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Matrix games constitute a fundamental problem of game theory and describe a situation of tw
players with completely conflicting interests. We show how methods from statistical mechanics c
be used to investigate the statistical properties of optimal mixed strategies of large matrix gam
with random payoff matrices and derive analytical expressions for the value of the game and t
distribution of strategy strengths. In particular the fraction of pure strategies not contributing to th
optimal mixed strategy of a player is calculated. Both independently distributed as well as correlat
elements of the payoff matrix are considered and the results are compared with numerical simulatio
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Game theory models in mathematical term problems
strategic decision making typically arising in economic
sociology, or international relations and owes much of
modern form to von Neumann [1]. The generic situation
game theory consists of a set of playershX, Y , . . .j choosing
between differentstrategieshXij, hYij, . . . , the combination
of which determines the outcome of a game specified
the payoffsPXsXi , Yi , . . .d, PY sXi , Yi , . . .d, . . . each player
is going to receive. The payoffs depend on the strateg
of all players and the problem for every individual player
to choosehis strategy such as to optimize his payoff with
out having control over the strategies of all other playe
Despite the extreme simplification of the real world situ
ation inherent in this framework, game theory has prov
not only to be a viable mathematical discipline but als
to be able to characterize important features of econom
cal systems. Many interesting results have been obtain
since von Neumann’s pioneering work, including the cha
acterization of equilibria [1,2] and the emergence of coo
eration [3]. However, detailed investigations have be
restricted either to general statements concerning, e.g.,
existence of equilibria, or to situations where every play
has only a small number of strategies at his disposal a
where the payoffs are simple functions of these strategi
As many situations of interest show a large number of po
sible strategies and rather complicated relationships
tween strategic choices and the resulting payoffs, it
tempting to model the payoffs by a random function and
apply the methods of statistical mechanics to describe
properties of the game. This will be a sensible approa
if there are characteristic “macroscopic” quantities whic
do not depend on the particular realization of the rando
parameters, i.e., areself-averagingin the sense of the sta-
tistical mechanics of disordered systems [4] (for relate
applications, see Ref. [5]).

In the present Letter we show how methods from statis
cal mechanics can be applied to characterize the statist
properties of optimal strategies in matrix games with larg
randomly chosen payoff matrices. Explicitly, we calcu
late the mean payoff and the fraction of pure strategi
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which occur in the optimal mixed strategy of a playe
For simplicity we restrict ourselves to matrix games, th
type of zero-sum games between two players which a
forms the basis of von Neumann’s treatment [1,6]. Su
games are defined by a (not necessarily square) payoff m
trix cij : PlayerX may choose betweenN strategiesXi and
playerY betweenM strategiesYj, wherei ­ 1, . . . , N and
j ­ 1, . . . , M. At each step of this game they receive th
payoffs PXsXi , Yjd ­ 2PY sXi , Yjd ­: cij . Since player
X wishes to gain as large a payoffcij as possible, whereas
playerY must attempt to reach as small a value ofcij in
order to maximize his payoffPY sXi , Yjd ­ 2cij, the goals
of the players are completely conflicting. Thus it is ap
propriate for the players to proceed as follows: PlayerX
knows that when playing strategyXi he will receive at
least the payoff minj cij . He therefore chooses strateg
Xip , satisfying minj cipj ­ maxi minj cij. Equivalently,
player Y plays strategyYjp determined by maxi cijp ­
minj maxi cij since it minimizes his losses for the opti
mal choices ofX. It is easy to show that maxi minj cij #

minj maxi cij always. The situation is simple if the ma
trix has a so-calledsaddle point, i.e., if there is a pairip, jp

satisfying maxi minj cij ­ cipjp ­ minj maxi cij . In this
case, it is optimal for both players to stick to theirpure
strategiesXip andYip , respectively, since deviations from
an optimal strategy by one of the players will lead to
lower payoff for this player. For a large random matrixc
the probability for the existence of a such a saddle po
vanishes exponentially with the size of the matrix, and t
choice of an optimal strategy is less obvious. Since,
this case, maxi minj cij , minj maxi cij, playerX will at-
tempt to achieve a greater gain than his guaranteed minim
gain maxi minj cij and likewiseY will attempt to achieve
a smaller loss than minj maxi cij . To this end they have to
prevent their opponent from guessing which strategy th
are going to play and choose each strategy with a cert
probabilityxi andyj , respectively [1]. A vectorxi of prob-
abilities is called amixed strategyand by the normaliza-
tion condition is constrained to lie on theN-dimensional
simplex. The famous minimax theorem by von Neuman
© 1998 The American Physical Society 4999
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states that for any payoff matrixc there exists asaddle
point of mixed strategies, i.e., there are two vectorsxp

i and
yp

j such that

max
hxi j

min
hyj j

X
ij

xicijyj ­
X
ij

xp
i cijyp

j ­ min
hyj j

max
hxij

X
ij

xicijyj .

The expected payoff for the optimal mixed strategiesnc :­P
ij xp

i cijyp
j is called thevalue of the gameand xp

i , yp
i

denote optimal mixed strategies of playersX andY since
again deviations from an optimal strategy by one of t
players will lead to a lower payoff for this player.

In the following we show how the statistical propertie
of such optimal mixed strategies for random payo
matrices may be characterized analytically in the lim
N ! `, M ! ` with MyN ­ a ­ Os1d. As a result
of the central limit theorem, only the first two cumulant
of the probability distributionPshcijjd are relevant, as is
generally the case in fully connected disordered syste
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described by mean-field theories. Since an average va
kkkkcllll of the elements of the payoff matrix results only in a
modified value of the gamenc 1 kkkkcllll without changing
the optimal mixed strategies, we may setkkkkcllll ­ 0
without loss of generality and take the elementscij to
be independent Gaussian distributed variables with ze
mean and varianceN21.

We then note [6] that a necessary and sufficien
condition for the mixed strategyhxij of player X to be
optimal is X

i

xicij $ nc ; j . (1)

The condition is necessary since if violated for somej
player Y playing Yj will lead to a payoff lower than
nc. It is also sufficient since combining (1) with the
minimax theorem gives

P
ij xicijyp

j ­ nc. We may thus
characterize mixed strategies of playerX by introducing
the partition function
Zsnd ­

QN
i­1s

R`

0 dxidds
PN

i­1 xi 2 Nd
QaN

j­1 Qs
P

i xicij 2 ndQN
i­1s

R`

0 dxidds
PN

i­1 xi 2 Nd
, (2)
ion
s
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where Qsxd is the Heaviside step function and the
probabilities of playing a given strategy and the payo
have been rescaled so that

PN
i­1 xi ­ N. Thus Zsnd

equals the fraction of the simplex obeying
P

i xicij $

n ; j and therefore lies on the intervalf0, 1g. Since
Zsnd scales exponentially withN , the quantity central
to our calculation is the entropySsnd :­ 1yN ln Zsnd,
which thus takes on values between2` and zero as
usual for classical systems with continuous degrees
freedom.
ff

of

Assuming the entropySsnd to be self-averaging, we
use the replica trick lnZ ­ limn!0

d
dn Zn and compute the

average over the payoffs of the replicated partition funct
for integern (a, b ­ 1, . . . , n). The calculation proceed
by using the integral representation of the Heaviside s
function and by introducing the symmetric matrix
overlap order parametersqab ­ 1yN

P
i xa

i xb
i via integrals

overqab and delta functions represented by integrals o
the conjugate order parametersq̂ab [7]. The integrals over
Ea arise from the integral representation of the constraP

i xa
i ­ N giving
nt.
kkkkZnsndllll ­
Y
a$b

Z dqabdq̂ab

2pyN

Y
a

Z dEa

2pyN
exp

√
2iN

X
a$b

qabq̂ab 2 iN
X
a

Ea 2 N
X
a

1

!

3
Y
a,i

Z `

0
dxa

i exp

0@i
X

a$b,i

q̂abxa
i xb

i 1 i
X
a,i

Eaxa
i

1A
3

Y
a,j

Z `

n

dla
j

Z dya
j

2p
exp

0@2
1
2

X
a,b,j

qabya
j yb

j 1 i
X
a,j

ya
j la

j

1A . (3)

In the limit of large payoff matricesN ! ` the integrals over order parameters are dominated by their saddle poi
Throughout this paper we use the replica-symmetric ansatz [8]

qaa ­ q1 iq̂aa ­ 21y2q̂1 iEa ­ E ; a

qab ­ q0 iq̂ab ­ q̂0 ;a . b .
(4)

The limit n ! 0 of (3) may now be taken by analytic continuation giving an entropy

Ssnd ­ extremumq1,q0,E,q̂0,q̂0

"
1
2

q1q̂1 1
1
2

q0q̂0 2 E 1
1
2

lns2pd 1 a
Z

Ds lnH

√p
q0 s 1 n

p
q1 2 q0

!

2
1
2

lnsq̂1 1 q̂0d 2 1 1
q̂0 1 E2

2sq̂1 1 q̂0d
1

Z
Dr ln H

√
2

p
q̂0 r 1 E

p
q̂1 1 q̂0

!#
, (5)
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where Ds­
ds

p
2p

exps2s2y2d, and Hsxd ­
R`

x Ds (ac-
cordingly for Dr). Numerical evaluation of (5) shows tha
Ssnd is a continuously decreasing function ofn. At nc it
tends to2`, indicating that, for larger values ofn there
are no more solutions to (1). Furthermore asn ! nc one
finds q0 ! q1 indicating that as the points contributing
to (2) crowd into an ever decreasing area of the simpl
which shrinks to a point atnc, their mutual overlapq0 ap-
proaches the self-overlapq1.

In this regime the entropy may be conveniently writte
in terms of the order parametersq0, q̂0, E, ŵ ­ q̂1 1 q̂0
and y ­ q1 2 q0. For n , nc, Ssnd describes subopti-
mal strategies. Asy ! 0 we find q̂0 , y22, ŵ , y21.
Rescaling the conjugate order parameters accordingly a
expanding the saddle-point equations to leading order
y asy ! 0, we find

ŵ 2 aHs2ncy
p

q0 d ­ 0 ,

ŵ 2 Hs2Ey
p

q̂0 d ­ 0 ,

q̂0 2 sn2
c 1 q0dŵ 2 a

p
q0 ncGs2ncy

p
q0 d ­ 0 ,

q0 2 sE2 1 q̂0dyŵ 2
p

q̂0 Eyŵ2Gs2Ey
p

q̂0 d ­ 0 ,

(6)

with E ­ q0ŵ 2 q̂0.
The statistical properties of optimal strategieshxp

i j may
be deduced from the proportion of strategiesXi with
xp

i . a,

usad :­

****
s1yNd

X
i

Qsxp
i 2 ad

++++
­ H

√
ŵa 2 E

p
q̂0

!
.

(7)

Thus only a fractionus0d ­ ŵ of the pure strategies
Xi have xi . 0 and are played with nonzero probabil
ity. This striking effect may be explained by consid
ering the behavior of playerY , whose optimal mixed
strategyyp

j obeysl
p
i ­

P
j cijyp

j # nc ; i. Sincenc ­
s1yNd

P
i xp

i l
p
i , xp

i must be zero iflp
i , nc. This mecha-

nism thus ensures an expected payoffnc to X, even if Y
chooses an optimal strategy. However it is not to be co
fused with the concept of domination, widely discusse
in the game theory literature [1,6,9], where a strategyXi

has xi ­ 0 because whatever the response of the opp
nent some other pure or mixed strategy will lead to
higher expected payoff. In fact, in the thermodynam
limit, domination of a pure strategy occurs with probabi
ity zero since for a pure strategyXk to be dominated by a
mixed strategyxD

i requiress1yNd
P

i xD
i cij $ ckj ; j but

the left-hand side isOsN21d whereas the right-hand side
is OsN21y2d.

Figure 1 shows the value of the game and (inset) t
fraction of strategies played with nonzero probability as
function of the aspect ratioa of the payoff matrix. At
a ­ 1, nc ­ 0 and us0d ­ 1y2. The resultnc ­ 0 at
a ­ 1 is a consequence of the symmetry of the distributio
of payoffs undercij ! 2cji , i.e., under the interchange of
player X and playerY [10]. For a . 1, playerY has a
greater choice of strategies than playerX and vice versa.
As expected, the payoff to playerX decreases as the range
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FIG. 1. The value of the gamenc and (inset) the fraction of
strategies played with nonzero probabilityus0d as a function of
a. The analytical results (full line) are compared to numerical
simulations withN ­ 200 averaged over 200 samples. The
symbol size corresponds to the statistical error.

of strategy choices of playerY increases. The fraction of
strategies played with nonzero probability increases with
a, which reflects the decrease ofnc with a: At lower nc

there are feweri with l
p
i ­

P
j cijyp

j , nc, so as argued
above the number of strategiesXi played with nonzero
probability increases as a result.

We next abandon the initial assumption that the indi-
vidual entriescij in the payoff matrix are independently
distributed and consider the case where the outcomes
the game for different strategy choices of the players ar
correlated with each other. Such correlations may aris
quite naturally in real applications since we expect some
strategies to have broadly similar properties and henc
yield similar results for a given response of the respec
tive opponent. For simplicity we restrict the discussion to
the casea ­ 1. The most general tractable case appear
to be

kkkkcijcklllllyskkkkcijllll kkkkckllllld ­: Csijdskld ­ C
c
ikC r

jl , (8)

whereC
c
ik and C

r
jl refer to columnlike and rowlike cor-

relations. Of coursePshcijjd is not uniquely determined
by its second moments, but as argued above it suffices
consider Gaussian distributed payoff matrices. The spe
cific form of C

c
ik and C

r
jl that we will consider in the

following is

C
c,r
ik ­

Ω
1 i ­ k
cc,ryN i fi k , (9)

and the resulting replica symmetric entropy may be
calculated as outlined for the case of uncorrelated payoff
above. Again in the limity ! 0, the corresponding
saddle-point equations describe optimal strategies. Fo
cc ­ cr ­ c the optimal payoff is zero, as a result of
the symmetry ofPshcijjd under the exchange of players.
5001
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FIG. 2. The fraction us0d strategies played with nonzero
probability as a function ofc ­ cr ­ cc.

Figure 2 shows the fractionus0d of strategies played with
nonzero probability in optimal strategies as a function o
c. us0d decreases with increasingc: At positive c there
are strategies which tend to be beneficial for playerX
whatever the response of the opponent. As a result,X
concentrates on a smaller fraction of his strategies a
vice versa for negativec.

In the asymmetric casecr ­ c, cc ­ 0, however, a
nonzero value of the game is possible. The resultin
value for nc and the fraction of strategies played with
nonzero probability are shown in Fig. 3. Again, positiv
correlations between payoffs in the same row of th
payoff matrix lead to strategies which tend to be eithe
beneficial or detrimental to playerX. By admitting only
the beneficial ones into his mixed strategies,X may
achieve a positive payoff. The fraction of strategie
played with nonzero probability decreases accordingly.

The simulation results shown in Figs. 1–3 were ob
tained using the simplex algorithm to solve the linear pro
gramming problem [6] defined by (1) for a system o
size N ­ 200 averaged over 200 payoff matrices with
Gaussian distributed inputs [11]. The numerical resu
show very good agreement with the analytical expressio

In conclusion, we have shown that techniques from th
statistical mechanics of disordered systems may be us
to analyze the statistical properties of optimal solution
of matrix games with random payoffs. Self-averagin
macroscopic quantities such as the value of the game w
identified and calculated for various probability distribu
tions. These quantities include the fraction of strategi
played with nonzero probability. Further problems in ma
trix games which may be treated using these methods
clude the effects of deviating from the optimal strategy an
the influence of perturbations of the payoff matrix on th
optimal strategy, which form the basis of the justificatio
for the full stability of mixed equilibria [12]. Furthermore,
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FIG. 3. The optimal payoffnc (full) and the fractionus0d
of strategies played with nonzero probability (dotted) agains
c ­ cr at cc ­ 0.

work is in progress on the statistical description of Nas
equilibria in bimatrix games.
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