that atoms in different spin state
are described by the same wave function, we can appro
mate field operators at the zero temperature by

Ĉk ø âkfs$xd k ­ 0, 61 . (6)

Here âk is the annihilation operator associated with th
condensate mode, and it satisfies the usual commutat
relation fâk , âgg ­ 0 and fâk , ây

gg ­ dkg. Using (5)
and (6), HS and HA have leading partsHs and Ha,
respectively,
HS ø mN̂ 2 l0
sN̂sN̂ 2 1d ; Hs , (7)

HA ø l0
asây

1 â
y
1 â1â1 1 â

y
21â

y
21â21â21 2 2â

y
1 â

y
21â1â21 1 2â

y
1 â

y
0 â1â0 1 2â

y
21â

y
0 â21â0 1 2â

y
0 â

y
0 â1â21

1 2â
y
1 â

y
21â0â0d ; Ha . (8)
d

f

Here2l
0
i ; li

R
jfs$xd4j d3x si ­ s, ad, andN̂ ; â

y
1 â1 1

â
y
0 â0 1 â

y
21â21 is the total number of atoms in the

condensate.
Our goal is to find the quantum states that minimize th

energyHs 1 Ha. SinceHs is a function ofN̂ only, Hs is
a constant operator for a fixed number of atoms. Ther
fore it is sufficient to look for the ground state ofHa. It
is quite remarkable that a similar structure ofHa also ap-
peared in nonlinear wave-mixing processes in cavity QE
[9]. We follow Refs. [9,10] and identify the algebraic
structure of the system. We notice that the operato

L̂2 ;
p

2 sây
1 â0 1 â

y
0 â21d, L̂1 ;

p
2 sây

0 â1 1 â
y
21â0d,
e

e-

D

rs

and L̂z ; sây
21â21 2 â

y
1 â1d obey angular momentum

commutation relations:fL̂1, L̂2g ­ 2L̂z and fL̂z , L̂6g ­
6L̂6. In other words, the operatorŝL1, L̂2 can be
interpreted as raising and lowering operators of a kin
of “orbital angular momentum,” and̂Lz is the “z com-
ponent” in the standard notations. From the theory o
angular momentum,̂L2 and L̂z have a complete set of
common eigenvectorsjl, mll defined by

L̂2jl, mll ­ lsl 1 1d j l, mll , (9)

L̂zjl, mll ­ mljl, mll , (10)

whereml ­ 0, 61, 62, . . . , 6l. For a given total number
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of atoms N , the allowable values ofl are l ­ 0, 2,
4, . . . , N if N is even, andl ­ 1, 3, 5, . . . , N if N is odd.

With the help of the angular momentum operators,Ha

takes a very simple form,

Ha ­ l0
asL̂2 2 2N̂d . (11)

This is the main result of the paper because the ener
spectrum ofHa is now solved. Equation (11) indicates
that jl, mll are eigenstates ofHa with the energyEa

l

Ea
l ­ l0

aflsl 1 1d 2 2Ng . (12)

The lowest energy state ofHa depends on the sign ofl0
a.

In the following we discuss two cases: (I)l0
a . 0 and

(II) l0
a , 0.

( I) l0
a . 0.—In this case jl ­ 0, ml ­ 0l is the

ground state ofHa. Using the Fock statesjn1, n0, n21l
defined by the number operatorsn̂j ; â

y
j âj for the three

spin components (i.e.,̂njjn1, n0, n21l ­ njjn1, n0, n21l),
jl ­ 0, ml ­ 0l has the form

jl ­ 0, ml ­ 0l ­
fNy2gX
k­0

Akjk, N 2 2k, kl , (13)

where the amplitudesAk obey the recursion relation

Ak ­ 2

s
N 2 2k 1 2
N 2 2k 1 1

Ak21 . (14)

We see that the statejl ­ 0, ml ­ 0l is a quantum
superposition of a chain of Fock statesjk, N 2 2k, kl in
which the numbers of atoms in the spins1 and 21 are
equal. We stress that such a quantum state is acollective
spin state which cannot be expressed as product state
individual atoms. The amplitudesAk are arranged in such
a way that the interaction energyHa is almost completely
canceled. This can be seen from the disappearance
N2 dependence in the energy ofHa. It is not difficult
to show that for the state (13), the average numbe
of atoms in each component are all equal, i.e.,kn̂0l ­
kn̂1l ­ kn̂21l ­ Ny3. Since Ak are almost uniformly
distributed (see Fig. 1a), there are large fluctuations
particle numbers in individual components although th
total particle numberN is fixed. More precisely, we
find that kDn̂0l ø 2Ny

p
5 for N ¿ 1, i.e., a super-

Poisson distribution. Our further calculations indicat
that a super-Poisson distribution of particle numbers is
common feature for low energy eigenstates ofHa when
l0

a . 0.
( II) l0

a , 0.—In this caseHa has 2N 1 1 degen-
erate ground states given byjl ­ N , mll where ml ­
0, 61, 62, . . . , 6N . The energy (12) of these states i
l0

aNsN 2 1d, and the general form ofjl ­ N , mll is
given by

jl ­ N , mll ­
X

k

B
sml d
k jk, N 2 2k 2 ml , k 1 mll .

(15)
gy

s of

of

rs

of
e

e
a

s

0

0.5

1

-1000 0 1000

∆

m
l

+1
0

-1

j

-0.2

-0.1

0

0.1

0.2

0 100 200 300 400 500

A
k

even k

odd k

(a)

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600 700

k

m
l
= 800

600
400 0

Bk
(m

l
)

(b)

FIG. 1. Amplitudes of Fock states associated with the grou
states ofHa for N ­ 103 atoms: (a)l0

a . 0; (b) l0
a , 0.

The inset in (b) shows the normalized number fluctuatio
Dj ; kDnjl2ykn̂jl in the three spin componentssj ­ 0, 61d
as a function ofml . Sub-Poisson distributions are define
by Dj , 1.

Here the summation indexk runs over all physical Fock
statesjk, N 2 2k 2 ml , k 1 mll (i.e., those with non-
negative numbers in each component). The simplest c
of (15) is jl ­ N , ml ­ 2Nl ­ jN , 0, 0l, and with this
we can construct the amplitudesB

smld
k by repeatedly ap-

plying the raising operator̂L1. To give an illustration,
we plot in Fig. 1b the Fock state amplitudesB

sml d
k for

several ml ’s. We see thatB
smld
k has a narrow distri-

bution which indicates well defined particle numbers
each spin component. It is interesting that all the d
generate states (15) have sub-Poisson number fluc
tions in each spin component (see the inset of Fig. 1
This feature is just the opposite of the previous ca
l0

a . 0.
Finally, let us look at the spin-mixing dynamics of a

initially spin-polarized condensate in which all atoms i
the condensate are prepared in the spin-0 state att ­ 0,
i.e., jcs0dl ­ j0, N , 0l. In this case two atoms in the spin
0 state can be converted into one atom in the spin-1 state
and the other in the spin-(21) state. Assuming the spin-
mixing process does not introduce appreciable changes
shape of the spatial condensate wave function, we can
Hs 1 Ha as our approximate Hamiltonian to describe th
internal dynamics [15]. The internal state at timet is
given by
5259
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FIG. 2. Time dependence of average number of atoms in
spin-0 state normalized by the total number of atomsN . The
initial state of the system isjcs0dl ­ j0, N , 0l. We show three
cases withN ­ 102, 103, 104.

jcstdl ­ e2iuN std
NX

l­0

Cle
2il0

alsl11dtjl, ml ­ 0l , (16)

where Cl ­ kl, ml ­ 0 j 0, N , 0l and uN std ­ fmN 2

l0
sNsN 2 1d 2 2l0

aNgt. In Fig. 2 we present the time
dependence of the particle number in the spin-0 comp
nent for N ­ 102, 103, 104 cases. We see that the num
ber of atoms in the spin-0 component becomes steady
sn̂0l ­ Ny2 after a timetc,

tc ø
1

2jl0
aj

p
N

. (17)

This is the time scale for the spin-mixing proces
purely due to the nonlinear interaction between co
densate atoms [16]. In the Thomas-Fermi (largeN)
limit, we find that for a spherical harmonic trap
s g2 2 g0dtc ø 5.1N1y10fsg0 1 2g2dyMv2g3y5 where v

is trap frequency. Thereforetc becomes quite insensitive
to N in the Thomas-Fermi limit. To give a realistic
example, for a sodium condensate withN ­ 104 and
v ­ 2p3370 Hz, we find thattc is about 0.5 sec,
using the recent experimental value of the difference
scattering lengthsa2 2 a0 ­ 0.2 nm [7]. In Fig. 2 we
also see that an apparent damping of the individual sp
populations can be observed, even without dissipatio
purely as a result of the nonlinear spin-mixing process.

We remark that the spin-mixing dynamics can b
quite different for different initial conditions. In Fig. 3,
we give an example for the case when all three com
ponents initially have the same atom numbers, i.
jcs0dl ­ jNy3, Ny3, Ny3l. It is quite surprising that the
particle number executes fast oscillations with a frequen
of the order ofl0

aN , and then the system suddenly be
comes steady. This interesting behavior indicates th
there are complex quantum dynamics governed by t
nonlinear interactionHa. In fact, sinceHa has a discrete
spectrum, quantum recurrence or revival is expected in
much longer time scale (which is typically of the order o
5260
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FIG. 3. Time dependence of average number of atoms
the spin-0 state. The initial state of the system isjcs0dl ­
jNy3, Ny3, Ny3l, whereN ­ 300.

pyl0
a). It is worth further exploring the quantum dynam

ics in the context of either BEC or cavity QED.
To conclude, we have examined the spin-mixing inte

action of a Bose-Einstein condensate with three intern
spin components. It is quite remarkable that the mod
interaction (2) (which is based on general symmetry a
sumptions) can lead to a simple algebraic representati
and from which we can construct the collective spin stat
which minimize the interaction energy among conde
sate atoms. These collective states exhibit spin corre
tions and characteristic particle number fluctuations whi
depend crucially on the sign ofl0

a. We have also inves-
tigated the spin-mixing dynamics due to the nonlinear i
teraction between condensate atoms. The time scale
mixing for an initially spin-polarized system is identified
This study provides a theoretical treatment of the stru
ture and dynamics of spinor BEC. However, our analys
is limited to interactions between condensate atoms, a
it remains to be answered how noncondensate atoms
decohere the condensate structure. In the future we h
to address this question as well as to generalize our
proach to systems with other hyperfine spin values.
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