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Intersecting Loop Model as a Solvable Super Spin Chain
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In this paper, we investigate an integrable loop model and its connection with a supersymmetric spin
chain. The Bethe ansatz solution allows us to study some properties of the ground state. When the
loop fugacityq lies in the physical regime, we conjecture that the central charge isc ­ q 2 1 for q
integer,2. Low-lying excitations are examined, supporting a superdiffusive behavior forq ­ 1. We
argue that these systems are interesting examples of integrable lattice models realizingc # 0 conformal
field theories. [S0031-9007(98)06495-3]
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In statistical mechanics, the basic difference between
ordinary local model (vertex models, spin chain system
and a loop model is that for the latter the total weigh
configuration cannot be written as a product of loca
weights. Being intrinsically nonlocal, loop models appea
as ideal paradigms for studying statistical properties
extended objects such as polymers [1].

In this Letter, we investigate some critical properties o
an integrable intersecting loop model in a two dimension
square lattice [2]. The fact that intersections between t
polygon configurations are allowed makes this loop mod
very interesting. In this case, it is not clear how to fin
a transformation to a standard local model [3,4]. Th
model can be considered as a Lorentz gas of partic
moving through a set of scatterers randomly distribute
in the nodes of the two dimensional square lattice [5,6
The scatterers are double-sided mirrors allowing righ
angle reflections, and they are placed along the diagon
of the square lattice. The particles move along the edg
of the lattice and, arriving on a node, can be scatter
to the left, to the right, or pass freely in the cas
of the absence of a scatterer. We denote bywa, wb,
and wc the Boltzmann weights corresponding to thes
three possibilities, respectively. By imposing periodi
boundary conditions, each particle follows a closed pa
For every closed loop we assign a fugacityq, and the
partition function is given by

Z ­
X

scatterer configurations

wna
a w

nb
b wnc

c q#paths, (1)

where na, nb , and nc are the number of weightswa,
wb, and wc appearing in a configuration, respectively
Only when wc ­ 0 the closed loop configurations no
longer intersect, and this limit corresponds to a graphic
representation of the criticalq2-state Potts model [3].

Despite the inherent nonlocality of this loop mode
it is still possible to formulate a purely local condition
that two different transfer matrices commute for arbitrar
system size. This is a sufficient condition for integrability
and it imposes a restriction on the manifold of possib
weightswa, wb , andwc. It turns out that the intersecting
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loop model is integrable [2] if the Boltzmann weights are
parametrized as follows:

wasmd ­ 1 2 m, wbsmd ­ m,

wcsmd ­ s1 2 qy2dms1 2 md .
(2)

Here we argue that this integrable intersecting loo
model with q [ Z can be realized in terms of a local
supersymmetric O spsn j 2md spin chain. This not only
provides a means for investigating the physical regime o
the loop gas but also allows us to establish, for the firs
time in the literature, a theoretical framework to study
the diffusive behavior of the Lorentz lattice gas itself
In particular, we use the fact that the O spsn j 2md super
spin chain is solvable by the Bethe ansatz in order t
find that their critical properties are governed byc # 0
conformal field theories. We remark thatc # 0 theories
appear to be useful in condensed matter systems such
the quantum Hall effect [7,8], disordered models [9], an
polymer field theories [10]. In fact, we present evidenc
that the O sps1 j 2d spin chain is a strong lattice candidate
for describing the low energy behavior of the Haldane
Rezayifractional quantum Hall state [11].

Essential to our approach is to observe that the weigh
(2) can be derived in the context of a standard Yang
Baxter solution for a local vertex model. These weight
are in one-to-one correspondence to the generators
a degenerated point of the Birman-Wenzel-Murakam
algebra [12]. This algebra is generated by the identit
Ii, a braidbi , and a Temperely-Lieb operatorEi acting
on sitesi and i 1 1 of a quantum spin chain of length
L. On the degenerated point, the braid operator becom
a generator of the symmetric group, namely,

bibi61bi ­ bi61bibi61, b2
i ­ Ii ,

bibj ­ bjbi if ji 2 jj $ 2 ,
(3)

and the other set of relations closing the degenerated po
of the braid-monoid algebra (see, e.g., Ref. [13]) are

EiEi61Ei ­ Ei , E2
i ­ qEi ,

EiEj ­ EjEi if ji 2 jj $ 2 ,
(4)
© 1998 The American Physical Society
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and

biEi ­ Eibi ­ Ei ,

Eibi61bi ­ bi61biEi61 ­ EiEi61 .
(5)

It is not difficult to see that relations (3)–(5) can b
made to provide us with a rational solution of the Yan
Baxter equation having precisely the weightswa, wb,
and wc. To make further progress, we search for
representation of the algebraic relations (3)–(5). At le
for integerq, such representation can be found in term
of the invariants of the superalgebra O spsn j 2md [13].
This superalgeba combines the Osnd symmetry and the
simplectic Sps2md algebra, and the integersn and2m play
the role of the number of bosonic and fermionic degre
of freedom. The braid operatorbi becomes the graded
permutation between thesn 1 2md degrees of freedom
which is defined by [14]

bi ­
n12mX
a,b­1

s21dpsadpsbdeab ≠ eba , (6)

where psad is the parity distinguishing the bosoni
fpsad ­ 0 for a ­ 1, . . . , ng and the fermionicfpsad ­
1 for a ­ n 1 1, . . . , n 1 2mg elements. Explicit ex-
pressions for the monoidsEi have been recently discusse
in detail in Ref. [13]. The important point here is that th
fugacity q is precisely the difference between the numb
of bosonic and fermionic degrees of freedom; namely,

q ­ n 2 2m . (7)

The formulation of the corresponding transfer matr
has to respect the bosonic and the fermionic gra
ations [14]. This is possible by writingT sld as the
supertrace of an auxiliary monodromy operator,Tsld ­P

a[As21dpsadTaa, where A stands for the horizonta
space ofsn 1 2md variables of the vertex model. A
usual, the monodromy matrix is composed by a prod
of vertex operatorsLAisld which are given by

LAisld ­ s1 2 qy2 2 ldbi 1 ls1 2 qy2 2 ldIi

1 lEi . (8)

Performing the scalel ! ms1 2 qy2d in Eq. (8), it
is straightforward to see the correspondence between
weights (2) and the operatorsIi, bi , andEi . The corre-
sponding local O spsn j 2md spin chainH is proportional
to the logarithmic derivative of the transfer matrix aroun
the regular pointl ­ 0, and its expression is given by

H ­ 6

LX
i­1

Ω
bi 1

1
1 2 qy2

Ei

æ
, (9)

where the sign in (9) is chosen to select the antif
romagnetic regime of the theory. This supersymme
Hamiltonian, with periodic boundary conditions impose
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admits a Bethe ansatz solution. This means that t
eigenenergiesEsLd on a ring of sizeL are parametrized in
terms of a complex set of variableshla

j j, satisfying cou-
pled nonlinear Bethe ansatz equations. These equatio
are equivalent to the analyticity of the eigenvalues of th
corresponding transfer matrix and also reflect the unde
lying O spsn j 2md group symmetry. We derived that they
are given by"

l
sad
j 2 i

da,1

2ha

l
sad
j 1 i

da,1

2ha

#L

­
rY

b­1

mbY
k­1,kfij

l
sad
j 2 l

sbd
k 2 i

Ca,b

2ha

l
sad
j 2 l

sbd
k 1 i

Ca,b

2ha

,

j ­ 1, . . . , ma; a ­ 1, . . . , r , (10)

and the eigenenergies are parametrized byhls1d
j j:

EsLd ­ 2

m1X
i­1

1

fls1d
i g2

1
1
4

1 L , (11)

where Ca,b is the Cartan matrix,r is the number of
roots, andha is the normalized length of theath root
of the O spsn j 2md superalgebra. For an algebraic Beth
ansatz derivation of Eqs. (10) and (11) for some class
of O spsn j 2md models as well as for further technica
details, we refer to Ref. [13].

We now turn to the study of the critical behavior o
the super spin chain (9). The existence of a Bethe ans
solution allows us to calculate the eigenvaluesEsLd for
quite large values ofL, providing us with reasonable
estimates of the finite size effects. For a conformall
invariant system, the universality can then be determin
by exploiting a set of important relations satisfied by th
eigenvalues on a strip of sizeL [15]. For example, the
central chargec is related to the ground state energ
E0sLd by [16]

E0sLd
L

­ e` 2
pysc
6L2 1 OsL22d , (12)

where e` is the ground state energy per particle in
the thermodynamic limit, andys is the sound velocity.
These two parameters can be determined exactly fro
the unitarity and the crossing properties (aroundl ­
1 2 qy2) of the transfer matrixT sld. In fact, these
properties together imply that, in the thermodynami
limit, the largest eigenvalueL0sld of the transfer matrix
satisfies the relations

L0sldL0s2ld ­ f1 2 l2g fs1 2 qy2d2 2 l2g,

L0sld ­ L0s1 2 qy2 2 ld .
(13)

Solving these equations with the restriction that th
solution is free of zeros in the physical strip0 , l ,

1 2 qy2 and taking its logarithmic derivative atl ­ 0,
we find that
e` ­ 2
1

1 2 qy2

Ω
c

µ
1
2

1
1

2 2 q

∂
2 c

µ
1

2 2 q

∂
1 2 lns2d

æ
1 1 , (14)
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where csxd is the Euler function. The sound velocity
measures how the energy scales with the low momen
If we recall that Eqs. (13) are identical to the one w
solve to find the crossing factors in a relativisticS-matrix
theory, we can obtain that the appropriate relativistic sc
is given by

ys ­
p

1 2 qy2
. (15)

We now have the basic ingredients to begin our analy
of the finite size effects for the ground state energy. L
us first consider the case when the fugacity is 1. F
this value ofq, the partition function of the intersecting
loop model is trivial,E0sLdyL is exactlye` for any size
L, and thereforec ­ 0. However, from the spin chain
point of view, this scenario is far from being trivial, an
provides us with an important check concerning the lo
model$ spin chain mapping. The simplest spin cha
giving us q ­ 1 is the O sps3 j 2d model. Its spectrum
is given in terms of one level nested Bethe ansatz, a
the Bethe equations are parametrized by two sets
variableshls1,2d

j j. The ground state is characterized by
complex root distribution, forming “fractional” strings of
the following type:

l
s1,2d
j ­ j

s1,2d
j 6 iy4 1 Ose2Ld . (16)

By solving numerically the corresponding Bethe ansa
equation for some values ofL and substituting the value
of hls1d

j j in Eq. (11), it is remarkable to see how the Beth
ansatz roots conspire together in order to produce
simple resultE0sLd ­ 23L exactly. Although a similar
effect has been observed before in fine-tuned anisotro
spin chains [17], to the best of our knowledge, this
the first time that such simplification is noted in a free
parameter (isotropic) set of Bethe ansatz equations. T
gives confidence to investigate the super spin chains
other values ofq , 2.

For q fi 1, the procedure described above can al
be used, and we have analyzed Eqs. (10) and (11)
sizes up toL ­ 80. In Table I, we show our estimates
for the central chargec for the O sps2 j 2d, O sps1 j 2d,
O sps1 j 4d, and O sps1 j 6d supersymmetric spin chains. In
our numerical analysis, we already have considered
presence of logarithmic contributions of Osss1yL2 lnsLdddd
to the finite size corrections of the ground state. W
remark that this kind of correction typically cannot b
overcome by a standard transfer matrix or Hamiltoni
diagonalization due to size limitations. All of the result
lead us to the following conjecture for the central char
behavior for these models whenq is an integer,2:

c ­ q 2 1 . (17)

This formula also reproduces the central charge in t
limit q ­ 2. For this point, the weightwc vanishes and,
hence, we expect the critical behavior of the isotrop
six-vertex model. Furthermore, the ground state of t
O sps1 j 2nd models sq ­ 1 2 2nd are parametrized by
real roots, and by using an analytical method develop
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TABLE I. Finite size sequences for the extrapolation of th
central charge for some super spin chains.

L O sps2 j 2d O sps1 j 2d O sps1 j 4d O sps1 j 6d
40 21.084 01 21.950 41 23.997 53 26.104 83
48 21.078 96 21.953 69 23.992 28 26.076 58
56 21.075 00 21.956 17 23.989 17 26.058 63
64 21.071 79 21.958 12 23.987 21 26.046 43
72 21.069 11 21.959 73 23.985 93 26.037 71
80 21.066 83 21.961 07 23.985 08 26.031 25

Extr. 21.01 s1d 21.996 s2d 23.985 s3d 25.997 s1d

in Ref. [18] we obtainc ­ 22n, in accordance with
Eq. (17). Finally, we note that it is possible to derive for
mula (17) in the context of a super Sugawara constructi
of the Virasoro algebra by Goddardet al. [19].

In order to provide extra physical insight in these mod
els, we turn to the analysis of the excitations. This stud
is of particular physical relevance for the Lorentz lat
tice gas modelsq ­ 1d. In this case, the fractal dimen-
sion of the loopsdf ­ 2 2 2h, whereh is a conformal
weight, characterizes the superdiffusive properties of pa
ticles through the lattice [5,6]. Recent numerical simu
lations [6] predicted logarithmic superdiffusive behavio
(corresponding todf ­ 2), when the density of mirrors
is smaller than oneswc fi 0d. To lend some theoreti-
cal support to this class of universality we have studie
the finite size corrections for the lowest excitation prese
in the q ­ 1 model. We find that this excitation is of
spin wave type, made by taking out one rootl

2
j from the

ground state configuration. In Table II, we present th
finite size sequences for the exponentx ­ 2h. We see
that the extrapolated value forh is very small, indicating
the presence of a zero conformal weight and consequen
predictingdf ­ 2 2 2h ­ 2 within reasonable precision
[20]. We remark that better numerical data was prevent
by strong logarithmic corrections [6].

A second interesting example is the supersymmetr
O sps1 j 2d spin chain. This model hasc ­ 22 which
is precisely the central charge of the conformal theo
describing the Haldane-Rezayi state [7,8]. To see th
this relationship goes beyond the central charge behavi
we follow Ref. [8] and study the excitations in the
twisted O sps1 j 2d chain. The twisting plays the role
of a fermionic index, and we select the Ramond sect

TABLE II. Finite size sequences for the extrapolation of th
lowest dimensionx ­ 2h of the q ­ 1 model.

L x ­ 2h

48 6.032 298 3 1022

64 5.592 822 3 1022

80 5.288 533 3 1022

96 5.060 282 3 1022

112 4.880 02 3 1022

128 4.732 45 3 1022

Extr. 1.33 3 1022
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imposing antiperiodic boundary conditions in the eve
charge sectors of the Hamiltonian [21]. We found tha
the lowest Ramond dimension ish ­ 2

1
8 , and the first

physical excitation over the ground state hash ­ 3
8 ,

in accordance with the quasiparticle exponent predict
in Ref. [22]. More generally, the scaling dimension
can be interpreted in terms of ac ­ 1 Coulomb gas
with radius r ­

p
2, and also we verified the SU(2)

invariance of the twisted Hamiltonian. This scenari
remarkably agrees with the one proposed in Refs. [7,8,2
to describe the quasiparticle excitations of the Haldan
Rezayifractional quantum Hall state. It should be noted
that the integrability of this supersymmetric spin chai
provides a means to calculate nonperturbatively ext
physical quantities such as thermodynamic properties
the excitations. We also recall that other super spin cha
have recently been investigated, though in the context
the plateau-to-plateau transition of theinteger quantum
Hall effect [23].

Finally, very recently relations betweenc # 0 andc .

0 theories have been investigated in the literature [24]. W
have seen that the O sps1 j 2d super spin chain is such an
example; i.e., its operator content can be seen either a
c ­ 22 or as ac ­ 1 conformal field theory. Similarly,
we observed that the O sps2 j 2d model realizes bothc ­
21 and c ­ 2 field theories, suggesting that this is a
common feature of the whole family of lattice models o
this paper. This means that their Hilbert space can
positive definite [8,24], bringing us hope that this hierarch
of nonunitary models are physically meaningful, too.

In summary, a solvable loop model has been mapp
onto a super spin chain, and we have found its cent
charge behavior for integer values of the fugacity in th
physical regime. Our discussions support the idea th
these models are ideal lattice candidates for describ
conformal properties of relevant condensed matter sy
tems. They also provide an interesting bridge betwe
integrable models, motion in a random environment, an
the quantum Hall effect.
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