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Extinction Events and Species Lifetimes in a Simple Ecological Model
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A model for large-scale evolution recently introduced by Amaral and Meyer is studied analytica
and numerically. Species are located at different trophic levels and become extinct if their prey beco
extinct. It is proved that this model is self-organized critical in the thermodynamic limit, with a
exponent of 2 characterizing the size distribution of extinction events. The lifetime distribution
species, cutoffs due to finite-size effects, and other quantities are evaluated. The relevance o
model to biological evolution is critically assessed. [S0031-9007(98)07821-1]
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In complex systems, not everyone is equal. In a hum
society, different individuals fulfill different roles. Simi-
larly, companies occupy different niches in an econom
system, and species occupy different niches in an ecos
tem. Among the rich variety of possible structures in the
systems, power laws take a prominent place and charac
ize the size distribution of cities [1], incomes [2], and ec
logical extinction events [3]. Several models that lead
such a scaling behavior have been introduced in the lite
ture (for some recent examples see [4–9]); however,
picture is far from complete.

While reality is certainly best described by a compl
cated web of interactions at all levels, the simplest ty
of models that incorporate qualitative differences betwe
individuals (or companies or species) are hierarchical
layered models, where individuals in a given layer affe
individuals in the neighboring layer. Such a structure ca
e.g., be found in ecosystems, where species are at dif
ent levels in a food chain, or in economic systems, whe
different types of producers are located at different plac
in a production chain. Recently, Amaral and Meyer [1
introduced a model for large-scale evolution that conta
several trophic levels. Using computer simulations, th
found a power-law size distribution of extinction event
It is the intention of this paper to prove that this model
indeed critical in the thermodynamic limit, and to evalua
some of its properties analytically and numerically.

The model is defined as follows: Species can occu
niches in a model ecosystem withL levels in the food
chain andN niches in each level. Species from the fir
level l ­ 0 do not depend on other species for their foo
while species on the higher levelsl feed each onk or less
species in the levell 2 1. Changes in the system occu
due to two processes. (a) Creation of new species wit
ratem in each empty niche. If the new species arises
a level l . 0, k prey species are chosen at random fro
the layer below. A species never changes its prey after t
initial choice. (b) Extinction: At ratep, species in the first
level l ­ 0 become extinct. Any species in layerl ­ 1
and subsequently in higher levels, for which all preys ha
become extinct, also become extinct immediately. Th
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rule leads to avalanches of extinction that may exte
through several layers and will be shown below to ob
a power-law size distribution. These rules are sligh
different from [10]; however, the results can be expect
to be the same. Since the dynamics of the model
characterized by slow driving (speciation), and by rare a
fast avalanches (or extinction events), the model is s
organized critical [11].

Let us first discuss the casek ­ 1, where each species in
layersl . 0 feeds on one prey species only. In this cas
each species is connected to exactly one species in l
l ­ 0 via a food chain. Since several species can feed
the same prey, the structure of the ecosystem looks lik
set of trees, each consisting of all species that are conne
to the same bottom species. If a bottom species has exi
for a long time, the tree connected to it extends throu
many layers and consists of a large number of species
a bottom species is young, only a few species of the low
layers are connected to it, and the corresponding “tree
small. When a bottom species becomes extinct, the wh
tree of species connected to it also becomes extinct. S
each bottom species becomes extinct with the same ratp,
the size distribution of extinction events is identical to th
size distribution of trees.

After some time, the system can be expected to be i
stationary state where the speciation and extinction ra
balance each other within each layer, leading to const
mean species densities. Of course, for a finite system
N, there may exist considerable fluctuations around
mean density. Letrl denote the species density in laye
l. The equation of motion forrl is

drlydt ­ ms1 2 rld 2 prl , (1)

leading to a stationary densityrl ­ mysp 1 md in
each layer. The lifetime distribution of species is a
exponential,

pT sT d ­ p exps2pT d , (2)

and is the same for each species. Lets
sid
l std denote the

number of species in layerl that are connected to bottom
© 1998 The American Physical Society 5011



VOLUME 81, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 30 NOVEMBER 1998

ean

ts

f
he
t
in

of

ions
that
of
epa-
lu-
ies,
ct

inc-

he

on
y to
er
-
is
os-
n

speciesi. Since each newly created species picks its pr
species at random among the existing species in la
l 2 1, the growth ofs

sid
l std is given by

ds
sid
l ydt ­ fms1 2 rldyrl21gssid

l21 ­ ps
sid
l21 , (3)

as long as bottom speciesi does not become extinct. The
second identity holds in the stationary state. The size o
tree,Ssid ­

P
l s

sid
l obeys consequentlydSsidydt ­ pSsid,

leading to

Ssidstd ­ Ssids0d expsptd , (4)

where the initial tree size isSsids0d ­ 1, since only the
bottom species is present (the age of a tree is measu
from the creation of the bottom species on).

The size distribution of trees,PsSd, is related to the age
distribution of trees,Pstd, via

PsSd ­ PstddtydS . (5)

Now, Pstd obeys the equationdPstdydt ­ 2pPstd, or
Pstd ~ exps2ptd, which can be combined with Eqs. (5
and (4) to give

PsSd ~ S22. (6)

Since the size distribution of trees is identical to the si
distribution of extinction events, the exponent character
ing the extinction events ist ­ 2, in excellent agreement
with the numerical findings by Amaral and Meyer [10].

There are two types of finite-size effects that modi
this power law: First, there are effects due to the fini
size of N , when the number of layersL is large. Since
the height of a tree is proportional to its age, the numb
of trees extending up to layerl decreases as exps2ld, and
the mean number of species within layerl that belong to
the same tree is proportional to expsld. Thus, all species
in layersl . ln N belong to the same tree and are simu
taneously destroyed. Consequently, trees cannot bec
much higher than lnN layers, and there is a cutoff to the
power lawPsSd ~ S22 at Smax , N ln N . If the number
of layersL is of the order lnN, the size of the largest ex-
tinction event is of the orderNL, which is the total system
size. Indeed, events of this size are reported in [10], wh
N ­ 1000 and L ­ 6 . ln N. (These authors probably
have chosenk . 1.)

Since real ecological systems have only a few troph
levels, it is important to also study the caseL , ln N ,
where the properties of the system do not depend onN and
finite-size effects are due to the finite number of layers,L.
Since the height of trees grows linearly in time, while the
sizeS grows exponentially, the typical size of the large
trees is now given bySmax ~ expL. On the other hand,
each extinction event destroys on an average the sa
number of species in each layer, since the same num
of species are created in each layer. Since each extinc
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event destroys one species in the bottom layer, the m
number of species destroyed per extinction event isS̄ ­ L.
Together with the relation

S̄ ­
Z smax

0
SPsSd dS

and the assumption thatPsSd obeys a power law, this
leads again toPsSd ~ S22 for S , Smax.

Figure 1 shows the size distribution of extinction even
for different values ofL. The sizeS is scaled by expsLd,
and curves for differentL collapse nicely. The number o
layers in this simulation is not large enough to show t
power-law exponentt over a large scaling regime, but i
is chosen such that it is close to the number of layers
real ecosystems.

The results obtained so far hold for a broad range
values of the parametersm andp. Of course, sincem and
p are defined as rates, one must make sure in simulat
with discrete time steps that they are small enough so
no artificial effects occur due to the parallel updating
many sites. Also, there is assumed to be a time scale s
ration between extinction events which are fast on evo
tionary time scale, and the creation rate of new spec
which is much slower. Only in this case one can negle
the interference between new speciations and the ext
tion avalanches.

Let us next discuss the properties of the model in t
casek . 1. Each newly created species feeds onk species
in the layer below, and becomes extinct only after allk
prey species have become extinct. Older species feed
less and older prey species and are therefore more likel
become extinct during a given time interval than young
species. In contrast, fork ­ 1 each species becomes ex
tinct with the same probability, irrespective of its age. Th
feature seems to be present in the fossil data [12]. Cho
ing k . 1 introduces correlations in age and extinctio
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FIG. 1. The size distribution of extinction events fork ­ 1,
p ­ 0.05, m ­ 0.02, and L ­ 4 (solid line), L ­ 5 (dashed
line), andL ­ 6 (dotted line). The straight line is a power law
with the exponentt ­ 2.
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probability between species and their preys that make a
lytic treatment harder.

Figure 2 shows the size distribution of extinction even
for k ­ 3, L ­ 6, and N ­ 999. As in a similar plot
in [10], this size distribution appears to be a power la
with extinction events up to the system size. In order
decide whether the system is indeed in a critical state,
whether the apparent power law is just due to a luck
choice of parameters, we have to discuss the system in
thermodynamic limitN , L ! ` with L , ln N .

Let P
sld
T sT d denote the lifetime distribution of newly

created species in layerl. The following calculation
relatesP

sld
T sT d to P

sl21d
T sT d. The preys of a newly created

species in layerl are chosen at random from all the specie
in layer l 2 1. Since species are created with a consta
rate in each layer, the distribution of the remaining lifetim
t of the prey species of a newly created species is giv
by Psl21d

t std, which is related toP
sl21d
T sT d via

Psl21d
t std ­

R`

t dT P
sl21d
T sT dR`

0 dt
R`

t dT P
sl21d
T sT d

­
Z `

t

dT P
sl21d
T sT dyT̄ sl21d, (7)

whereT̄ sl21d is the mean lifetime of species in layerl. The
probability that a species created at timeT ­ 0 lives for
a timeT is identical to the probability that the last of its
prey species becomes extinct at timeT , leading to

P
sld
T sT d ­

"
1 2

Z `

T
Psl21d

t std dt

#k21

kPsl21d
t sT d

­
≠

≠T

"Z T

0
dt Psl21d

t std

#k

. (8)

The asymptotic lifetime distribution of newly created
species for largel is obtained from Eqs. (7) and (8) by
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FIG. 2. The size distribution of extinction events fork ­ 3,
L ­ 6, N ­ 999, p ­ 0.05, andm ­ 0.01. The straight line
is a power-law fit with an exponentt ­ 2.009.
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dropping thel dependence inPT andPt. After a few steps,
one obtains the following differential equation forPt :

dPtstd
f1 2 T̄Ptstdg121ykPtstd

­ 2kdtyT̄ . (9)

Integration of both sides, together with the conditio
Pts0d ­ 1yT̄ , gives an implicit solution forPt . For very
larget, the first factor in the denominator on the left-han
side is close to 1 and can be neglected, leading to

Ptstd , exps2ktyT̄ d

for larget. On the other hand, for very larget the lifetime
of a species is limited only by the lifetime of the bottom
species to which it is connected. The bottom species
destroyed with a ratep, leading tokyT̄ ­ p, or

T̄ ­ kyp . (10)

Thus, after a few transient layers, the mean lifetime
newly created species saturates atkyp, which is k times
the lifetime of species in the bottom layer. Figure
shows the lifetime distribution of species in the high
layers for different values ofk, as obtained by numerically
iterating the recursion relations Eqs. (7) and (8). O
can see that the distribution becomes more peaked w
increasingk.

The fact that the lifetime distribution of species doe
not change any more after a few transient layers me
that each extinction event destroys on an average
same number of species on each of the higher leve
Consequently, the rate of species production is also
same at each of these levels. Let us now define a tree w
index m to be the set of all species that would go extin
if bottom speciesm went extinct. Only species with one
prey belong to those trees, and there are species with
prey that do not belong to a tree. The growth rate of su
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FIG. 3. The lifetime distribution of species in the highe
layers for k ­ 1 (solid line), k ­ 2 (dotted line), k ­ 3
(dashed line), andk ­ 4 (long-dashed line). The time axis
is scaled by1yk.
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a tree must be proportional to its size, just as in the ca
k ­ 1, since in each layer (above the transitional layer
species with one prey are generated (from species with t
preys) at the same rate. We can now repeat the derivat
of PsSd and Smax from above (casek ­ 1), and we find
againt ­ 2 andSmax , expsLd. The species density in
levels above the transient levels isr ­ mysm 1 pykd.

The properties of the model may change when the rul
are changed to equally plausible ones. If, e.g., rule (b)
modified such that a species goes extinct as soon as
of its k prey species goes extinct, the number of speci
decreases exponentially with the level number: Each sp
cies is now connected tokl bottom species, so that the
death rate of species increases with layer number asklyp.
If the speciation rate is constant in each layer, the spec
density decreases ask2l, while the size distribution of
extinction events is still a power law witht ­ 2 in the
thermodynamic limit. However, this power law canno
be seen for the system sizes used in the simulations.
the speciation rate is chosen to be proportional to t
density of species in a layer, the density in the stationa
state decreases ask2lsl21dy2, and the size distribution of
extinction events has a cutoff after a few layers, even
the thermodynamic limit.

To summarize, the model discussed in this paper
self-organized critical with a power-law size distribution
of extinction events in the thermodynamic limit. Finite
systems with only a few layers show this power law only
k is larger than 1 or 2, and a modified version of the mod
either does not show a power law in systems with fe
layers or is not critical at all. Thus, power-law extinction
events are not a generic feature of food-chain models
general, but occur only in some versions of these mode
Also, a more detailed food-chain model [13] that include
adaptation of species to their prey and that evaluates
transfer of resources from one layer to the next was sho
to be not critical.

Dependencies between species in nature are not li
ited to predator-prey relationships, leading to interactio
networks instead of nice hierarchies. The layered mod
studied in this paper must therefore be considered as
mean-field-like approximation to the more complicate
reality.

Other ecological models, while not containing a layere
structure, take into account the fitness of species [6–
5014
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8].

The resulting power laws have in general an expone
different from 2. A model in which extinction is entirely
caused by the action of environmental stresses on spec
also gives a power-law size distribution of extinction
events [9].

While the study of simple models like the ones men
tioned here is a necessary stage in the attempt to underst
complex phenomena like large-scale evolution, all of the
are unrealistic in many respects, and it can be doubted t
they are capable of grasping all important features of ev
lutionary dynamics. Certainly, far more research is need
to gain a deeper understanding of the processes that l
to the observed patterns in the fossil record.
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