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Extinction Events and Species Lifetimes in a Simple Ecological Model
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A model for large-scale evolution recently introduced by Amaral and Meyer is studied analytically
and numerically. Species are located at different trophic levels and become extinct if their prey becomes
extinct. It is proved that this model is self-organized critical in the thermodynamic limit, with an
exponent of 2 characterizing the size distribution of extinction events. The lifetime distribution of
species, cutoffs due to finite-size effects, and other quantities are evaluated. The relevance of this
model to biological evolution is critically assessed. [S0031-9007(98)07821-1]

PACS numbers: 87.10.+e, 05.70.Ln, 64.60.Lx

In complex systems, not everyone is equal. In a humanule leads to avalanches of extinction that may extend
society, different individuals fulfill different roles. Simi- through several layers and will be shown below to obey
larly, companies occupy different niches in an economi@a power-law size distribution. These rules are slightly
system, and species occupy different niches in an ecosysdifferent from [10]; however, the results can be expected
tem. Among the rich variety of possible structures in thes¢o be the same. Since the dynamics of the model are
systems, power laws take a prominent place and charactetharacterized by slow driving (speciation), and by rare and
ize the size distribution of cities [1], incomes [2], and eco-fast avalanches (or extinction events), the model is self-
logical extinction events [3]. Several models that lead toorganized critical [11].
such a scaling behavior have been introduced in the litera- Let us first discuss the cage= 1, where each species in
ture (for some recent examples see [4-9]); however, thiayers! > 0 feeds on one prey species only. In this case,
picture is far from complete. each species is connected to exactly one species in layer

While reality is certainly best described by a compli-/ = 0 via a food chain. Since several species can feed on
cated web of interactions at all levels, the simplest typehe same prey, the structure of the ecosystem looks like a
of models that incorporate qualitative differences betweeet of trees, each consisting of all species that are connected
individuals (or companies or species) are hierarchical oto the same bottom species. If a bottom species has existed
layered models, where individuals in a given layer affectfor a long time, the tree connected to it extends through
individuals in the neighboring layer. Such a structure canmany layers and consists of a large number of species. If
e.g., be found in ecosystems, where species are at diffea-bottom species is young, only a few species of the lowest
ent levels in a food chain, or in economic systems, wheréayers are connected to it, and the corresponding “tree” is
different types of producers are located at different placesmall. When a bottom species becomes extinct, the whole
in a production chain. Recently, Amaral and Meyer [10]tree of species connected to it also becomes extinct. Since
introduced a model for large-scale evolution that containgach bottom species becomes extinct with the sameygate
several trophic levels. Using computer simulations, theythe size distribution of extinction events is identical to the
found a power-law size distribution of extinction events.size distribution of trees.

It is the intention of this paper to prove that this model is After some time, the system can be expected to be in a
indeed critical in the thermodynamic limit, and to evaluatestationary state where the speciation and extinction rates
some of its properties analytically and numerically. balance each other within each layer, leading to constant

The model is defined as follows: Species can occupynean species densities. Of course, for a finite system size
niches in a model ecosystem with levels in the food N, there may exist considerable fluctuations around the
chain andN niches in each level. Species from the firstmean density. Lep; denote the species density in layer
level = 0 do not depend on other species for their food,/. The equation of motion fop, is
while species on the higher levdldeed each ort or less
species in the level — 1. Changes in the system occur dpi/dt = u(l — p;) — ppy, (1)

due to two processes. (a) Creation of new species with %ading to a stationary density; = w/(p + w) in

rate u in each empty niche. If the new species arises ify,ch Jayer. The lifetime distribution of species is an
a levell > 0, k prey species are chosen at random from

; . exponential,
the layer below. A species never changes its prey after this
initial choice. (b) Extinction: Atratg, species in the first pr(T) = pexp(—pT), (2)
level I = 0 become extinct. Any species in layker= 1 A

and subsequently in higher levels, for which all preys haveind is the same for each species. l&%?t(t) denote the

become extinct, also become extinct immediately. Thiswumber of species in layérthat are connected to bottom
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species. Since each newly created species picks its pregvent destroys one species in the bottom layer, the mean
species at random among the existing species in layerumber of species destroyed per extinction evefitis L.

I — 1, the growth ofs,” (1) is given by Together with the relation

ds”Jdt = [ = p)/piilsity = psity, () 5= f " SP(S)ds
0

as long as bottom speciésloes not become extinct. The

second identity holds in the stationary state. The size of and the assumption that(s) obeys a power law, this

feads again te(S) « S72 for § < Spax-

0 (@) i — i X . oo —
tree, s¥ = 3, 5," obeys consequentlys”/dr = ps®, Figure 1 shows the size distribution of extinction events
leading to for different values of.. The size$ is scaled by ex{L),
SO (1) = $D(0) expl pt). @) and curves for different collapse nicely. The number of

layers in this simulation is not large enough to show the
power-law exponent over a large scaling regime, but it
&3ychosen such that it is close to the number of layers in
real ecosystems.

The results obtained so far hold for a broad range of
values of the parametersandp. Of course, since. and
p are defined as rates, one must make sure in simulations

where the initial tree size i§)(0) = 1, since only the
bottom species is present (the age of a tree is measur
from the creation of the bottom species on).

The size distribution of tree®,(S), is related to the age
distribution of treespP(z), via

P(S) = P(r)dt/ds . (5)  Wwith discrete time steps that they are small enough so that
no artificial effects occur due to the parallel updating of
Now, P(r) obeys the equatio@P(r)/dt = —pP(t), or many sites. Also, there is assumed to be a time scale sepa-
P(t) « exp(— pt), which can be combined with Egs. (5) ration between extinction events which are fast on evolu-
and (4) to give tionary time scale, and the creation rate of new species,
which is much slower. Only in this case one can neglect
P(S) = §72, (6) the interference between new speciations and the extinc-

. ) . L . . tion avalanches.
Since the size distribution of trees is identical to the size Let us next discuss the properties of the model in the

distribution of extinction events, the exponent characterizg ;g ~ 1. Each newly created species feedscapecies
ing the extinction events is = 2, in excellent agreement i, the ayer below, and becomes extinct only after fall
with the numerical findings by Amaral and Meyer [10]. ey species have become extinct. Older species feed on
There are two types of finite-size effects that modify|egg and older prey species and are therefore more likely to
this power law: First, there are effects due to the finiteyecome extinct during a given time interval than younger
size of N, when the number of layers is large. Since gpecies. In contrast, far — 1 each species becomes ex-
the height of a tree is proportional to its age, the numbefinct with the same probability, irrespective of its age. This
of trees extending up to layerdecreases as epl), and  fgatyre seems to be present in the fossil data [12]. Choos-

the mean number of species within layethat belong 10 jg > | introduces correlations in age and extinction
the same tree is proportional to €kp Thus, all species

in layers! > In N belong to the same tree and are simul-
taneously destroyed. Consequently, trees cannot become
much higher than IV layers, and there is a cutoff to the 10
power lawP(S) = S7% at Spax ~ NInN. If the number
of layersL is of the order Inv, the size of the largest ex-
tinction event is of the orde¥VL, which is the total system &
size. Indeed, events of this size are reported in [10], where g
N = 1000 andL = 6 = InN. (These authors probably f_T 102 L
g
o

have choset > 1.)
Since real ecological systems have only a few trophic

levels, it is important to also study the case< InN, 10

where the properties of the system do not depen @md

finite-size effects are due to the finite number of layérs, 107 el
Since the height of trees grows linearly in time, while their 10 10" 10° 10"
size S grows exponentially, the typical size of the largest Slexp(L)

treeﬁ IS ?OV\;.glven bsiméx octeXpL. On the other ?hand, FIG. 1. The size distribution of extinction events for= 1,
eacn extincton even estroys on an average e same_ 0.05, W= 0.02, andL = 4 (SO"d Iine), L=5 (dashed

number. of species in ?aCh layer, SinC? the same n}meﬁlﬁe), andL = 6 (dotted line). The straight line is a power law
of species are created in each layer. Since each extinctiatith the exponent = 2.
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probability between species and their preys that make anaropping thd dependence iR andP,. After afew steps,

Iytic treatment harder. one obtains the following differential equation fBr:
Figure 2 shows the size distribution of extinction events ap,(7)

for k =3, L =6, andN = 999. As in a similar plot _ 4T = —kd7)T . (9)

in [10], this size distribution appears to be a power law [1 — TP, (n)]'"1/kP.(7)

with extinction events up to the system size. In order tQpeqgration of both sides, together with the condition
decide whether the system is indeed in a critical state, pb_(0) = 1/T, gives an implicit solution fo,. For very

whether the apparent power law is just due to a Iuckyarger, the first factor in the denominator on the left-hand
choice of parameters, we have to discuss the system in thgye is close to 1 and can be neglected, leading to
thermodynamic limitV, L — o with L < In N.

Let PTZ)(T) denote the lifetime distribution of newly P.(7) ~ exp(—k7/T)
created species in layer The following calculation
relatesP(Tl)(T) to P(TH)(T)_ The preys of a newly created forlarger. On the other hand, for very largethe lifetime
species in layet are chosen at random from all the speciesof a species is limited only by the lifetime of the bottom
in layer! — 1. Since species are created with a constanspecies to which it is connected. The bottom species is
rate in each layer, the distribution of the remaining lifetimedestroyed with a ratg, leading tok/7 = p, or

7 of the prey species of a newly created species is given

by PU=D(r), which is related tPy (T via T=k/p. (10)
PU-1(r) [rdr P¥_1)(T) Thus, after a few transient layers, the mean lifetime of
r T) = —; ” — - . . .
[Zdr [*dT P(Tl ”(T) newly created species saturateskap, which isk times

the lifetime of species in the bottom layer. Figure 3
o (-1 . shows the lifetime distribution of species in the higher
= / dr Py (T)/T""Y, (7)  layers for different values df, as obtained by numerically
7 iterating the recursion relations Egs. (7) and (8). One
whereT !~V is the mean lifetime of species in laylerThe  can see that the distribution becomes more peaked with
probability that a species created at tiffie= 0 lives for  increasingk.
a timeT is identical to the probability that the last of its  The fact that the lifetime distribution of species does

prey species becomes extinct at tiffigleading to not change any more after a few transient layers means
Y k=1 that each extinction event destroys on an average the

P(Tl)(T) - f P(Tz—l)(T)dT kP(Tz—l)(T) same number of species on e.ach of the_hig_her levels.

T Consequently, the rate of species production is also the

- k same at each of these levels. Let us now define a tree with

— a[f dr P([_l)(T):| ) (8) indexm to be the set of all species that would go extinct
aT | Jo ! if bottom speciesn went extinct. Only species with one

prey belong to those trees, and there are species with one

The asymptotic lifetime distribution of newly created prey that do not belong to a tree. The growth rate of such

species for largéd is obtained from Eqgs. (7) and (8) by
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FIG. 3. The lifetime distribution of species in the higher
FIG. 2. The size distribution of extinction events for= 3, layers for k =1 (solid line), k =2 (dotted line), k = 3
L=6,N=999, p=0.05 andu = 0.01l. The straight line (dashed line), and = 4 (long-dashed line). The time axis
is a power-law fit with an exponent = 2.009. is scaled byl /k.

5013



VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NVEMBER 1998

a tree must be proportional to its size, just as in the cas&he resulting power laws have in general an exponent
k = 1, since in each layer (above the transitional layersiifferent from 2. A model in which extinction is entirely
species with one prey are generated (from species with twoaused by the action of environmental stresses on species
preys) at the same rate. We can now repeat the derivaticalso gives a power-law size distribution of extinction
of P(S) and Sy,.x from above (casé& = 1), and we find events [9].
againt = 2 andSy.x ~ explL). The species density in  While the study of simple models like the ones men-
levels above the transient levelsds= u/(u + p/k). tioned here is a necessary stage in the attempt to understand

The properties of the model may change when the rulesomplex phenomena like large-scale evolution, all of them
are changed to equally plausible ones. If, e.g., rule (b) isre unrealistic in many respects, and it can be doubted that
modified such that a species goes extinct as soon as otleey are capable of grasping all important features of evo-
of its k prey species goes extinct, the number of speciekitionary dynamics. Certainly, far more research is needed
decreases exponentially with the level number: Each spee gain a deeper understanding of the processes that lead
cies is now connected té’ bottom species, so that the to the observed patterns in the fossil record.
death rate of species increases with layer numbéf 4s. | thank Alan McKane and R. Solé for interesting
If the speciation rate is constant in each layer, the speciadiscussions. This work was supported by EPSRC Grant
density decreases as !, while the size distribution of No. GR/K79307.
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