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Critical Initial States in Collisionless Plasmas
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We show that for collisionless plasmas with initial conditions (ICs) near “single-humped” linearly
stable equilibria, there existritical initial statesthat mark the transition between the ICs from which
the electric field evolves to a nonzero time-asymptotic stdie 1), and those from which it Landau
damps to zero. We develop an equation #d,¢) and study it as a bifurcation problem, and we
obtain the asymptotic field, at leading order, as a finite superposition of waves whose frequencies
obey a Vlasov dispersion relation and whose amplitudes satisfy a set of nonlinear algebraic equations.
[S0031-9007(98)07827-2]

PACS numbers: 52.35.Fp, 52.35.Mw

The propagation of longitudinal “electrostatic” waves amplitude of an isolated wave is approximately constant.
in collisionless plasmas is a fundamental phenomenon iAt the opposite extreme, the standard linear theory is valid
many space and laboratory settings. For such wavesyhen strong initial Landau damping occurs before the non-
the Vlasov-Maxwell equations of kinetic theory reducelinear effects come into play.
to the one-dimensional nonlinear Vlasov-Poisson (VP) In this Letter we report the results of a systematic study

equations of the long-time evolution of a spatially periodic pertur-
I fa Ifa Ga . fa bation of a Vlasov equilibrium and focus on the transition
o tvo, v B, T 0, (1a)  between the initial conditions that lead to nonzero time-
“ asymptotic states via nonlinear particle trapping and those
JE that Landau damp completely. In particular, we determine
o 4T %q“ / dv fa (I0)  hecritical initial statesthat mark this transition. The ex-

istence of these critical states is important for the under-
standing of nonlinear plasma dynamics, and especially for
the analysis of plasma stability. The results include as
limiting cases both the O’Neil and the Landau scenarios,
%nd they provide a solid foundation for the replies [6,7] to

a recent statement that electric fields in collisionless plas-
mas in general damp to zero [8].

where f,(x, v, 1) is the distribution function for particle
speciesa, a« = 1,...,N and E is the self-consistent
longitudinal electric field.

Much of the existing kinetic theory of plasma waves
is based on the linearization of these equations about
Vlasov equilibriumF,(v), « = 1,...,N. According to

!_andaL(;Zs classic analysis of the I|.near|zefj VP system [1] General development-We introduce the representa-
if >, =F, decreases monotonically withy| all spa-

| et @ UEY ) ) tion of the electric field as the sum of a transient part and
tially periodic initial perturbations lead to fields that damp 5 time-asymptotic part

exponentially in time. However, because nonlinear par-

ticle trapping occurs in many important cases, this Landau E(x,t) = T(x,t) + A(x, 1), 2
damping does not give the correct time-asymptotic behav- i .
ior in general. Rather, it typically takes place only on aWhere T(x,7) and A(x,r) are spatially periodic and
relatively short time scale. In fact, O'Neil [2] has shown IMi—=T(x,7) = 0. Then, we seek solutions fof(x, 1)
how the damping can be dramatically altered because dff the form of a superposition of traveling waves [9];
the nonlinear energy exchange between a wave and tfathematically, this can be expressed by takings an
resonant particles trapped in its potential wells. As the®Most periodidunction ofz. Correspondingly, the com-

particles begin bouncing back and forth in the wells, theyP!€t€ field £ will be an asymptotically almost periodic

drive the wave amplitude through a sequence of oscillafunction [10] ofz. We substitute Eq. (2) into the Poisson

tions, whose magnitude decreases as the particles becoffguation, Eg. (1fb)ﬁ and S(Ie_parate the time-asymptotic and
more and more phase mixed and unable to exchange effansient parts of the resulting equation

ergy with the electric field in any coherent manner. Thus, 9A
in the time-asymptotic limit the wave amplitude reaches Py 4P, Z[ dvfa(A+T), (39)
a final nonzero constant value. Such nonzero, traveling- * a

ar _
ax

wave final states have been observed both in experiments
[3] and in numerical simulations [4—6]. However, a satis-
factory general quantitative analysis is still lacking, since
O’'Neil's study deals only with a limiting case, namely, Here P, is the operator that annihilates all but the time-
that in which the trapping effects are so dominant that thesymptotic part of an asymptotically almost periodic

47 (I — Pa)Zf dv fo(A +T). (3b)
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The notationf,(A + T) indicates that thef, depend Bkw; = ;g“_m.oo;

nonlinearly onA andT via the Vlasov equation, Eq. (1a). — BG 5)

To begin, we sef = 0 in Eq. (3a) and study the cases in ’

which the electric field is purely transient (= 7). As  In this transformation the traditional Fourier integral in

long asT decays in time at least as”, n > 2, itiseasy time is replaced by the Bohr average jim. é [¢ ar,

to see that the corresponding single-particle trajectorieghich has the important property 6iftering outthe tran-

tend to straight lines as— o, andf, () tends to &ime-  sjent part ofG [10]. After carrying out this operation on

asymptotic Vlasov equilibriumi; such that Eq. (3a), we substitute the expression farobtained by

integrating the nonlinear Vlasov equation along straight

0="> qa f dvFl =P,> qa f dv fo(T). (4) |ineq[raje(?tories. Following an inte?:;ration by pg\rtsti,ng

* - the transient contributions disappear under the action of

B, and Eq. (3a) becomes

. . . ey _ _ — 1 1 a +a X .
function; by definitionP,E = A and (I — P,)E = T. [ dt/ dx e~ 01 G (1 1)
0 -

Hence, A = 0 satisfies Eq. (3a) for any choice of the
initial condition, even though, of course, it does not

necessarily correspond to a solution of the complete 2 gt . 1 (¢ t iod—itx

system, Egs. (3a) and (3b). ko = > P (I,'ch;[o dt . dxe '™
Fundamental to our study is the concept ofréical « e ,

initial state: given a family of initial conditions of the X A(x,t)pf dv JM (6)

form fo(x,v,0) = Fo(v) + ho(x,v), we call a function w; + kv

hY(x,v) a critical initial state ifF,(v) + hd(x,v) leads which can easily be linearized about the bifurcation
to A = 0, but arbitrarily close t0:? there exist othet,, point (A,h,) = (0,h%). A simple application of the
that generate a “branch” of nonzero small amplitude timeRiemann-Lebesgue lemma shows that the linearized time-

asymptotic fields (Fig. 1). Physically, this correspondsasymptotic equation becomes
to a continuous transition between the initial states from
ak,w;D(k, wl) = Os (7)

which the field Landau damps to zero and those that pro-
duce, via nonlinear particle trapping, final states with awhereD (k, w;) is the Vlasov dielectric function [11]
nonzero field. Combining this definition and the fact that 4 ) FTo()

A = 0is always a solution to Eq. (3a) leads to an impor- D (k, w;) = 1 — — Z q_ap] du —e V) 8)
tant conclusion: if there exists a functiaf that is a criti- k & ma w; + kv

cal initial state for the VP system, theén, i) = (0, %)

is a bifurcation pointfor Eq. (3a) in isolation, wheré,,
plays the role of an infinite dimensional parameter.

This fact suggests that we analyze Eq. (3a) using th
methods of bifurcation theory. The general structure o
the solution forA near any bifurcation poin0, 2%) can
be obtained bylinearizing Eq. (3a) about the critical
state. Interestingly, this is not what would be obtaine
by linearizing the VP system and then taking the limit
t — . Whereas the standard linearization gives result
that are not uniformly valid in time, Eq. (3a) allows us
to linearizeafter the time-asymptotic limit has been taken
via P,. In practice, we take this limit using tHeourier- A1) = D a0 1 o, ), (9)
Bohr (FB) transformwhich for an asymptotically almost j=1
periodic functionG(x, t) is defined as

Here, FIv is the time-asymptotic Vlasov equilibrium
determined by the still unknown transient field that
corresponds to the critical state. From Eg. (7) it follows
fnat, at leading order, the only nonzero FB coefficients of
A are those such thatand w; satisfy the time-asymptotic
Vlasov dispersion relatiofD (k, w;) = 0. Typically, the
orresponding dispersion curve is qualitatively similar
o that for a Maxwellian (Fig. 2), and (k, w;) has a
finite set of pairs of roots-w;(k). Hence, in the small-
%mplitude limit the general solution foA is a finite
superposition of tLaveIing waves

where eachw (k) satisfies the Vlasov dispersion relation.
We next use these results from the linearized
time-asymptotic problem to reduce Eg. (3a) to a finite-
A dimensional bifurcation problem for th#& amplitudes
are,k in EQ. (9). At leading order, this can be done
by simply evaluating the FB transform of Eg. (3a) at
all the pairs[k, w;(k)] and showing that the effects of

the higher-order terms in Eg. (9) on the distribution
functions are negligible. The problem is, however, that
hy fe still has to be determined from the nonlinear Vlasov

h equation, Eq. (1a). This is very difficult, because the
characteristics associated with the general electric field
FIG. 1. A time-asymptotic bifurcating branch (schematic). E cannot be obtained. However, the decomposition in

a
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® Equation (10) can be solved analytically if the charac-
teristics associated with can be determined. For a gen-
eral multiple-wave field like the dominant term in Eq. (9),
we have obtained the characteristics perturbatively us-
1 ing the sequence of canonical transformations introduced
by Buchanan and Dorning [9]. Thus, we have solved
Eq. (10) in the form

falx,v,1) = fa[xé(x, v, 1), vé(x, v,1)]

a ! 9 @
- q—f dr {T F } )
ma Jo dv J[ea(ew.0)0A(x.0)]

(11)

where [x4(x, v, 1), v4(x,v,t)] is the location in phase
space at timer of a particle that arrives at the point
(x,v) at time r. Equation (11) is then substituted into
FIG. 2. The Vlasov dispersion curve for a thermagb plasma  Eq. (3a) to obtain an explicit equation fot with T
with T, = T,; the units fork and » are the inverse electron and i, (through F,) as parameters. However, our final
Debye length and the electron plasma frequency. goal is to obtain the self-consistent solutidhsand A to
the complete system, Egs. (3a) and (3b), both of which
Eq. (2) enables us to overcome this difficulty by |ineal’iZ-depend onf,. Hence, we substitute Eq. (11), first, into
ing only the transient dynamics, while retaining the full the transient equation, Eq. (3b). Solving fBrin terms
nonlinear interaction betweef), andA. This is done by of the small amplitudegk’wl_, then substitutingf, andT

0.2 0.4 k

approximating Eq. (1a) by itsansiently linearizedorm  into Eq. (3a) and carrying out the FB transform yields
dfa 0fa do , 0fa Ga .. 0 Fa an explicit system of nonlinear algebraic equations for
S TV T A e T Tl D o (0 the FB coefficientsa.,, in Eq. (9). For small initial

o o . ) perturbations, the transient equation is amenable to a
where the functiori;;- that multiplied the transient fielfl  giangard perturbation analysis, since the decay properties
has been replaced by the corresponding derivative of thgs 7 neytralize the secularities that arise in a direct
initial condition Fy (x, v) = fa(x,v,0), but the nonlinear  yeryrhation solution of the original VP system in which
termA%;- remains unchanged. Thus, the approximationhe time-asymptotic part has not been separated. The
affects only the interaction between the plasma and thgerturbative solution we obtain fdt is very similar to the
transient electric field. In general, as time grom% standard Landau solution for the linearized VP problem
ceases to be a good approximation%ég; however, this and decays exponentially in time (which is consistent with
does not generally invalidate Eg. (10), because in th¢he requirement introduced above tfiatlecay at least as
same limitT — 0. If 77 denotes a typical time scale ¢~ 7 for r — «, n > 2).

for the decay ofT and 7, is the familiar “trapping Two-wave case—In order to give explicit analytical
time scale” [2], the condition for the uniform validity results we consider the classic problem of a sinusoidal
of Eq. (10) is 77 < 75, Which holds in much greater perturbation to a linearly stable (e.g., Maxwellian) Vlasov
generality than the criterion; .nqa0 << 75 for the validity — equilibrium, i.e., F,(x,v) = F,(v) + €h,(v)cosx.

of the standard linearized Vlasov equation required byNear a critical state, the fundamental Langmuir modes
O’'Neil [2]. Indeed, Eq. (10) includes both the limiting will be dominant at long times, whereas all other modes
cases discussed by O'Neil. The one extreme when thean be neglected. This fact, and symmetry considerations
trapping time scale is much longer than the time scal¢9], lead toA as a pair of counterpropagating waves

for linear Landau damping corresponds Ac= 0; then VR .

Eq. (10) reduces to a linearized Vlasov equation with Al 1) = asiny = vpt) + asinkx +v,1),  (12)
E =T and F, generalized tqQf,. Landau’s solution is where*v, correspond to the dominant roots of Eq. (8).
then recovered at leading order. In the other extremeBecause of the symmetry of this case, it also follows that
O'Neil’'s assumption of an almost undamped stronglyF! = F,. Ast — =, spatially periodic plateaus develop
trapping wave corresponds To= 0; in this case Eq. (10) on the distribution functiong, at v = *v, whenever
simply becomes the nonlinear Vlasov equation witk= a # 0; of course, at the bifurcation point (about which
A, which O’Neil solved assuming a field comprised of athe expansion is made) — 0 and f, — FIo ast — o,
single sinusoidal wave. Of course, this second limitingThe characteristicgx?, v4] for the field A in Eq. (12)
case also includes all exact undamped traveling-wavhave been calculated via Hamiltonian perturbation theory
Bernstein-Greene-Kruskal solutions [12-14] and theiras in [9]. Substituting[x2,v4] and the perturbative
generalizations [9]. solution for T into Eq. (11) gives the explicit solution
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for the distribution functiory, in Eq. (3a). Then, the FB Expanding Eq. (13) in powers af — €° neare® yields
transform of Eq. (3a) evaluated @, w;) = (1,v,) yields  the local nonzero solution far
a simple nonlinear scalar equation fom terms ofe. An o
asymptotic expansion ia of this equation gives a = _B_(—lﬂo()f)(e — €% + 0[(e — €°/?]. (15)
g\€

In the case of small initial perturbations about a Vlasov
equilibrium, any critical initial amplitudes? also must
be small, and Egs. (3b) and (14) can be expanded about
€y = 0 [which is a root of Eq. (14) sincE(0) = 0]. The
analysis that follows shows such a small critical amplitude
exists only if the initial distribution functions satisfy the
following two conditions:

[Be — T(e)]a'? + a(e)a®? = 0(a?), (13)

where the coefficient®, I'(e), and o (¢) depend on the
initial distribution function [15] andl’(0) = 0. Clearly,
nonzero solutions of Eq. (13) far can bifurcate from the
trivial solution brancha = 0 only at thecritical initial
amplitudese = €° that satisfy thehreshold equation

Be® =T (). (14) 2
| S e fa () — 0(e)), (16)

ama

he(v .
Yo dalP [ i + imha))] Y, gl 20, (v)) a7
So Ll [ G2 + inFlw,)] Y. g2l 2 w,)

Phys!cally, Eqg. (16) implies a slow linear damping rate, since the Landau damping coefficient [1] is proportional to
3 4o dF (xv,); if this were not the case, all small-amplitude initial conditions would be completely damped, and one

a m, dv
should look for critical initial amplitudes that are not small, for example, by solving Eqgs. (3b) and (14) numerically.
Similarly, Eqg. (17) gives a condition for theonlinear dynamics not to damp every small initial perturbation. When

both these conditions are satisfied, the expansion of Eq. (14) gives a small critical initial amplitude at
0 Z[ﬁ — F/(O)] O'{Za QQ[%]I/ZI/I&(UP) — S1u1 za qi[%]lﬂ%(vp)}
61 - = 3 .
I7(0) 2 qa[lqal ]1/2[252,2(% (vy) + 51,2%(%)]

3
mﬂ

(18)
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