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State Orthogonalization by Building a Hilbert Space: A New Approach to Electronic Quantum
Transport in Molecular Wires
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Quantum descriptions of many complex systems are formulated most naturally in bases of states
that are not mutually orthogonal. We introduce a general and powerful yet simple approach that
facilitates solving such models exactly by embedding the nonorthogonal states into a new Hilbert space
in which they are by definition mutually orthogonal. This novel approach is applied to electronic
transport in molecular quantum wires and is used to predict conductance antiresonances of a new
type that arise solely out of the nonorthogonality of the local orbitals on different sites of the wire.
[S0031-9007(98)07830-2]

PACS numbers: 73.50.–h, 03.65.–w, 73.61.Ph
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The predictions of quantum mechanics that relate to o
servable phenomena do not depend on the particular
sis that is selected to represent state vectors in Hilb
space. However, choosing a basis of states whose phy
cal significance is clear and that are mutually orthogon
can be extremely helpful in theoretical work. Bases con
structed from the eigenstates of a set of commuting o
erators which represent physical observables have both
these desirable properties [1]. But, for complex system
that are composed of simpler building blocks, it is temp
ing to use the eigenstates of the Hamiltonians of the sep
rate building blocks as basis states even though such ba
are not orthogonal. In solid state physics and quantu
chemistry where the building blocks are atoms, each wi
its own electronic eigenstates, this choice of basis giv
rise to the widely used tight-binding [2] and Hückel [3]
models. An analogous approach that models nucleons
bags of quarks [4] is used in theoretical work on nucle
and nuclear matter [5]. The representations of the Hilbe
spaces of complex systems that are obtained in this way
intuitively appealing but the nonorthogonality has been
significant drawback. Standard orthogonalization schem
such as Gram-Schmidt do not help here because they
unwieldy for large systems and do not preserve the ato
istic character of the basis states. Wannier functions [
provide orthogonalized local basis states for perfect pe
odic structures, but they have the disadvantage of not be
eigenstates of atomic Hamiltonians and also have no an
log for disordered solids, liquids, or molecules. Löwdin
functions [6] do not require a periodic lattice but they, too
are not eigenstates of atomic Hamiltonians and do not ha
a simple physical interpretation. Thus, rather than wor
ing with nonorthogonal bases [7], it has been customary
much of the literature, for the sake of simplicity, to neglec
the overlaps between the nonorthogonal states, as is d
in linear combination of atomic orbitals models of elec
tronic structure, tight-binding theories of Anderson loca
ization in disordered systems, and Hubbard andt-J models
of electronic correlations. However, nonorthogonality ca
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b-
ba-
ert
si-
al
-

p-
of
s

t-
a-
ses
m
th
es

as
i
rt

are
a
es
are
m-
2]
ri-
ing
a-

,
ve

k-
in
t

one
-
l-

n

have nontrivial physical implications. For example, it
closely related to gauge interactions and fractional exc
sion statistics, as has been pointed out by Haldane [8]. B
ter ways to treat it are therefore of interest.

In this Letter we introduce a simple, powerful, and ge
eral method that facilitates obtainingexact solutions of
quantum problems in which the nonorthogonality of th
basis is important. Our approach isto build a new Hilbert
spacearound the nonorthogonal basis states, a space
which these states areby definitionorthogonal, and to work
in this new Hilbert space. We demonstrate the power, s
plicity and flexibility of this novel approach by applying
it to electronic quantum transport in molecular wires a
predicting that these should exhibit conductance antire
nances of a new type. These antiresonances are a d
and surprising physical consequence of the nonorthogo
ity of the electronic orbitals on different atoms of the wir
which is included naturally in our theory.

A molecular wire is a single molecule connecting a pa
of metallic contacts. Such devices have recently beg
to be realized experimentally and their electrical condu
tances are being measured [9–12]. Electron transpor
molecular wires has been studied theoretically by cons
ering the transmission probability for electrons to scat
through the structure [10,13–17]. As with other mes
scopic systems, the electrical conductanceG of the mole-
cule is related to the transmission probabilityT at the Fermi
level by the Landauer formulaG ­ e2

h T [18]. Molecular
wires display a number of interesting transport phenome
one of which is transmission antiresonances [14,19–2
Antiresonances are zeroes of the transmissionT and cor-
respond to electrons being perfectly reflected by the mo
cule. They also occur in semiconductor systems [22].
analytic theory of molecular antiresonances was first p
posed by Ratner [19] in the context of electron trans
between donor and acceptor sites of a molecule, but
treatment did not include the effects of the nonorthogon
ity of the atomic states. The present approach yields
analytic description of molecular wire transport (includin
© 1998 The American Physical Society 5205
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antiresonances) that treats this nonorthogonality exac
and permits us to explore its physical implications.

Our starting point is the Schrödinger equation

HjCl ­ EjCl , (1)

where the Hamiltonian operatorH and eigenvectorjCl
are defined in a Hilbert spaceA. We wish to solve
Eq. (1) for jCl which is expressed asjCl ­

P
n Cnjnl

in a nonorthogonal basishjnlj of Hilbert spaceA. In this
basis, Eq. (1) takes the formX

n
Hm,nCn ­ E

X
n

Sm,nCn , (2)

whereHm,n ­ kmjHjnl andSm,n ­ km j nl is the overlap
matrix [23]. Let us rewrite Eq. (2) asX

n
HE

m,nCn ­ ECm , (3)

where

HE
m,n ­ Hm,n 2 EsSm,n 2 dm,nd . (4)

Equation (3) can be viewed as the matrix form of th
Schrödinger equation

HEjC0l ­ EjC0l , (5)

whereHE and jC0l are a new Hamiltonian operator and
its eigenvector defined in a new Hilbert spaceA0 [24] in
which the basis stateshjnlj are orthonormal with km j
nl ­ dm,n; jC0l ­

P
n Cnjnl has thesamecoefficients

Cn asjCl, and the new Hamiltonian operator is defined b
its matrix elements throughkmjHEjnl ­ HE

m,n. According
to Eq. (4),HE is Hermitian inA0 becauseE is real and
Hm,n, Sm,n, anddm,n are Hermitian matrices.

Thus we have transformed a problem that was form
lated in terms of a nonorthogonal basis into an equivale
one in an orthogonal basis in adifferent Hilbert space.
Other orthogonalization schemes (such as that of Löwd
[6]) differ from ours in this as well as other respects [25

It should be noted that only the eigenvectors ofHE

that have the eigenvalueE have the same coefficientsCn

as eigenvectors of the true HamiltonianH. The other
eigenvectors ofHE do not correspond to any eigenstat
of the physical HamiltonianH, but they nevertheless play
an important role when calculating the Green’s functio
corresponding toHE .

Since no assumptions at all have been made about
nature of the system being considered, this method
orthogonalization by switching to a new Hilbert spac
is extremely general. If the basis stateshjnlj are tight-
binding atomic orbitals, then the present transformati
(unlike the transformation to Wannier functions) can b
used irrespective of the types of atoms involved or the
locations in space. Furthermore, our transformation h
the additional flexibility that the nonorthogonal basi
states need not all be of the same generic type. F
example, some of them may be atomic orbitals a
others molecular orbitals on some cluster(s) of atom
that form a part of the physical system. This flexibilit
5206
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will be exploited below. We now proceed to outline the
application to molecular wire quantum transport.

We begin by solving analytically an idealized mode
of a molecular wire consisting of a molecule attache
to two identical semi-infinite single-channel leads which
are represented by 1D chains of atoms. For this syste
we find it convenient to choose a nonorthogonal bas
consisting of atomic orbitalshjnlj with n ­ 2`, . . . , 21
on the left lead andn ­ 1, . . . , ` on the right lead and
molecular orbitals (MO’s)hjjlj for the molecule. In terms
of this basis we write electron eigenstatesjCl of H in
which the electron is incident on the molecule from th
left lead and transmitted with probabilityT through the
molecule to the right lead as

jCl ­
21X

n­2`

Cnjnl 1
X̀
n­1

Cnjnl 1
X

j

cjjjl . (6)

The transmission probabilityT that enters the Landauer
electrical conductance of the wire is given byT ­ jC1j

2.
Solving for C1 analytically in the nonorthogonal basis
is difficult, so we transform to the new Hilbert spaceA0

where the solution is more straightforward. As we hav
already shown, the coefficientsCn remain the same inA0

where the basishjnl, jjlj is orthogonal, so that the above
expression forT is valid in either Hilbert space.

We evaluateC1 by solving a Lippmann-Schwinger
(LS) equation that describes electron scattering in th
molecular wire. Wedefinethis LS equation in thenew
Hilbert spaceA0 where it takes the form

jC0l ­ jF0l 1 G0sEdWEjC0l . (7)

Here jC0l is the eigenstate of the transformed Hamil
tonian HE whose coefficients correspond to those of th
untransformed scattering eigenstatejCl defined above
Eq. (6). WE is defined by separatingHE into two parts,
HE ­ HE

0 1 WE, where the matrix elements ofHE
0 be-

tween lead orbitalshjnlj and MO’s hjjlj all vanishin the
spaceA0, and WE couples the molecule to the adjacen
lead sites. jF0l is an eigenstate ofHE

0 with eigenvalueE
that is confined to the left lead.G0sEd ­ sE 2 HE

0 d21 is
the Green’s function of the decoupled system.

The validity of the LS equation (7) depends crucially on
the clear distinction between states on the leads and tho
on the molecule that can only be made in Hilbert spac
A0; nonorthogonality leads to contradictions if analog
of the entities that enter (7) are constructed inA. The
transformation toA0 also introduces energy-dependen
hopping into the transformed Hamiltonian as prescribe
in Eq. (4). The energy dependence of the couplingWE

between the molecule and leads in Hilbert spaceA0 will
be important in the determination of antiresonances. O
choice of a set of MO’shjjlj that are mutually orthogonal
in A means that the Green’s function for the isolate
molecule is formally unaffected by our transformation
This choice allows a simpler evaluation of the molecula
Green’s function that entersG0sEd. An atomic orbital
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basis set nonorthogonal inA could be chosen instead
however, the solution would then be less transparent.

The evaluation of the Green’s functionG0sEd and
solution of the LS equation (7) in the orthogonal bas
hjnl, jjlj of Hilbert spaceA0 is straightforward and will
be presented in detail elsewhere. Here we will foc
on the salient results for molecular wire conductan
antiresonances and their physical significance. We find

C1 ­
PF

0
21

fs1 2 Qd s1 2 Rd 2 PSg
, (8)

where

P ­ G0
1,1

X
j

WE
1,jG0

jWE
j,21 ,

Q ­ G0
1,1

X
j

sWE
1,jd2G0

j ,

R ­ G0
1,1

X
j

sWE
21,jd2G0

j ,

S ­ G0
1,1

X
j

WE
21,jG0

jWE
j,1 .

The sum overj is over only the MO’s. In the above,
WE

1,j ­ H1,j 2 ES1,j is the energy-dependent hoppin
element ofHE between the first lead site and thejth
MO in terms of the hopping element of the origina
Hamiltonian H and the overlap in the nonorthogona
basis. The Green’s function on the molecule is expand
in terms of its molecular eigenstates (which, as mention
above, are unchanged by the transformation) and t
gives G0

j ­ 1ysE 2 ejd for the jth MO with energy
ej . G0

1,1 is the diagonal matrix element of the Green’
functionG0sEd at the end site of the isolated lead.

Conductance antiresonances of the molecular wire o
cur where the transmissionT ­ jC1j

2 is equal to zero.
From Eq. (8) this happens whenP ­ 0, i.e., at Fermi en-
ergies E that are the roots ofX

j

sH1,j 2 ES1,jd sHj,21 2 ESj,21d
E 2 ej

­ 0 . (9)

Two distinct mechanisms for antiresonances in molec
lar wire transport can be identified from Eq. (9).

In the first of these mechanisms, antiresonances a
due to an interference between molecular states that m
differ in energy, as is seen directly from Eq. (9): An
electron incident from the left lead, hops from the lea
site adjacent to the molecule onto each of the MO’s with
weightWE

j,21. It propagates through each of the differen
orbitalsj and hops onto the right lead with a weightWE

1,j .
These processes interfere with each other and, where t
cancel, Eq. (9) is satisfied and an antiresonance occ
This is in essence the same interference mechanism
has been identified previously in work on electron transf
between molecular donor and acceptor sites and, in
;
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absence of the overlapsS1,j andSj,21, our result (9) agrees
with that obtained there [19].

The second antiresonance mechanism, which has
analog in previous work, arises solely from the nono
thogonality of atomic orbitals that we have included
our analytic theory with the help of the Hilbert spac
transformation. It occurs when only a single MOk
couples appreciably to the leads. In such cases, Eq
becomes sHk,21 2 ESk,21d sH1,k 2 ES1,kd ­ 0. Two
antiresonances are possible in this case. They occu
energiesE where a matrix element of the transforme
HamiltonianHE ­ H 2 EsS 2 1d that is responsible for
hopping between the molecule and one of the leads v
ishes in the new Hilbert space. Thus the nonorthogona
of two orbitals can actuallypreventelectron hopping be-
tween these orbitals from taking place, blocking electr
transmission along the wire and creating an antiresona
This is a counterintuitive effect since one would norma
expect orbital overlap to aid electron transfer betwe
the orbitals rather than hinder it. It underscores t
importance of including the effects of nonorthogonali
fully in tight-binding theories.

The above analytic theory of antiresonances was de
oped for an idealized molecular wire model with sem
infinite single-channel leads. We now compare the
analytic results with numerical calculations for a more re
istic molecular wire model. The system we consider co
sists of (100) Au leads bonded to a molecule as shown
the inset of Fig. 1. It is representative of a class of curr
experimental devices which uses a mechanically contro
break junction to form a pair of nanoscale metallic conta
which are then bridged by a single molecule, the mole
lar wire [9]. The molecular wire we consider consis
of two “chain” segments and an “active” segment. T
purpose of the chains is to reduce the many propaga

-11.5 -11.0 -10.5 -10.0 -9.5
E (eV)
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0

T
(E

)

A1 A2

FIG. 1. Electronic transmission probabilityT calculated
numerically for the molecular wire shown in the inset. A
tiresonance is predicted atA1 andA2 by the analytic condition
(9). The active molecule has twop levels with energies
ea ­ 213.0 eV andeb ­ 29.0 eV. The coupling and overlap
of these two levels to the left and right chain molecules a
Ha,L ­ 25.0 eV, Hb,L ­ 22.5 eV, Sa,L ­ 0.3, Sb,L ­ 0.2,
and HR,a ­ 22.7 eV, HR,b ­ 21.8 eV, SR,a ­ 0.25,
SR,b ­ 0.15.
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electron modes in the metallic contacts down to a sing
mode which propagates along the chains. Thus the (fin
chains supplant the 1D ideal leads of our analytic mod
We model this molecular wire and its bonding to the 3
metallic contacts by using extended Hückel to calculate t
hopping elements and overlaps between the nonorthogo
atomic orbitals that make up this system. It is the intera
tion between the nonorthogonal orbitals on the chains a
the active segment that generates the antiresonances. E
chain consists of seven C-H groups and is terminated wit
sulphur atom which bonds to a gold lead. For the energ
of interest (near the Fermi level of gold), these chains su
port only a singlep mode. We chose an arbitrary active
molecular segment with twop-like MO’s which only in-
teract with thep mode of the chains. The active segment
considered to be long enough so that there is no direct c
pling between the chains, as in our analytic theory. Figu
1 shows a plot of the contact-to-contact transmission c
culated numerically for this model. The arrows indica
the locations of the antiresonances predicted by our a
lytic model [i.e., Eq. (9)] using the same model param
ters. The agreement is very good; two antiresonances
found in each case at210.2 and 210.4 eV, close to the
Fermi energy of the gold leads. The transmission do
not drop exactly to zero since, in this calculation, the se
ond nearest-neighbor interactions are also included. T
experimental signature is a drop in the differential co
ductance of the molecular wire. The agreement betwe
Eq. (9) and Fig. 1 indicates that our analytic result derive
for the idealized molecular wire model, using the new a
proach to take account of nonorthogonality, has predicti
power for more complex systems.

In conclusion, many of the quantum problems that ari
in physics and chemistry are formulated most natura
in a basis of states that are not mutually orthogon
In this Letter we have shown that the exact solution
such problems is greatly facilitated by embedding the
nonorthogonal basis states in a new Hilbert space in wh
they are by definition mutually orthogonal but the matri
elements of the Hamiltonian are energy dependent. T
power, simplicity, and flexibility of this novel approach
was illustrated by applying it to analytic and numerica
calculations of electronic quantum transport in molecul
wires. A new mechanism for molecular wire conductan
antiresonances was identified that arises solely out of
nonorthogonality of local orbitals on different sites o
the wire.
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