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Critical Initial States in Collisionless Plasmas
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We show that for collisionless plasmas with initial conditions (ICs) near “single-humped” linear
stable equilibria, there existcritical initial states that mark the transition between the ICs from which
the electric field evolves to a nonzero time-asymptotic stateAsx, td, and those from which it Landau
damps to zero. We develop an equation forAsx, td and study it as a bifurcation problem, and we
obtain the asymptotic field, at leading order, as a finite superposition of waves whose frequen
obey a Vlasov dispersion relation and whose amplitudes satisfy a set of nonlinear algebraic equa
[S0031-9007(98)07827-2]
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The propagation of longitudinal “electrostatic” wave
in collisionless plasmas is a fundamental phenomenon
many space and laboratory settings. For such wav
the Vlasov-Maxwell equations of kinetic theory reduc
to the one-dimensional nonlinear Vlasov-Poisson (V
equations
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ma

E
≠fa

≠y
­ 0 , (1a)

≠E
≠x

­ 4p
X
a

qa

Z
dy fa , (1b)

wherefasx, y, td is the distribution function for particle
speciesa, a ­ 1, . . . , N and E is the self-consistent
longitudinal electric field.

Much of the existing kinetic theory of plasma wave
is based on the linearization of these equations abou
Vlasov equilibriumFasyd, a ­ 1, . . . , N . According to
Landau’s classic analysis of the linearized VP system [
if

P
a

q2
a

ma
Fa decreases monotonically withjyj all spa-

tially periodic initial perturbations lead to fields that dam
exponentially in time. However, because nonlinear pa
ticle trapping occurs in many important cases, this Land
damping does not give the correct time-asymptotic beha
ior in general. Rather, it typically takes place only on
relatively short time scale. In fact, O’Neil [2] has show
how the damping can be dramatically altered because
the nonlinear energy exchange between a wave and
resonant particles trapped in its potential wells. As th
particles begin bouncing back and forth in the wells, the
drive the wave amplitude through a sequence of oscil
tions, whose magnitude decreases as the particles bec
more and more phase mixed and unable to exchange
ergy with the electric field in any coherent manner. Thu
in the time-asymptotic limit the wave amplitude reache
a final nonzero constant value. Such nonzero, travelin
wave final states have been observed both in experime
[3] and in numerical simulations [4–6]. However, a satis
factory general quantitative analysis is still lacking, sinc
O’Neil’s study deals only with a limiting case, namely
that in which the trapping effects are so dominant that t
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amplitude of an isolated wave is approximately constan
At the opposite extreme, the standard linear theory is val
when strong initial Landau damping occurs before the no
linear effects come into play.

In this Letter we report the results of a systematic stud
of the long-time evolution of a spatially periodic pertur-
bation of a Vlasov equilibrium and focus on the transition
between the initial conditions that lead to nonzero time
asymptotic states via nonlinear particle trapping and tho
that Landau damp completely. In particular, we determin
thecritical initial statesthat mark this transition. The ex-
istence of these critical states is important for the unde
standing of nonlinear plasma dynamics, and especially f
the analysis of plasma stability. The results include a
limiting cases both the O’Neil and the Landau scenario
and they provide a solid foundation for the replies [6,7] t
a recent statement that electric fields in collisionless pla
mas in general damp to zero [8].

General development.—We introduce the representa-
tion of the electric field as the sum of a transient part an
a time-asymptotic part

Esx, td ­ T sx, td 1 Asx, td , (2)

where T sx, td and Asx, td are spatially periodic and
limt!` T sx, td ­ 0. Then, we seek solutions forAsx, td
in the form of a superposition of traveling waves [9];
mathematically, this can be expressed by takingA as an
almost periodicfunction of t. Correspondingly, the com-
plete field E will be an asymptotically almost periodic
function [10] of t. We substitute Eq. (2) into the Poisson
equation, Eq. (1b), and separate the time-asymptotic a
transient parts of the resulting equation

≠A
≠x

­ 4pPa

X
a

Z
dy fasA 1 T d , (3a)

≠T
≠x

­ 4psI 2 Pad
X
a

Z
dy fasA 1 T d . (3b)

Here Pa is the operator that annihilates all but the time
asymptotic part of an asymptotically almost periodic
© 1998 The American Physical Society 5137
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function; by definition PaE ­ A and sI 2 PadE ­ T .
The notationfasA 1 T d indicates that thefa depend
nonlinearly onA andT via the Vlasov equation, Eq. (1a
To begin, we setA ; 0 in Eq. (3a) and study the cases
which the electric field is purely transient (E ­ T ). As
long asT decays in time at least ast2h, h . 2, it is easy
to see that the corresponding single-particle trajecto
tend to straight lines ast ! `, andfasT d tends to atime-
asymptotic Vlasov equilibriumFT

a such that

0 ­
X
a

qa

Z
dy FT

a ­ Pa

X
a

qa

Z
dy fasT d . (4)

Hence, A ; 0 satisfies Eq. (3a) for any choice of th
initial condition, even though, of course, it does n
necessarily correspond to a solution of the compl
system, Eqs. (3a) and (3b).

Fundamental to our study is the concept of acritical
initial state: given a family of initial conditions of the
form fasx, y, 0d ­ Fasyd 1 hasx, yd, we call a function
h0

asx, yd a critical initial state ifFasyd 1 h0
asx, yd leads

to A ; 0, but arbitrarily close toh0
a there exist otherha

that generate a “branch” of nonzero small amplitude tim
asymptotic fields (Fig. 1). Physically, this correspon
to a continuous transition between the initial states fr
which the field Landau damps to zero and those that p
duce, via nonlinear particle trapping, final states with
nonzero field. Combining this definition and the fact th
A ; 0 is always a solution to Eq. (3a) leads to an impo
tant conclusion: if there exists a functionh0

a that is a criti-
cal initial state for the VP system, thensA, had ­ s0, h0

ad
is a bifurcation point for Eq. (3a) in isolation, whereha

plays the role of an infinite dimensional parameter.
This fact suggests that we analyze Eq. (3a) using

methods of bifurcation theory. The general structure
the solution forA near any bifurcation points0, h0

ad can
be obtained bylinearizing Eq. (3a) about the critica
state. Interestingly, this is not what would be obtain
by linearizing the VP system and then taking the lim
t ! `. Whereas the standard linearization gives res
that are not uniformly valid in time, Eq. (3a) allows u
to linearizeafter the time-asymptotic limit has been take
via Pa. In practice, we take this limit using theFourier-
Bohr (FB) transform,which for an asymptotically almos
periodic functionGsx, td is defined as

h

0
α

α

A

h

FIG. 1. A time-asymptotic bifurcating branch (schematic)
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gk,vi ­
1
p

lim
s!`

1
s

Z s

0
dt

Z 1p

2p

dx e2ikx2ivi tGsx, td

; BG . (5)

In this transformation the traditional Fourier integral i
time is replaced by the Bohr average lims!`

1
s

Rs

0 dt,
which has the important property offiltering out the tran-
sient part ofG [10]. After carrying out this operation on
Eq. (3a), we substitute the expression forfa obtained by
integrating the nonlinear Vlasov equation along straig
line trajectories. Following an integration by parts int,
the transient contributions disappear under the action
B , and Eq. (3a) becomes

ak,vi ­
2
k

X
a

q2
a

ma

lim
s!`

1
s

Z s

0
dt

Z 1p

2p

dx e2ivi t2ikx

3 Asx, tdP
Z

dy
f 0

asx, y, td
vi 1 ky

, (6)

which can easily be linearized about the bifurcatio
point sA, had ­ s0, h0

ad. A simple application of the
Riemann-Lebesgue lemma shows that the linearized tim
asymptotic equation becomes

ak,vi D sk, vid ­ 0 , (7)

whereD sk, vid is the Vlasov dielectric function [11]

D sk, vid ­ 1 2
4p

k

X
a

q2
a

ma

P
Z

dy
FT0

a syd
vi 1 ky

. (8)

Here, FT0
a is the time-asymptotic Vlasov equilibrium

determined by the still unknown transient fieldT0 that
corresponds to the critical state. From Eq. (7) it follow
that, at leading order, the only nonzero FB coefficients
A are those such thatk andvi satisfy the time-asymptotic
Vlasov dispersion relationD sk, vid ­ 0. Typically, the
corresponding dispersion curve is qualitatively simila
to that for a Maxwellian (Fig. 2), andD sk, vid has a
finite set of pairs of roots6viskd. Hence, in the small-
amplitude limit the general solution forA is a finite
superposition of traveling waves

Asx, td ­
MX

j­1

ak,vj e
ikx1ivjskdt 1 osak,vj d , (9)

where eachvjskd satisfies the Vlasov dispersion relation
We next use these results from the linearize

time-asymptotic problem to reduce Eq. (3a) to a finit
dimensional bifurcation problem for theM amplitudes
ak,vjskd in Eq. (9). At leading order, this can be don
by simply evaluating the FB transform of Eq. (3a) a
all the pairsfk, vjskdg and showing that the effects of
the higher-order terms in Eq. (9) on the distributio
functions are negligible. The problem is, however, th
fa still has to be determined from the nonlinear Vlaso
equation, Eq. (1a). This is very difficult, because th
characteristics associated with the general electric fie
E cannot be obtained. However, the decomposition
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FIG. 2. The Vlasov dispersion curve for a thermale-p plasma
with Te ­ Tp ; the units fork and v are the inverse electron
Debye length and the electron plasma frequency.

Eq. (2) enables us to overcome this difficulty by lineariz
ing only the transient dynamics, while retaining the ful
nonlinear interaction betweenfa andA. This is done by
approximating Eq. (1a) by itstransiently linearizedform

≠fa

≠t
1 y

≠fa

≠x
1

qa

ma

A
≠fa

≠y
­ 2

qa

ma

T
≠Fa

≠y
, (10)

where the function≠fa

≠y that multiplied the transient fieldT
has been replaced by the corresponding derivative of t
initial conditionFasx, yd ; fasx, y, 0d, but the nonlinear
term A

≠fa

≠y remains unchanged. Thus, the approximatio
affects only the interaction between the plasma and t
transient electric field. In general, as time grows,≠Fa

≠y

ceases to be a good approximation to≠fa

≠y ; however, this
does not generally invalidate Eq. (10), because in t
same limit T ! 0. If tT denotes a typical time scale
for the decay ofT and tb is the familiar “trapping
time scale” [2], the condition for the uniform validity
of Eq. (10) is tT ø tb , which holds in much greater
generality than the criteriontLandau ø tb for the validity
of the standard linearized Vlasov equation required b
O’Neil [2]. Indeed, Eq. (10) includes both the limiting
cases discussed by O’Neil. The one extreme when t
trapping time scale is much longer than the time sca
for linear Landau damping corresponds toA ; 0; then
Eq. (10) reduces to a linearized Vlasov equation wi
E ­ T and Fa generalized toFa. Landau’s solution is
then recovered at leading order. In the other extrem
O’Neil’s assumption of an almost undamped strong
trapping wave corresponds toT ; 0; in this case Eq. (10)
simply becomes the nonlinear Vlasov equation withE ;
A, which O’Neil solved assuming a field comprised of
single sinusoidal wave. Of course, this second limitin
case also includes all exact undamped traveling-wa
Bernstein-Greene-Kruskal solutions [12–14] and the
generalizations [9].
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Equation (10) can be solved analytically if the chara
teristics associated withA can be determined. For a gen
eral multiple-wave field like the dominant term in Eq. (9
we have obtained the characteristics perturbatively
ing the sequence of canonical transformations introdu
by Buchanan and Dorning [9]. Thus, we have solv
Eq. (10) in the form

fasx, y, td ­ FafxA
0 sx, y, td, yA

0 sx, y, tdg

2
qa

ma

Z t

0
dt

Ω
T

≠Fa

dy

æ
fxA

t sx,y,td,yA
t sx,y,tdg

,

(11)

where fxA
t sx, y, td, yA

t sx, y, tdg is the location in phase
space at timet of a particle that arrives at the poin
sx, yd at time t. Equation (11) is then substituted int
Eq. (3a) to obtain an explicit equation forA with T
and ha (throughFa) as parameters. However, our fina
goal is to obtain the self-consistent solutionsT and A to
the complete system, Eqs. (3a) and (3b), both of wh
depend onfa . Hence, we substitute Eq. (11), first, int
the transient equation, Eq. (3b). Solving forT in terms
of the small amplitudesak,vj , then substitutingfa andT
into Eq. (3a) and carrying out the FB transform yield
an explicit system of nonlinear algebraic equations
the FB coefficientsak,vj in Eq. (9). For small initial
perturbations, the transient equation is amenable to
standard perturbation analysis, since the decay prope
of T neutralize the secularities that arise in a dire
perturbation solution of the original VP system in whic
the time-asymptotic partA has not been separated. Th
perturbative solution we obtain forT is very similar to the
standard Landau solution for the linearized VP proble
and decays exponentially in time (which is consistent w
the requirement introduced above thatT decay at least as
t2h for t ! `, h . 2).

Two-wave case.—In order to give explicit analytical
results we consider the classic problem of a sinusoi
perturbation to a linearly stable (e.g., Maxwellian) Vlaso
equilibrium, i.e., Fasx, yd ; Fasyd 1 ehasyd cosx.
Near a critical state, the fundamental Langmuir mod
will be dominant at long times, whereas all other mod
can be neglected. This fact, and symmetry considerati
[9], lead toA as a pair of counterpropagating waves

Asx, td ­ a sinsx 2 yptd 1 a sinsx 1 yptd , (12)

where6yp correspond to the dominant roots of Eq. (8
Because of the symmetry of this case, it also follows th
FT

a ; Fa. As t ! `, spatially periodic plateaus develo
on the distribution functionsfa at y ­ 6yp whenever
a fi 0; of course, at the bifurcation point (about whic
the expansion is made)a ! 0 and fa ! FT0

a as t ! `.
The characteristicsfxA

t , yA
t g for the field A in Eq. (12)

have been calculated via Hamiltonian perturbation the
as in [9]. SubstitutingfxA

t , yA
t g and the perturbative

solution for T into Eq. (11) gives the explicit solution
5139
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v

out

de
for the distribution functionfa in Eq. (3a). Then, the FB
transform of Eq. (3a) evaluated atsk, vid ­ s1, ypd yields
a simple nonlinear scalar equation fora in terms ofe. An
asymptotic expansion ina of this equation gives

fbe 2 Gsedga1y2 1 sseda3y2 ­ Osa2d , (13)

where the coefficientsb, Gsed, andssed depend on the
initial distribution function [15] andGs0d ­ 0. Clearly,
nonzero solutions of Eq. (13) fora can bifurcate from the
trivial solution brancha ­ 0 only at thecritical initial
amplitudese ­ e0 that satisfy thethreshold equation

be0 ­ Gse0d . (14)
5140
Expanding Eq. (13) in powers ofe 2 e0 neare0 yields
the local nonzero solution fora

a ­ 2
b 2 G0se0d

sse0d
se 2 e0d 1 Ofse 2 e0d3y2g . (15)

In the case of small initial perturbations about a Vlaso
equilibrium, any critical initial amplitudee0

1 also must
be small, and Eqs. (3b) and (14) can be expanded ab
e

0
0 ­ 0 [which is a root of Eq. (14) sinceGs0d ­ 0]. The

analysis that follows shows such a small critical amplitu
exists only if the initial distribution functions satisfy the
following two conditions:X

a

q2
a

ma

dFa

dy
s6ypd ­ Ose0

1 d , (16)
nal to
d one
cally.
en
P
a qafP

R hasyd
sy7yp d 1 iphasypdgP

a
q2

a

ma
fP

R F 00
asyd

sy7yp d 1 ipF00
asypdg

­

P
a qaf jqa j

ma
g1y2hasypdP

a q2
af jqa j

m3
a

g1y2F00
asypd

. (17)

Physically, Eq. (16) implies a slow linear damping rate, since the Landau damping coefficient [1] is proportioP
a

q2
a

ma

dFa

dy s6ypd; if this were not the case, all small-amplitude initial conditions would be completely damped, an
should look for critical initial amplitudes that are not small, for example, by solving Eqs. (3b) and (14) numeri
Similarly, Eq. (17) gives a condition for thenonlinear dynamics not to damp every small initial perturbation. Wh
both these conditions are satisfied, the expansion of Eq. (14) gives a small critical initial amplitude at

e0
1 ­

2fb 2 G0s0dg
G00s0d

­
sh

P
a qaf jqa j

ma
g1y2hasypd 2 S1,1

P
a q2

af jqa j

m3
a

g1y2 dFa

dy sypdjP
a qaf jqa j3

m3
a

g1y2f2S2,2
dFa

dy sypd 1 S1,2
dha

dy sypdg
. (18)
Here s ­ 219.58; Si,j ­
R`

0 dt T0,istd sinjvt, where
T0,i is the ith spatial Fourier coefficient of the transien
field at the critical point, which coincides with Landau’s
solution for the initial condition with amplitudee1

0 . The
final electric field is zero fore # e

0
1 , and for e * e

0
1 it

is a nonlinear superposition of traveling waves, Eq. (12
with amplitude

a ­

P
a qaf jqa j

ma
g1y2hasypdP

a q2
af jqa j

m3
a

g1y2 d2Fa

dy2 sypd
se 2 e0

1d . (19)

These theoretical results establishing the existence
critical initial states have implications concerning plasm
stability. According to our nonlinear analysis, for “single
humped” Vlasov equilibria, which traditionally have bee
described as “linearly stable,” the electric field does dam
to zero ast ! ` if e # e

0
1 (although thefa do not).

However, our analysis also shows that the electric fie
does not damp to zero for initial conditions withe . e

0
1 ,

which in fact can be very small. This result refutes
conclusion, from a recent analysis [8], which already ha
been called into question in recent Letters [6,7].
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