
VOLUME 81, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 DECEMBER 1998

nnel
For

ctive
gher
stant
dot.
Charging Energy of a Chaotic Quantum Dot
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The scaling behavior of the charging energy of a quantum dot with asymmetrically adjusted tu
barriers is measured through the amplitude of the Coulomb oscillations in the thermovoltage.
weak coupling between the dot and the reservoirs, we observe a linear scaling of the effe
charging energy when the transmission probability of one tunnel barrier is increased. At hi
transmission probabilities, we find a deviation from the linear scaling and a crossover to a con
value. This behavior is caused by the chaotic nature of the electron trajectories within the
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The low temperature transport properties of a quantu
dot, weakly coupled through tunnel barriers to electro
reservoirs, are dominated by the Coulomb blockade. Th
effect leads to oscillations of several transport quantities
a function of the voltage applied to a capacitively couple
gate electrode. The most well known are the Coulom
blockade oscillations of the conductance [1]. Anothe
quantity that exhibits an oscillatory behavior is the the
mopower, which is defined asS  2 limDT!0sDVthyDT d,
with DVth the potential difference across the dot caused
a temperature differenceDT . As a function of gate volt-
age, the thermovoltageVth exhibits sawtoothlike oscilla-
tions [2,3].

For finite transmission of the barriers between dot an
reservoirs (G in the order of2e2yh), quantum fluctuations
are expected to influence the occurrence of the Coulom
blockade in such a way that for increasing transmissio
probability, t, the Coulomb oscillations become less dis
tinct. This behavior has been studied in two different lim
its, i.e., in the limit where the tunnel barriers contain man
conducting channels [4], as applicable for metallic qua
tum dots, as well as in the limit for split-gate defined sem
conductor quantum dots [5,6], where only one conductin
channel is present. In the latter case, which is of inte
est here, the one-dimensional character of the tunnel ba
ers is often taken into account using techniques which a
based on a Tomonaga-Luttinger formalism [7]. A map
ping of these results to the problem of two coupled do
[8] was successfully used to explain experimentally foun
splittings in the Coulomb peak due to molecular electro
states [9].

Reference [5] describes the effect of quantum fluctu
tions in terms of a renormalization of the bare chargin
energyEc  e2y2C, whereC is the self-capacitance of
the dot. A result is the scaling of the effective chargin
energyEp

c with the transmission probabilities of the cou
pling barriers according to

Ep
c  Ecs1 2 tdNc . (1)

Here, Nc is the total number of tunnel barriers with
a transmission probabilityt leading to the dot. (t  1
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corresponds to a conductance of the tunnel barrier eq
to the conductance quantum of2e2yh). Although Eq. (1)
was derived under the assumption thatt is close to one,
the predicted scaling behavior has been experimenta
observed for a range of0 , t , 0.3, using an electrometer
device consisting of two coupled quantum dots [10]. Th
experiment was performed by monitoring the conductan
of one, well-defined dot as a function of the gate volta
applied to the other while the transmission probabilities
two quantum point contacts leading to the dot were varie
A quadratic scaling behavior of the charging energy w
found in agreement with Eq. (1). The sensitivity of th
experiment did not allow for a thorough check of th
scaling behavior neart  1.

Recently, Aleiner and Glazman [11] pointed out that fo
asymmetrical quantum dots, where the classical elect
trajectories are chaotic, a residual oscillatory depende
of the transport properties should remain even if t
conductance ofoneof the leads becomes close to2e2yh.
This implies a finite effective charging energy att ø
1 which contradicts Eq. (1) as well as other publishe
scaling theories [6]. To test the prediction of Ref. [11],
technique is needed that allows for sensitive measureme
of the charging energy of a quantum dot even if th
transmission probability of a coupling point contact is clo
to one.

According to the theory of Ref. [2], the amplitude an
line shape of the thermopower oscillations depend stron
on the ratiokBTyEc. Thus measuring the thermovoltag
Vth of a quantum dot at a fixed temperature for diffe
ent transmission probabilities of a coupling point conta
should provide information about the scaling behavior
the charging energy. Here, we present experimental res
on the scaling behavior of the charging energy throu
changes of the amplitude and line shape of the therm
voltage oscillations.

The sample, schematically shown in Fig. 1, is ele
trostatically defined by TiAu Schottky-gates, labele
A, B, . . . , F, in a two-dimensional electron gas (2DEG
which is formed within a (Al,Ga)As modulation doped
heterostructure. The 2DEG has an electron dens
© 1998 The American Physical Society 5197
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FIG. 1. Schematic top view of the sample structure. Th
hatched areas show the structure of the Schottky gates,
crosses denote Ohmic contacts. The heating current is pas
betweenI1 andI2. The thermovoltageVth is measured between
V1 andV2. The chaotic electron trajectories are indicated in th
gate-defined dot region (dashed line). An arrow points at t
varied quantum-dot lead.

ns ø 3.4 3 1011 cm22 and an electron mobilitym ø
106 cm2 sV sd21. The gates define the following main
features of the sample: (1) the quantum dot (gatesA, B, C
and D) with a lithographical size of 700 nm3 800 nm,
coupled to the reservoirs by two adjustable barriers [qua
tum point contactsAD and CD, defined by gatesA sCd
and D sDd, respectively]; (2) a2 mm wide and20 mm
long channel,ADEF, between the gatesA, D, E, andF
and a quantum point contactEF, defined by gatesE and
F. The electrochemical potential of the dot can be varie
by changing the applied voltage to gateB, V B

g , while
the tunnel barriers are kept constant. During the scali
experiments, the sample was kept at a base temperatur
40 mK.

A temperature differenceDT between the two reservoirs
adjacent to the dot is created by current-heating techniqu
[12]: A low-frequency (13 Hz) currentI is passed through
the electron channelADEF, increasing the temperature
of the electron system in the channel byDT ~ I2. Mea-
suring the potential difference between the voltage conta
V1 andV2 [cf. Fig. 1] by phase sensitive lock-in technique
at twice the frequency of the heating current gives a the
movoltage

Vth : V1 2 V2  sSref 2 SdotdDT . (2)

Thus, assuming a constant thermopowerSref of the ref-
erence point contactEF and a constant averaged tempera
ture differenceDT between the electron channel and th
reservoirs, variations ofVth reflect directly changes in the
thermopower of the dot.

The scaling behavior of the charging energy is dete
mined by measuringVth as a function ofV B

g for various
values of the conductance of point contactCD, which is
changed by adjustingV C

g , the voltage on gateC. The
transmission of point contactAD is kept constant at a
value ofø0.06. Some of the resulting curves are show
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in Fig. 2(a) for a gate-voltage range of2938 mV ,

V B
g , 2925 mV and six different transmission probabili-

ties of point contactCD, t  0.06, 0.19, 0.29, 0.38, 0.43,
and 0.82 (top to bottom). The thermovoltage oscillation
decrease with increasing point-contact conductance a
become more symmetric. Figure 2(b) shows the beha
ior of the calculated thermopower of a quantum dot (sol
line) as a function of the Fermi energy in the reservoir
i.e., the electrochemical potential in the dot, according
the theoretical model given by Ref. [2]. Here, theonly

FIG. 2. (a) Experimental traces of the thermovoltage of th
quantum dot for a heating current of 40 nA. The transmissi
probability of point contactCD was 0.06, 0.19, 0.29, 0.38,
0.43, and 0.82 from top to bottom. (b) Calculated curves
the thermopower of a quantum dot. The values ofkBTyEc are
0.22, 0.25, 0.30, 0.33, 0.37, and 0.45 from top to bottom (so
line). The experimental thermovoltage measurements from
are added as dashed lines.
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variable parameter is the ratio between thermal energy
charging energy,kBTyEc to fit the line shape of the mea
sured thermovoltage [dashed lines in Fig. 2(b)]. Thu
assuming a constant temperature, the measured decr
and change in line shape of the thermovoltage can be
terpreted as a renormalization of the charging energy,Ep

c .
The fit parameterkBTyEc for the curves (solid line) dis-
played in Fig. 2(b) are 0.22, 0.25, 0.30, 0.33, 0.37, a
0.45 (top to bottom).

Using the bare charging energy of the quantum d
Ec ø 100 6 20 meV, which was determined from ther
mal activation studies of the conductance in the Coulom
blockade regime, it is possible to evaluate the effecti
charging energy quantitatively. As a result, the tempe
ture difference across the dot,DT , can be calculated from
the ratio of the measured thermovoltage and the calcula
thermopower [cf. Eq. (2)], yieldingDT ø 8 mK.

In order to check the prediction of Eq. (1), the transmi
sion probabilities of point contactCD are needed. These
are obtained from conductance measurements of the b
point contact as a function ofV C

g , which are corrected
for the electrostatic influences of the other active ga
by subtracting an experimentally determined offset.
Fig. 3 Ep

cyEc is plotted versus the reflection probabilit
1 2 t of point contactCD, obtained by the fitting proce-
dure discussed above. According to Eq. (1), one expec
linear behavior to account forNc  1, the number of var-
ied point contacts. For values of0.5 , s1 2 td , 1 we
indeed find a linear scaling, which establishes the valid
of Eq. (1) in this regime. However, for smaller reflectiv
FIG. 3. Plot of the measured ratioEp
c yEc as a function of reflection probability1 2 t of point contactCD. The solid line shows

the trace of linear scaling according to Eq. (1). Inset: Averaged conductance of over 30 individual curves for the open dot (Nc  4)
taken with slightly different gate voltagesV B

g (solid line). Thex axis is expanded aroundB  0 T and a Lorentzian fit of the
weak- localization peak added (dashed line).
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ity values (1 2 t , 0.5) we find a change of slope which
appears to approach an asymptotic value ofø0.45 Ep

cyEc

for t ! 1, which contradicts the predicted scaling beha
ior of Eq. (1).

As mentioned above, deviations from the scaling beh
ior are expected if the electrons inside the quantum
are scattered randomly. If the averaged dwell timetd of
the electrons in the dot exceeds the ergodic timeterg, the
electron motion in the dot is chaotic. We now need to d
cide whether the electron motion in the investigated s
tem is chaotic or not. A description of a chaotic system
possible in the framework of the random matrix theo
(RMT) [13]. This theory gives the following expressio
for the average magneto conductance of a chaotic quan
dot withopenleads (N ¿ 1) in the ballistic regime around
B  0 T:

kdGsFdl 
dG0

1 1 sFyFcd2 , (3)

with

Fc 
h
e

√
terg

td

!1y2

,

andF  BA, whereA is the area of the dot. By measurin
the conductance of the dot with open leads as a functio
an external magnetic field for a large number of differe
dot configurations, i.e., a large number of different ga
voltagesV B

g , it is possible to obtain the statistical ensemb
necessary to verify the chaotic behavior of the electr
motion in the dot. The inset of Fig. 3 displays the averag
conductance of the open dot (N  4e2yh) as a function
5199
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of a magnetic field for over 30 individual measuremen
[14]. Similar experiments on chaotic dots have bee
reported, e.g., in Ref. [15,16]. The observed dip arou
B  0 T is due to the weak-localization effect. The rati
tdyterg is obtained by fitting the line shape accordin
to Eq. (3) which yields a value oftdyterg ø 5.3. This
result implies that the motion of the electron in the do
is chaotic and Aleiner and Glazman’s conjecture [11] fo
the observed deviation from the predicted scaling behav
of the effective charging energy is appropriate. We ha
obtained additional evidence for the chaotic nature of t
electron trajectories from thermopower measurements
the ballistic regime. These experiments, which exhib
characteristic non-Gaussian fluctuation distributions, w
be discussed elsewhere.

Aleiner and Glazman [11] used RMT in connectio
with the Tomonaga-Luttinger formalism to compute th
behavior of the transport properties of a quantum d
connected to a reservoir by a fully transmitted mod
predicting a residual Coulomb blockade, as long as t
other contact(s) remain fully in the tunneling regime
Because of the occurrence of chaos, an electron that
been reflected by (one of) the tunneling barrier(s) w
not immediately leave the dot through the open conta
In terms of a renormalized charging energy this can
expressed by making the following substitution to Eq. (
(for Nc  1):

s1 2 td !
DE
Ec

ln2

µ
Ec

DE

∂
. (4)

Here,DE is the mean spacing of the electronic energ
levels in the dot. For the actual structureDE can be
estimated from the 2DEG density of states and the size
the quantum dot, resulting inDE ø 23 meV. The value
of the chaos-induced effective charging energy att  1
thus is predicted to be

Ep
c st  1d  0.49 6 0.03Ec . (5)

Extrapolating the data of Fig. 3 tos1 2 td  0 gives

Ep
cst  1d ø 0.45Ec . (6)

The remarkable agreement between these two values
dicates indeed the existence of a residual chaos-indu
Coulomb blockade at a fully transmitted channel, in agre
ment with the theory of Ref. [11].

We have presented thermopower measurements o
chaotic quantum dot in order to determine the scaling b
havior of the charging energy as a function of the tran
mission probability of the coupling point-contact barrier
in the range of0 , t , 1. For transmission probabilities
0 , t , 0.5 the scaling follows a power-law behavior ac
cording to theoretical predictions. For barrier transmissi
probabilities abovet  0.5, the measured behavior seem
to contradict the expected vanishing of the Coulomb bloc
5200
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ade for t ! 1. However, the observation of a finite ef-
fective charging energy for high transmission probabilities
can be explained by taking into account classical chaoti
trajectories of the electrons inside the dot. The experimen
tal value for an effective charging energy ats1 2 td ! 0
is in good agreement with theoretically expected values fo
a chaotic quantum dot of the relevant dimensions.
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