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Metal-Insulator Transition of Disordered Interacting Electrons
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We calculate the corrections to the conductivity and compressibility of a disordered metal when the
mean free path is smaller than the screening length. Such a condition is shown to be realized for low
densities and large disorder. Analysis of the stability of the metallic state reveals a transition to the
insulating state in two dimensions. [S0031-9007(98)07734-5]

PACS numbers: 71.30.+h

The discovery of a metal-insulator transition in the two- We have been motivated to reexamine the question of
dimensional electron gas, in a Si-MOSFET [1,2] and subthe renormalization of the compressibility by two argu-
sequently observed in other systems [3—6], suggests thatents: First, the metal-insulator transition in the pure
there remains much to be understood in this classic prolimit, i.e., the Wigner transition. As; is increased, either
lem. The available theory ignoring interactions predictsin two or three dimensions, a first-order transition to the
an insulating state for any disorder at all densities [7].Wigner crystal is expected to occur due to the long-range
The most systematic theory, including effects of both dishature of the Coulomb interaction even for spinless elec-
order and interactions, due to Finkelstein [8], followed thetrons. The Wigner transition appears to satisfy conditions
discovery of singularities in the problem by Altshuler andin which disorder turns a first-order transition to a con-
Aronov [9]. It predicts a metallic state at all densities.tinuous transition [12]. It seems surprising then that the
The new experiments have also generated much recesinglet interaction would become irrelevant in the disor-
theoretical activity [10]. dered problem. Second, if the insulating state has un-

Finkelstein’s theory has, however, a remarkable predicscreened interactions, as commonly assumed, for instance,
tion with which experiments are consistent. For a magin the Efros-Shklovskii [13,14] derivation, the screening
netic field coupling to spins an insulating state appears ttength on the metallic side must diverge as the metal-
occur at all densities at low enough temperature [2]. insulator transition is approached. The screening length is

Finkelstein's theory is based on the existence of twagenerally proportional to the inverse compressibility [see
scaling variables—effective disorder, parametrized by thé&q. (5) below].
conductancez, and an effective dimensionless spin-spin  The correction to the compressibility can be calculated
interaction parametey,. The reduction to these two pa- from the correction to the exchange and correlation contri-
rameters is largely based on the assumption that conbution to the ground state energy (per unit area) from the
pressibility must be continuous across a metal-insulatoso-called ring diagrams, with disorder, shown in Fig. 1:
transition. This ensures that the electron-electron inter- i
actionsy, in the singlet channel are irrelevant. Indeed, Ering = - fdw]dzq In[1 + Ul(g)7(q, ®)]. (1)
existing explicit calculations on the metallic side show no 5 . ) .
singular correction to the compressibility in leading order €€ U(q) = 2me*/€q in two dimensions. Theroper
in disorder [8,9,11]. polarization in the diffusive regime is

Here we seek to add an important physical feature . Dq’ ~1 —1
to the theory of interacting disordered fermions so thatﬂ(q’w) ~Vie 1 Dg*’ forg <€ o<
the modified theory has a metal-insulator transition. It )
might be argued that Finkelstein’s theory scales at low
temperatures to a metallic state but with strong coupling in @ @

down. Could a strong-coupling analysis of the same theory
lead to a new low energy scale below which an insulating
state emerges? We believe the experimentally observeﬁ

metal-insulator transition is not due to the emergence o nergy with disorder. The hatched lines represent thtrix

a new energy scale primarily because such a transition &r impurity scattering, and the dashed lines represent the
apparent already at temperaturesd¥ ) [1-6]. Coulomb interaction.

the spin-spin interaction channel where the analysis breaks{%} N

G. 1. Series for the ring contribution to the ground state
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For otherg andw which we refer to as the ballistic regime, resenting exchange corrections at short distances, become
the polarizability is given by the generalization of the usualimportant. We have calculated the contributions from
form [15] to include the leading order contribution of im- these additional processes following the Hubbard inter-
purity scatteringw — w + i/7, wherel/r is the single- polation scheme [20], in which the bare Coulomb in-
particle scattering rate [16]. In Eq. (2) is the diffusion teraction in the susceptibility is multiplied by a factor
constant{ the mean free path, andthe density of states. [1 — F(q)], whereF(q) = ¢%/2(¢* + k%). The leading
The compressibility at fixed density is calculated by order-disorder correction to the ground state energy is es-
k! = d’E/dn?, wheren is the density. sentially unchanged from that given in Eq. (3).

First consider the contribution #;,, from the diffusive We next consider the problem in a finite box of size
part. Forf > s,, wheresy = (2me?v/e)”!isthe screen- L much larger thar/(L) (or equivalently a temperature
ing length in the Thomas-Fermi approximation, the leadingl’ = DL~2). For our considerations to be meaningful it
contribution toE,,, is ~D/¢*. This yields a nonsingular is necessary that(L) < s(L) for L of order a few times
correction to the inverse compressibili@‘g) ~ (kp€)3, 4, i.e., condition (6), be satisfied and remain consistently
which decreases the compressibility with increasing disso asL is increased. To test the latter, we must first cal-
order. For{ < sg, the contribution to Eyn,) is ~D/sy.  culate the correction té as a function ofL through the
This is proportional to the density, so it produces no cor<alculation of the conductancg(L). In calculating the
rection to the compressibility. corrections to the conductance we assume that the condi-

Consider next the contribution of the ballistic part. Thistion s(L) > L > €(L) is satisfied and check later for its
is similar to the classic calculation of Gell-Mann and consistency.

Brueckner [17,18] and others, but with the lower cutoff in  In this limit, the bare Coulomb interaction appears in the
the ¢ integral given by¢~!'. Upon evaluation, the energy exchange correction to the conductivity. Consequently,
per particle, to the leading order in disorder, may be writterthe infrared singularity inf = 2 (and 3) is stronger than

in units of a Rydberg as in the opposite limit. Fos < ¢, the perturbative correc-
s tion is proportional to IfL/€), with a universal (and nega-
Fring = fr?ng —A 70 . (3) tive) coefficient [9]. The same processes with unscreened
Coulomb interactions give
Here fr?ng is the contribution foX — 0, and the constant Sg 212 L

A =~ 4/7. The disorder correction comes mostly from a 2 2 g Tors>L>& (7)

correction to the Zero point energy of th_e plasmons. The, e coefficient is; dependent. This singular contribu-
corresponding additive correction to the inverse COMPress;o 1 arises from the contribution of momenta less thah

ibility is and is related to the diffusion poles.
Ko ~ 01672 %0 @) Next consider the Hartree corrections to the conductiv-
ring SO g ity, which tend to enhance the conductivity in the limit
. I - s < €. The interactions appearing in Hartree corrections
wherexy = v is the contribution to the compressibility of .
C0, ; do not depend on the total momentum of the particle-hole
the kinetic energy. Here we have takertio be indepen-

dent of the density, as is appropriate for the experimentaﬁalr carrying the current. They involve characteristic mo-

systems in the immediate vicinity of the metal-insulatormenrla ofO(kr). The (;nly ?ﬁECt ofdthe mteracr;uons at
transition [19]. small momentum transfers is to produce &Jrenhance-

. . ment to the triplet amplitude. The Hartree terms provide
The actual screening lengths related to the compress- L . ;
i the same logarithmic corrections fer> ¢ as in the op-
ibility through NS
posite limit, and so may be neglected compared to the
s/so = Ko/K . (5) contribution of Eq. (7).
We can now check for the consistency of the assumption
of unscreened interactions over the length sdaleThe
s(:ompressibility given by Eqg. (4) i& dependent through
€(L). First we note that Eq. (7) leads to a linear decrease
of the mean free path as is increased. It introduces a

K

Thus the screening length increasegas. We look for
the condition thak > ¢, the value of¢ at temperatures
of the order of the Fermi energy. Equation (4) provide
the dominant contribution forry, > 1 and gives the

condition length scalel* at which the mean free path decreases to
rs = 3(woro) ', (6) the atomic scale,
2
wherer is the scattering time andy = /i/mag. L = 50(1 + 177/_2> (8)
So far we have focused on the ring-diagram contribution 2%y

to the ground state energy. The ring diagrams take intdhe initial increase of the screening length, fass in-
account direct processes and are sufficient for small mgereased, is given by
mentum transfers even whef is not small. For large

momentum transfers, processes beyond ring diagrams, rep- s(L) =~ s(to) +

V2r, s(to)

772 €0

(L = £o). 9
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Itis then easily seen thatl) > L > {(L), provided that suggested in the critical regime to test the idea that the tran-

s(€o)/€o > max(1l, w2//2 ry). sition is to a glassy state.
We have also calculated the correction to the single- Another prediction of the theory is the condition (6)
particle density of states for the case that ¢, for the metal-insulator transition. There is not enough
data to test this condition systematically. What exists is
ov 1 rgL . L )
— = —\/_? Ak (10) consistent with it in ther dependence and approximately
v T

in magnitude of the criticak,. In the reported results
Equation (10) implies that the leading correction to the[1-6], the metal-insulator transition occurs atr, of
single-particle density of states at zero energy is proporabout 100 and r, of about20 with r; at the transition
tional to —7 /2. Equation (10) also implies that the showing slight increases as sample quality is improved.
single-particle self-energy is momentum dependent. Th&quation (6) also implies thats€ at the transition point
single-particle scattering time is then singularly modified,is of order unity, as is seen in the experiments [1-6].
in a form similar to that of the transport lifetime. While considerations of the variation of compressibility
It ought to be stressed that the results of this papein a problem with Coulomb interactions lead to a metal-
give only the leading high temperature corrections to thensulator transition in two dimensions, such a transition is
quantities calculated. However, Eq. (7) implies that thealready present in Finkelstein’s theory in three dimensions.
scale for the low temperature phenomena is of the ordddowever, such considerations change the nature of the
of the Fermi energy. The leading correction suggests thatransition. We urge a study of the variation in compress-
provided the condition (6) is fulfilled, the screening lengthibility as well as a study of frequency-dependent transport
is consistently much longer than the mean free path ands well as magnetic susceptibilities near and across the
the relevant size of the systefn so that the Coulomb metal-insulator transition, in three dimensions as well.
interaction is unscreened inside The conductivity in The basic ideas of this paper are of interest to several
that case rapidly tends to zero. In the opposite regimether electronic transitions, for example, the supercon-
s(€y) < £y, the singularities found here are absent. Theductor to insulator transitions [22] and the quantum-Hall
problem then is dominated by the diffusion processestransitions [23].
and the Finkelstein scaling equations, which scale towards Q. S. acknowledges support by NSF Grant No. DMR-
the metallic state, are valid. In the transition regime,9712626, a Robert A. Welch Foundation grant, and
s(L) = €(L), processes considered in both theories musthe A.P. Sloan Foundation. He also thanks Bell Labs
be included. We hope to pursue such an analysis. Buind NHMFL/FSU for hospitality during his visits and
since the initial flow downwards of the conductance inV. Dobrosavljevic for discussions.
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