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Matrix Games, Mixed Strategies, and Statistical Mechanics
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Matrix games constitute a fundamental problem of game theory and describe a situation of two
players with completely conflicting interests. We show how methods from statistical mechanics can
be used to investigate the statistical properties of optimal mixed strategies of large matrix games
with random payoff matrices and derive analytical expressions for the value of the game and the
distribution of strategy strengths. In particular the fraction of pure strategies not contributing to the
optimal mixed strategy of a player is calculated. Both independently distributed as well as correlated
elements of the payoff matrix are considered and the results are compared with numerical simulations.
[S0031-9007(98)07803-X]

PACS numbers: 02.50.Le, 05.20.—y, 05.40.+j, 64.60.Cn

Game theory models in mathematical term problems ofvhich occur in the optimal mixed strategy of a player.
strategic decision making typically arising in economics,For simplicity we restrict ourselves to matrix games, the
sociology, or international relations and owes much of itsype of zero-sum games between two players which also
modern form to von Neumann [1]. The generic situation informs the basis of von Neumann'’s treatment [1,6]. Such
game theory consists of a set of playgfsY, ...} choosing games are defined by a (not necessarily square) payoff ma-
between differenstrategiedX;},{Y;}, ..., the combination trix ¢;;: PlayerX may choose betweev strategiest; and
of which determines the outcome of a game specified byplayerY betweenV strategied’;, wherei = 1,...,N and
the payoffsPx(X;,Y;,...),Py(X;,Y;,...),... each player j =1,...,M. At each step of this game they receive the
is going to receive. The payoffs depend on the strategiegayoffs Px(X;,Y;) = —Py(X;,Y;) =: ¢;;. Since player
of all players and the problem for every individual player isX wishes to gain as large a payeff as possible, whereas
to choosehis strategy such as to optimize his payoff with- playerY must attempt to reach as small a valuecgfin
out having control over the strategies of all other playersorder to maximize his payo#y(X;,Y;) = —c;j, the goals
Despite the extreme simplification of the real world situ-of the players are completely conflicting. Thus it is ap-
ation inherent in this framework, game theory has provermpropriate for the players to proceed as follows: Player
not only to be a viable mathematical discipline but alsoknows that when playing strategy; he will receive at
to be able to characterize important features of economieast the payoff minc;;. He therefore chooses strategy
cal systems. Many interesting results have been obtainex;:, satisfying min c;:; = max min; ¢;;. Equivalently,
since von Neumann'’s pioneering work, including the charplayer Y plays strategyY;- determined by max;;- =
acterization of equilibria [1,2] and the emergence of coopmin; max; ¢;; since it minimizes his losses for the opti-
eration [3]. However, detailed investigations have beermal choices ofX. It is easy to show that mamin; c;; =
restricted either to general statements concerning, e.g., tmain; max c;; always. The situation is simple if the ma-
existence of equilibria, or to situations where every playetrix has a so-calledaddle pointi.e., if there is a pair*, j*
has only a small number of strategies at his disposal ansatisfying maxmin; c¢;; = c;<;» = min; max c;;. In this
where the payoffs are simple functions of these strategiesase, it is optimal for both players to stick to theure
As many situations of interest show a large number of posstrategiesX;- andY;-, respectively, since deviations from
sible strategies and rather complicated relationships bean optimal strategy by one of the players will lead to a
tween strategic choices and the resulting payoffs, it idower payoff for this player. For a large random mairix
tempting to model the payoffs by a random function and tahe probability for the existence of a such a saddle point
apply the methods of statistical mechanics to describe theanishes exponentially with the size of the matrix, and the
properties of the game. This will be a sensible approacichoice of an optimal strategy is less obvious. Since, in
if there are characteristic “macroscopic” quantities whichthis case, maxmin; ¢;; < min; max; ¢;;, playerX will at-
do not depend on the particular realization of the randontempt to achieve a greater gain than his guaranteed minimal
parameters, i.e., aself-averagingn the sense of the sta- gain maxmin; ¢;; and likewiseY will attempt to achieve
tistical mechanics of disordered systems [4] (for relateda smaller loss than mjmax; ¢;;. To this end they have to
applications, see Ref. [5]). prevent their opponent from guessing which strategy they

In the present Letter we show how methods from statistiare going to play and choose each strategy with a certain
cal mechanics can be applied to characterize the statisticatobabilityx; andy;, respectively [1]. A vectok; of prob-
properties of optimal strategies in matrix games with largeabilities is called anixed strategyand by the normaliza-
randomly chosen payoff matrices. Explicitly, we calcu-tion condition is constrained to lie on thé-dimensional
late the mean payoff and the fraction of pure strategiesimplex. The famous minimax theorem by von Neumann
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states that for any payoff matrix there exists saddle  described by mean-field theories. Since an average value
point of mixed strategies.e., there are two vectorss and  ({c)) of the elements of the payoff matrix results only in a

y; such that modified value of the game. + ({c)) without changing
the optimal mixed strategies, we may s€t)) =0
maxminy x:c Yiev' = minmaxy xic without loss of generality and take the elements to
b O 2 R ,Z €Y = i} ) % ““U%7" " pe independent Gaussian distributed variables with zero
. _ . mean and varianc¥ ~!.
The expected payoff for the optimal mixed strategies= We then note [6] that a necessary and sufficient

> xicijy; is called thevalue of the gamand x;,y;  condition for the mixed strategix;} of player X to be
denote optimal mixed strategies of play&rsandY since  optimal is

again deviations from an optimal strategy by one of the
players will lead to a lower payoff for this player. inc,-j =y V. (2)

In the following we show how the statistical properties i
of such optimal mixed strategies for random payoffThe condition is necessary since if violated for sopne
matrices may be characterized analytically in the limitplayer Y playing Y; will lead to a payoff lower than
N — o, M — o with M/N = a = O(1). As a result wv.. It is also sufficient since combining (1) with the
of the central limit theorem, only the first two cumulants minimax theorem giveiij xicijy; = ve. We may thus
of the probability distributionP({c;;}) are relevant, as is characterize mixed strategies of playeérby introducing
generally the case in fully connected disordered systﬁme partition function

1([0 dx; )5(21 1 Xi — N) ®(Z XiCij — V)
1([0 dx:)S(Z, 1Xi — N)

where O(x) is the Heaviside step function and the Assuming the entropys(») to be self-averaging, we
probabilities of playing a glven strategy and the payoffuse the replica trick IZ = lim,—, 7. Z" and compute the
have been rescaled so thil (xi = N. Thus Z(v)  average over the payoffs of the replicated partition function
equals the fraction of the simplex obeyiy; x;c;; =  forintegern (a,b = 1,...,n). The calculation proceeds

v V j and therefore lies on the interv@0, 1]. Since by using the integral representation of the Heaviside step
Z(v) scales exponentially withiV, the quantity central function and by introducing the symmetrlc matrix of
to our calculation is the entrop§(») := 1/NInZ(»), overlap order parametegs, = 1/N Y ; x{x’ viaintegrals
which thus takes on values betweere and zero as overgq,, and delta functions represented by integrals over
usual for classical systems with continuous degrees ahe conjugate order parametérg [7]. The integrals over
freedom. E, arise from the integral representation of the constraint

| 3, x = N giving

«@on =TT [ 2w T 5on exp<—lNanbqab - N3, —NZI)

a=b a=b

X ]_[f dx? exp< > Gupxixl + iZEaxf'>
a=b,i a,i

llbj

Z(v) = ; (@)

In the limit of large payoff matricesv — o« the integrals over order parameters are dominated by their saddle point.
Throughout this paper we use the replica-symmetric ansatz [8]

Gaa = 41 iQaa = _1/2611 iE, =E Va

- . (4)
dab = qo  i4ab = Qo Va>b.
The limit » — 0 of (3) may now be taken by analytic continuation giving an entropy
1 1 1 Jqos + v
S(v) = extremu a0l = q1G1 + = qogo — E + —InQ2m) + stInH4
(v) nals%,E,(Iosqo|: 2 q141 > qo40 B (2m) a (m)
1 go + E? [ ( 1/_610r+E>
——In(A +A)_l+f+ DrinH [y ——— s 5
g A 2(q1 + 4o) Vair + o ®)
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where Ds= J‘% exp(—s?/2), and H(x) = [ Ds (ac- 40 \

cordingly for Dr). Numerical evaluation of (5) shows that

0.8

S(v) is a continuously decreasing functionof At v, it \

tends to—oo, indicating that, for larger values of there 30 | 06 - ]
are no more solutions to (1). Furthermoreras»> v. one

finds g9 — ¢1 indicating that as the points contributing o 04|

to (2) crowd into an ever decreasing area of the simplex 20 r
which shrinks to a point at., their mutual overlag, ap-
proaches the self-overlap.

In this regime the entropy may be conveniently written 1.0
in terms of the order parameteqs, o, E, W = §1 + qo
andv = g1 — qo. Forv < v, S(v) describes subopti-
mal strategies. A — 0 we findgo ~ v 2, ~ v\ 00 -
Rescaling the conjugate order parameters accordingly an
expanding the saddle-point equations to leading order ir

Ve

v asv — 0, we find %0 05 10 15 2.0
W — aH(=v./\/q0) = 0, o
A _ Y — FIG.1. The value of the game. and (inset) the fraction of
W — H( E/\/%) 0, (6) strategies played with nonzero probability0) as a function of
go — (v? + qoW — a/qov.G(—v.//q0) = 0, a. The analytical results (full line) are compared to numerical
¢ simulations withN = 200 averaged over 200 samples. The
g0 — (E? + 90)/W — g0 E/W*G(—E/J4o) = 0, symbol size corresponds to the statistical error.

with E = qu - Q().

The statistical properties of optimal strategifes} may
be deduced from the proportion of strategi€s with
x;i >a,

of strategy choices of playéf increases. The fraction of
strategies played with nonzero probability increases with
R «, which reflects the decrease of with «: At lower v,
0(a) := <<(1/N)Z®(x;" _ a)>> = H(M)- there are fewer with A7 = 3, ¢;;yj < v, so as argued
f q0 above the number of strategiés played with nonzero
(7)  probability increases as a resullt.
Thus only a fractiond(0) = w of the pure strategies We next abandon the initial assumption that the indi-

X; havex; > 0 and are played with nonzero probabil- vi_du_al entriesc;; in the payoff matrix are independently
ity. This striking effect may be explained by consid- distributed and consider the case where the outcomes of

ering the behavior of playet, whose optimal mixed the game for_ different strategy choices of t_he players are
Strategyy;_‘ obeysA; = Z/ Cijy;_‘ <. Vi Sincer, = co_rrelated W|th.each other_. S_uch c_orrelatlons may arise
(1/N) S X A%, X must be zero if\} < .. This mecha- quite ngturally in real appllcat_lops since we expect some
nism thus ensures an expected payeffto X, even if Y strategies to have broadly'S|m|Iar properties and hence
chooses an optimal strategy. However it is not to be conY/€ld similar results for a given response of the respec-
fused with the concept of domination, widely discussediVe opponent. For simplicity we restrict the discussion to
in the game theory literature [1,6,9], where a stratagy the casex = 1. The most general tractable case appears
hasx; = 0 because whatever the response of the oppot—O be

nent some other pure or mixed strategy will lead to a  {(cijckn))/{cii) Lew)) =: Cijpary = CixCjr,  (8)
higher expected payoff. In fact, in the thermodynamicwhere Cj; and Cj refer to columnlike and rowlike cor-
limit, domination of a pure strategy occurs with probabil- relations. Of course({c;;}) is not uniquely determined

ity zero since for a pure strated§). to be dominated by a by its second moments, but as argued above it suffices to
mixed strategyc{) requires(1/N) > ; xiDCij = cy; V jbut  consider Gaussian distributed payoff matrices. The spe-
the left-hand side i©(N ') whereas the right-hand side cific form of C5 and Cj; that we will consider in the

is O(N~1/2). following is
Figure 1 shows the value of the game and (inset) the . 1 P =k
fraction of strategies played with nonzero probability as a Ci = {Cc JN i # ke 9

function of the aspect ratia of the payoff matrix. At
a=1,v.=0andd() =1/2. The resultr. =0 at and the resulting replica symmetric entropy may be
a = lisaconsequence of the symmetry of the distributiorcalculated as outlined for the case of uncorrelated payoffs
of payoffs undee;; — —cj;, i.e., under the interchange of above. Again in the limitv — 0, the corresponding
player X and playerY [10]. Fora > 1, playerY has a saddle-point equations describe optimal strategies. For
greater choice of strategies than playgeand vice versa. c¢. = ¢, = ¢ the optimal payoff is zero, as a result of
As expected, the payoff to play&rdecreases as the range the symmetry ofP({c;;}) under the exchange of players.
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FIG. 3. The optimal payoffy. (full) and the fractiond(0)

FIG. 2. The fractiong(0) strategies played with nonzero of strategies played with nonzero probability (dotted) against
probability as a function of = ¢, = c.. c=c, atc, = 0.

Figure 2 shows _the fractlo@(o) of strategies played V.V'th work is in progress on the statistical description of Nash
nonzero probability in optimal strategies as a function of

c. 6(0) decreases with increasing At positive ¢ there equilibria in bimatrix games.
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