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State Orthogonalization by Building a Hilbert Space: A New Approach to Electronic Quantum
Transport in Molecular Wires
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Quantum descriptions of many complex systems are formulated most naturally in bases of states
that are not mutually orthogonal. We introduce a general and powerful yet simple approach that
facilitates solving such models exactly by embedding the nonorthogonal states into a new Hilbert space
in which they are by definition mutually orthogonal. This novel approach is applied to electronic
transport in molecular quantum wires and is used to predict conductance antiresonances of a new
type that arise solely out of the nonorthogonality of the local orbitals on different sites of the wire.
[S0031-9007(98)07830-2]
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The predictions of quantum mechanics that relate to obhave nontrivial physical implications. For example, it is
servable phenomena do not depend on the particular batosely related to gauge interactions and fractional exclu-
sis that is selected to represent state vectors in Hilbegion statistics, as has been pointed out by Haldane [8]. Bet-
space. However, choosing a basis of states whose physer ways to treat it are therefore of interest.
cal significance is clear and that are mutually orthogonal In this Letter we introduce a simple, powerful, and gen-
can be extremely helpful in theoretical work. Bases coneral method that facilitates obtainirexact solutions of
structed from the eigenstates of a set of commuting opguantum problems in which the nonorthogonality of the
erators which represent physical observables have both bsis is important. Our approachtésbuild a new Hilbert
these desirable properties [1]. But, for complex systemspacearound the nonorthogonal basis states, a space in
that are composed of simpler building blocks, it is tempt-which these states aby definitionorthogonal, and to work
ing to use the eigenstates of the Hamiltonians of the sepan this new Hilbert space. We demonstrate the power, sim-
rate building blocks as basis states even though such basglicity and flexibility of this novel approach by applying
are not orthogonal. In solid state physics and quantunit to electronic quantum transport in molecular wires and
chemistry where the building blocks are atoms, each witlpredicting that these should exhibit conductance antireso-
its own electronic eigenstates, this choice of basis givesances of a new type. These antiresonances are a direct
rise to the widely used tight-binding [2] and Huckel [3] and surprising physical consequence of the nonorthogonal-
models. An analogous approach that models nucleons &y of the electronic orbitals on different atoms of the wire,
bags of quarks [4] is used in theoretical work on nucleiwhich is included naturally in our theory.
and nuclear matter [5]. The representations of the Hilbert A molecular wire is a single molecule connecting a pair
spaces of complex systems that are obtained in this way atd metallic contacts. Such devices have recently begun
intuitively appealing but the nonorthogonality has been a&o be realized experimentally and their electrical conduc-
significant drawback. Standard orthogonalization schemetances are being measured [9—12]. Electron transport in
such as Gram-Schmidt do not help here because they ameolecular wires has been studied theoretically by consid-
unwieldy for large systems and do not preserve the atorrering the transmission probability for electrons to scatter
istic character of the basis states. Wannier functions [2]hrough the structure [10,13-17]. As with other meso-
provide orthogonalized local basis states for perfect periscopic systems, the electrical conductaacef the mole-
odic structures, but they have the disadvantage of not beingule is related to the transmission probabifitat the Fermi
eigenstates of atomic Hamiltonians and also have no angevel by the Landauer formul@ = < T [18]. Molecular
log for disordered solids, liquids, or molecules. Léwdin wires display a number of interesting transport phenomena,
functions [6] do not require a periodic lattice but they, too,one of which is transmission antiresonances [14,19-21].
are not eigenstates of atomic Hamiltonians and do not hav&ntiresonances are zeroes of the transmisgicand cor-

a simple physical interpretation. Thus, rather than work+espond to electrons being perfectly reflected by the mole-
ing with nonorthogonal bases [7], it has been customary ircule. They also occur in semiconductor systems [22]. An
much of the literature, for the sake of simplicity, to neglectanalytic theory of molecular antiresonances was first pro-
the overlaps between the nonorthogonal states, as is dopesed by Ratner [19] in the context of electron transfer
in linear combination of atomic orbitals models of elec-between donor and acceptor sites of a molecule, but his
tronic structure, tight-binding theories of Anderson local-treatment did not include the effects of the nonorthogonal-
ization in disordered systems, and Hubbard adidnodels ity of the atomic states. The present approach yields an
of electronic correlations. However, nonorthogonality cananalytic description of molecular wire transport (including
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antiresonances) that treats this nonorthogonality exactlwill be exploited below. We now proceed to outline the

and permits us to explore its physical implications. application to molecular wire quantum transport.
Our starting point is the Schrodinger equation We begin by solving analytically an idealized model
H|V) = E|W) (1) of a molecular wire consisting of a molecule attached

o ] to two identical semi-infinite single-channel leads which
where the Hamiltonian operatd? and eigenvectof¥)  are represented by 1D chains of atoms. For this system
are defined in a Hilbert spacé. We wish to solve e find it convenient to choose a nonorthogonal basis

Eq. (1) for |¥) which is expressed alsV) = >, W.ln)  consisting of atomic orbital§ln)} with n = —, ..., —1
in a_nonorthogonal basi$n)} of Hilbert spaceA. Inthis g the left lead and: = 1,...,% on the right lead and
basis, Eq. (1) takes the form molecular orbitals (MO's]| j)} for the molecule. Interms
of this basis we write electron eigenstaids) of H in
; Hyp Wy = E ; S ¥, (2)  which the electron is incident on the molecule from the

left lead and transmitted with probabilit§ through the

whereH,,, = (m|H|n) andS,,, = (m|n) is the overlap molecule to the right lead as

matrix [23]. Let us rewrite Eq. (2) as

_1 [ee]
S HE, W, = EV,, . 3) W)= > Wln) + > Walny + > clj).  (6)
o mn n=-—mx n=1 J
where The transmission probabilit§y’ that enters the Landauer
HE = H,, — E(Spn — Smn). () electrical conductance of the wire is given By= | ¥, |2

Solving for ¥, analytically in the nonorthogonal basis
is difficult, so we transform to the new Hilbert spagé
where the solution is more straightforward. As we have
HE|W'y = E|W'), (5) already shown, the coefficien®, remain the same iA’
where the basi§|n), | j)} is orthogonal, so that the above
expression fofl" is valid in either Hilbert space.

We evaluate¥; by solving a Lippmann-Schwinger
(LS) equation that describes electron scattering in the
molecular wire. Wedefinethis LS equation in thenew
Hilbert spaced’ where it takes the form

Equation (3) can be viewed as the matrix form of the
Schradinger equation

where HE and|¥’) are a new Hamiltonian operator and
its eigenvector defined in a new Hilbert spate[24] in
which the basis state§n)} are orthonormal with (m |

n)y = 8y W) =23, ¥,ln) has thesamecoefficients
¥, as|¥), and the new Hamiltonian operator is defined by
its matrix elements througim|H*|n) = H . According

to Eq. (4),HE is Hermitian inA’ becauser is real and Ty = |®') + G'(E)WE|W'). 7)
Hyuny Sma, andé, , are Hermitian matrices.

Thus we have transformed a problem that was formuHere |¥') is the eigenstate of the transformed Hamil-
lated in terms of a nonorthogonal basis into an equivalerionian H* whose coefficients correspond to those of the
one in an orthogonal basis in different Hilbert space. untransformed scattering eigenstdt¥) defined above
Other orthogonalization schemes (such as that of Lowdifeq. (6). W% is defined by separating® into two parts,

[6]) differ from ours in this as well as other respects [25]. HE = H§ + WE, where the matrix elements &f) be-

It should be noted that only the eigenvectorsf  tween lead orbital$|n)} and MO’s{| j)} all vanishin the
that have the eigenvaluge have the same coefficients, spaceA’, and WE couples the molecule to the adjacent
as eigenvectors of the true Hamiltonidh The other lead sites.|®’) is an eigenstate i with eigenvalueE
eigenvectors o/ do not correspond to any eigenstatethat is confined to the left leadG’(E) = (E — H) !is
of the physical Hamiltoniat/, but they nevertheless play the Green’s function of the decoupled system.
an important role when calculating the Green’s function The validity of the LS equation (7) depends crucially on
corresponding td~. the clear distinction between states on the leads and those

Since no assumptions at all have been made about then the molecule that can only be made in Hilbert space
nature of the system being considered, this method of’; nonorthogonality leads to contradictions if analogs
orthogonalization by switching to a new Hilbert spaceof the entities that enter (7) are constructeddin The
is extremely general. If the basis statgs)} are tight- transformation toA’ also introduces energy-dependent
binding atomic orbitals, then the present transformatiorhopping into the transformed Hamiltonian as prescribed
(unlike the transformation to Wannier functions) can bein Eq. (4). The energy dependence of the coupli#i§
used irrespective of the types of atoms involved or theibetween the molecule and leads in Hilbert spacaill
locations in space. Furthermore, our transformation habe important in the determination of antiresonances. Our
the additional flexibility that the nonorthogonal basischoice of a set of MO'$| j)} that are mutually orthogonal
states need not all be of the same generic type. Fan A means that the Green’s function for the isolated
example, some of them may be atomic orbitals andnolecule is formally unaffected by our transformation.
others molecular orbitals on some cluster(s) of atom&his choice allows a simpler evaluation of the molecular
that form a part of the physical system. This flexibility Green’s function that enter6'(E). An atomic orbital
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basis set nonorthogonal ia could be chosen instead; absence of the overlags; andS; -, our result (9) agrees
however, the solution would then be less transparent.  with that obtained there [19].

The evaluation of the Green's functio6’(E) and The second antiresonance mechanism, which has no
solution of the LS equation (7) in the orthogonal basisanalog in previous work, arises solely from the nonor-
{In),|j)} of Hilbert spaceA’ is straightforward and will thogonality of atomic orbitals that we have included in
be presented in detail elsewhere. Here we will focusour analytic theory with the help of the Hilbert space
on the salient results for molecular wire conductancdransformation. It occurs when only a single Mo
antiresonances and their physical significance. We find couples appreciably to the leads. In such cases, Eq. (9)

/ becomes (Hk,—l — ESk,—l)(Hl,k - ESl’k) = 0. Two
PO, ; e i -
v, = i (8) antiresonances are poss[ble in this case. They occur at
[(1 —Q)(1 —R) — PS] energiesE where a matrix element of the transformed
HamiltonianHZ = H — E(S — 1) that is responsible for
hopping between the molecule and one of the leads van-
ishes in the new Hilbert space. Thus the nonorthogonality

where

— / E IwE
P =Gy, 2 Wi, GiWj1, of two orbitals can actuallpreventelectron hopping be-
! tween these orbitals from taking place, blocking electron
0 =G, Z (ij)zG’. transmission alor_1g th(_e wire and creating an antiresonance.
7 This is a counterintuitive effect since one would normally

expect orbital overlap to aid electron transfer between

R =Gi, > (WE )G, the orbitals rather than hinder it. It underscores the

j importance of including the effects of nonorthogonality

fully in tight-binding theories.

§ =Gy, Z Wfl,jG} Wfl : The above analytic theory of antiresonances was devel-

! oped for an idealized molecular wire model with semi-

The sum overj is over only the MO’s. In the above, infinite single-channel leads. We now compare these
Wi, = H,; — ES;; is the energy-dependent hopping analytic results with numerical calculations for a more real-
element of HX between the first lead site and thénh  istic molecular wire model. The system we consider con-
MO in terms of the hopping element of the original sists of (100) Au leads bonded to a molecule as shown in
Hamiltonian H and the overlap in the nonorthogonal the inset of Fig. 1. Itis representative of a class of current
basis. The Green’s function on the molecule is expandeéxperimental devices which uses a mechanically controlled
in terms of its molecular eigenstates (which, as mentionedireak junction to form a pair of nanoscale metallic contacts
above, are unchanged by the transformation) and thighich are then bridged by a single molecule, the molecu-
gives Gj’~ = 1/(E — €;) for the jth MO with energy lar wire [9].. The molecular wire we consider consists
€;. G, is the diagonal matrix element of the Green’sOf two “chain” segments and an “active” segment. The

function G/(E) at the end site of the isolated lead. purpose of the chains is to reduce the many propagating
Conductance antiresonances of the molecular wire oc-
cur where the transmissiofi = |W¥,|? is equal to zero. 10°

From Eg. (8) this happens whéh= 0, i.e., at Fermi en-
ergies E that are the roots of

(Hi,; — ESij)(Hj—1 — ESj—1) _

> 0. (9
i E=¢ W™
|_
Two distinct mechanisms for antiresonances in molecu-
lar wire transport can be identified from Eqg. (9). 10° |

In the first of these mechanisms, antiresonances arise
due to an interference between molecular states that may i,
. . . . . 10 L L I
differ in energy, as is seen directly from Eq. (9): An -115 “11.0 -105 100 9.5
electron incident from the left lead, hops from the lead E (eV)
Slte. T}dJaCEent to the molecule r(])nto ehaCh Of]: tf}erll\/l(?j?fwﬂh aFIG. 1. Electronic transmission probabilityr’ calculated
weightW; ;. It propagates through each of the different,ymerically for the molecular wire shown in the inset. An-
orbitalsj and hops onto the right lead with a Welng,j. tiresonance is predicted Al andA2 by the analytic condition
These processes interfere with each other and, where thé§)- The active molecule has twer levels with energies
cancel, Eqg. (9) is satisfied and an antiresonance occur§ — —13.0 éVande, = —9.0 eV. The coupling and overlap
L . . of these two levels to the left and right chain molecules are
This is in essence the same interference mechanism as ="~ _ _ _
esser , _ > L 50eV, Hy,, 2.5€V, S, =03, S, =02,
has been identified previously in work on electron transfeand  Hy, = —2.7eV, Hg, = —18eV, Sz, = 0.25,
between molecular donor and acceptor sites and, in th&, = 0.15.
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