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Intersecting Loop Model as a Solvable Super Spin Chain
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In this paper, we investigate an integrable loop model and its connection with a supersymmetric spin
chain. The Bethe ansatz solution allows us to study some properties of the ground state. When the
loop fugacity g lies in the physical regime, we conjecture that the central charge=isg — 1 for ¢
integer<2. Low-lying excitations are examined, supporting a superdiffusive behaviar ferl. We
argue that these systems are interesting examples of integrable lattice models reatizihgonformal
field theories. [S0031-9007(98)06495-3]

PACS numbers: 05.50.+q, 04.20.Jb, 05.20.-y, 11.25.Hf

In statistical mechanics, the basic difference between albop model is integrable [2] if the Boltzmann weights are
ordinary local model (vertex models, spin chain systemsparametrized as follows:
and a loop model is that for the latter the total weight (w) =1 — () =
configuration cannot be written as a product of local Wallt Ko WhlHk Ko )
weights. Being intrinsically nonlocal, loop models appear welpw) =0 — qg/2u(l — w).
as ideal paradigms for studying statistical properties of
extended objects such as polymers [1].

In this Letter, we investigate some critical properties of
an integrable intersecting loop model in a two dimensiona
square lattice [2]. The fact that intersections between th

polygon configurations are allowed makes this loop mode ime in the literature, a theoretical framework to study

very interesting. In this case, it is not clear how to fInOIthe diffusive behavior of the Lorentz lattice gas itself.

a transformation to a standard local model [3,4]. TheIn particular, we use the fact that the Qmp2m) super

model can be considered as a Lorentz gas of particl?

Here we argue that this integrable intersecting loop
model with ¢ € Z can be realized in terms of a local
upersymmetric O€p|2m) spin chain. This not only
rovides a means for investigating the physical regime of
e loop gas but also allows us to establish, for the first

ina th h t of " domlv distribut pin chain is solvable by the Bethe ansatz in order to
moving through a set of scatlerers randomly diStouteGy, 4 1ot their critical properties are governed by= 0

in the nodes of the two dimensional square lattice [5’6]'conformal field theories. We remark that= 0 theories

The scatterers are double-sided mirrors allowing right- pear to be useful in condensed matter systems such as
angle reflections,_and they are.placed along the diagonaf e quantum Hall effect [7,8], disordered models [9], and
O; ttT]e Siqagre Iatgce. The particles rgove alogg the tetdg olymer field theories [10]. In fact, we present evidence
?0 thiz ?efltcetc?ntr;ea:rilvrl]rt]g (())rn aasnso f?ee?lanin ethsgacgg at the O sfil | 2) spin chain is a strong lattice candidate
of the abszence of a gca{ttererp We den)gtemlg,y " for describing the low energy behavior of the Haldane-

: b' Rezayifractional quantum Hall state [11].

and w, the_ I_3_o]tzmann wel_ghts corre_spond!ng to t_heg,e Essential to our approach is to observe that the weights
three possibilities, respectively. By imposing perlodlc(z) can be derived in the context of a standard Yang-

Egl:ngvae? ngggg)ngeavig F:;rsti'CE ;Olflgwas a C;%ze?hgathBaxter solution for a local vertex model. These weights
y P 9 gacity are in one-to-one correspondence to the generators of

partition function is given by a degenerated point of the Birman-Wenzel-Murakami
7 = Py 1oy e H#paths. 1 algebra _[12]. This algebra is ge_nerated by the i_dentity
Z Wa Wo We'd @ 1;, a braidb;, and a Temperely-Lieb operatdt; acting
on sitesi andi + 1 of a quantum spin chain of length
L. On the degenerated point, the braid operator becomes
a generator of the symmetric group, namely,

scatterer configurations

where n,, n,, and n. are the number of weights,,
wp, and w. appearing in a configuration, respectively.
Only when w. = 0 the closed loop configurations no
longer intersect, and this limit corresponds to a graphical bibj+1b; = b;+=1b;b;+1, b} =1,
representation of the criticagP-state Potts model [3]. o 3
) : . ) bib; = b;b; ifli — jl =2,
Despite the inherent nonlocality of this loop model, J J

it is still possible to formulate a purely local condition and the other set of relations closing the degenerated point
that two different transfer matrices commute for arbitraryof the braid-monoid algebra (see, e.g., Ref. [13]) are
system size. This is a sufficient condition for integrability, . 2

L - : : E,E;+ E; = E;, E; = qE;,
and it imposes a restriction on the manifold of possible (4)
weightsw,, w,, andw,.. It turns out that the intersecting E;E; = EE; if|i —jl =2,
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and admits a Bethe ansatz solution. This means that the
biE: — E:b; — E; eigenenergie& (L) on aring of §izeL are par.am'etrized in
’ (5) terms of a complex set of variabl¢a?}, satisfying cou-
Eibi+1b; = bj=1b;Ei=1 = EE;+, . pled nonlinear Bethe ansatz equations. These equations
It is not difficult to see that relations (3)—(5) can be are equivalgnt to the analytipity of the eigenvalues of the
corresponding transfer matrix and also reflect the under-

made to provide us with a rational solution of the Yang- " .
Baxter equation having precisely the weights, wp, gr'g%s;f@zm) group symmetry. We derived that they

and w.. To make further progress, we search for a

representation of the algebraic relations (3)—(5). At least |:/\§-a) — 57' :|L r i /\5-“) — )t;(b) — i gn‘
for integerg, such representation can be found in terms | @ .5, | ~ @ B) . Cp
of the invariants of the superalgebra Qsp2m) [13]. A i, b=lk=1k#j Aj~ = A+ gy
This superalgeba combines themp symmetry and the J=1,.. . ma a=1,....r, (10)
simplectic S2m) algebra, and the integersand2m play
the role of the number of bosonic and fermionic degreeand the eigenenergies are parametrize@)él}}}:
of freedom. The braid operatdr; becomes the graded m
permutation between thé: + 2m) degrees of freedom E(L) = — Z _ 1 . L. (11)
which is defined by [14] S0P+
n+2m
o _1\p@p®) where C,;, is the Cartan matrix,s is the number of
o wzzl( D Cab ® €ha, ©) roots, andn, is the normalized length of theth root

of the O spn | 2m) superalgebra. For an algebraic Bethe
ansatz derivation of Eqgs. (10) and (11) for some classes
of Osfn|2m) models as well as for further technical
details, we refer to Ref. [13].

where p(a) is the parity distinguishing the bosonic
[pla) =0fora = 1,...,n] and the fermionid p(a) =
1fora=n+1,...,n + 2m] elements. Explicit ex-
pressions for the monoids have been recently discussed We now turn to the study of the critical behavior of

n detf""l n Ref. [1.3]' The Important point here is that thethe super spin chain (9). The existence of a Bethe ansatz
fugacity ¢ is precisely the difference between the number,

of bosonic and fermionic degrees of freedom; namel solution allows us to calculate the eigenvalugd.) for
9 ’ Y, quite large values ofl, providing us with reasonable

g=n-—2m. (7) estimates of the finite size effects. For a conformally
invariant system, the universality can then be determined

The formulation of the corresponding transfer matrixb exploiting a set of important relations satisfied by the
has to respect the bosonic and the fermionic gradu—y P 9 ot Impo y

ations [14]. This is possible by writingd’ (1) as the eigenvalues on a strip of size [15]. For example, the
supertrace of an auxiliary monodromy operatbA) = central chargec is related to the ground state energy
Yeea(=1)P9T,, where A stands for the horizontal Eo(L) by [16]

space of(n + 2m) variables of the vertex model. As Eo(L) TUC

usual, the monodromy matrix is composed by a product 3 € = “ery T oL, (12)

of vertex operators 4;(A) which are given b . : .
P A g y where e, is the ground state energy per particle in

Lai(A)=00-¢q/2=Mb; + A1 —q/2 = NI the thermodynamic limit, and is the sound velocity.
+ AE: 8) These two parameters can be determined exactly from
o the unitarity and the crossing properties (arouhd=

Performing the scalet — w(1 — ¢/2) in EqQ. (8), it 1 — 4/2) of the transfer matrixT(A). In fact, these
is straightforward to see the correspondence between thgoperties together imply that, in the thermodynamic
weights (2) and the operatofs b;, andE;. The corre- |imit, the largest eigenvalud (1) of the transfer matrix
sponding local O s | 2m) spin chainZH is proportional  satisfies the relations
to the logarithmic derivative of the transfer matrix around
the regular poinfA = 0, and its expression is given by Ao(MAo(=2) = [1 = 22][(1 = ¢q/2)* = ],

L
1 Ao(X) = Ap(1 — qg/2 — A).
3’-[=i2{b,-+ — 2Ei}, ) 0o(A) ol —gq/ )
i=1 q/ Solving these equations with the restriction that the
where the sign in (9) is chosen to select the antifersolution is free of zeros in the physical stip< A <

romagnetic regime of the theory. This supersymmetricl — ¢/2 and taking its logarithmic derivative at = 0,
Hamiltonian, with periodic boundary conditions imposed,we find that

0. = —ﬁ{lp(% + ﬁ) - ¢<ﬁ> + 2In(2)}~ v, (14)
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where (x) is the Euler function. The sound velocity TABLE I. Finite size sequences for the extrapolation of the
measures how the energy scales with the low momentgentral charge for some super spin chains.

If we recall that Egs. (13) are identical to the one we , Osp2l2) Ospll2) Ospll4)  Oslle6)
solve to find the crossing factors in a relativistianatrix

. . sl 40 —1.08401 —1.95041 —3.99753 —6.104 83
f[he(.)ry, we can obtain that the appropriate relativistic scale48 107896 —195360 —399298  —6.07658
is given by 56 —1.07500 —195617 —3.98917  —6.05863

v=—T (15) 64 —LO7179  —195812  —398721  —6.04643

1—-gqg/2 72 —1.06911 —1.95973 —3.98593 —6.03771

We now have the basic ingredients to begin our analysis80 ~ —1.06683  —1.96107  —3.98508  —6.03125
of the finite size effects for the ground state energy. LefXt-  —101(1) —199%(2) -3985(3) —5997 (1)

us first consider the case when the fugacity is 1. For

this value ofg, the partition function of the intersecting

loop model is trivial,Eo(L)/L is exactlye. for any size in Ref. [18] we obtainc = —2n, in accordance with

L, and thereforec = 0. However, from the spin chain Egq. (17). Finally, we note that it is possible to derive for-

point of view, this scenario is far from being trivial, and mula (17) in the context of a super Sugawara construction
provides us with an important check concerning the loopf the Virasoro algebra by Goddaed al. [19].

model— spin chain mapping. The simplest spin chain In order to provide extra physical insight in these mod-
giving us ¢ = 1 is the Os3|2) model. Its spectrum els, we turn to the analysis of the excitations. This study
is given in terms of one level nested Bethe ansatz, ants of particular physical relevance for the Lorentz lat-

the Bethe equations are parametrized by two sets dfce gas modelg = 1). In this case, the fractal dimen-

variables{A}"”’}. The ground state is characterized by aSion of the loopsd, =2 — 2k, whereh is a conformal
complex root distribution, forming “fractional” strings of weight, characterizes the superdiffusive properties of par-

the following type: tic!es through t_he lattice [_5,6]._ Recent_numerical simu—
(12) 1 . ., lations [6] predicted logarithmic superdiffusive behavior
AT =6 /4 + 0. (16)  (corresponding tal; = 2), when the density of mirrors

By solving numerically the corresponding Bethe ansatas smaller than ondw. # 0). To lend some theoreti-
equation for some values @f and substituting the value cal support to this class of universality we have studied
of {)‘E'l)} in Eq. (11), it is remarkable to see how the Bethethe finite size corrections for the lowest excitation present
ansatz roots conspire together in order to produce th® the ¢ = 1 model. We find that this excitation is of
simple resultEy(L) = —3L exactly. Although a similar SPIn wave type, made by taking out one ragtfrom the
effect has been observed before in fine-tuned anisotropf@ground state configuration. In Table Il, we present the
spin chains [17], to the best of our knowledge, this isfinite size sequences for the exponent= 2h. We see
the first time that such simplification is noted in a free-that the extrapolated value faris very small, indicating
parameter (isotropic) set of Bethe ansatz equations. Thi§€ presence of a zero conformal weight and consequently
gives confidence to investigate the super spin chains fdredictingd, = 2 — 2h = 2 within reasonable precision
other values of; < 2. [20]. We remark that better numerical data was prevented

For ¢ # 1, the procedure described above can alsdY Strong logarithmic corrections [6]. ,
be used, and we have analyzed Egs. (10) and (11) for A second_lntere_stlng e?(ample is the supersymmetric
sizes up toL = 80. In Table I, we show our estimates O SA112) spin chain. This model has = —2 which
for the central charge for the Osg2]2), Osgl]2), IS precisely the central charge of the conformal theory
O'sp(1]4), and O spl | 6) supersymmetric spin chains. In dgscnbmg thg Haldane-Rezayi state [7,8]. To see that
our numerical analysis, we already have considered thiS relationship goes beyond the central charge behavior,
presence of logarithmic contributions of(L2In())  We follow Ref. [8] and study the excitations in the
to the finite size corrections of the ground state. weWwisted Ospl |2) chain. The twisting plays the role
remark that this kind of correction typically cannot be of a fermionic index, and we select the Ramond sector
overcome by a standard transfer matrix or Hamiltonian
diagonalization due to size limitations. All of the results TABLE Il. Finite size sequences for the extrapolation of the
lead us to the following conjecture for the central chargdowest dimensionx = 24 of the g = 1 model.

behavior for these models whenis an integer<2: L . =2
c=q-1 A7) "4 6.032298 X 1072
This formula also reproduces the central charge in the 64 5.592822 X 1072
limit ¢ = 2. For this point, the weighv. vanishes and, 80 5.288533 X 107?
hence, we expect the critical behavior of the isotropic 96 5.060282 X 1072
six-vertex model. Furthermore, the ground state of thell2 4.88002 X 102

473245 X 1072

Osp1|2n) models (¢ = 1 — 2n) are parametrized by 133 % 10-2

real roots, and by using an analytical method developeE X
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