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We calculate the corrections to the conductivity and compressibility of a disordered metal when
mean free path is smaller than the screening length. Such a condition is shown to be realized fo
densities and large disorder. Analysis of the stability of the metallic state reveals a transition to
insulating state in two dimensions. [S0031-9007(98)07734-5]
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The discovery of a metal-insulator transition in the two
dimensional electron gas, in a Si-MOSFET [1,2] and su
sequently observed in other systems [3–6], suggests t
there remains much to be understood in this classic pro
lem. The available theory ignoring interactions predic
an insulating state for any disorder at all densities [7
The most systematic theory, including effects of both di
order and interactions, due to Finkelstein [8], followed th
discovery of singularities in the problem by Altshuler an
Aronov [9]. It predicts a metallic state at all densities
The new experiments have also generated much rec
theoretical activity [10].

Finkelstein’s theory has, however, a remarkable pred
tion with which experiments are consistent. For a ma
netic field coupling to spins an insulating state appears
occur at all densities at low enough temperature [2].

Finkelstein’s theory is based on the existence of tw
scaling variables—effective disorder, parametrized by t
conductanceg, and an effective dimensionless spin-spi
interaction parametergt. The reduction to these two pa-
rameters is largely based on the assumption that co
pressibility must be continuous across a metal-insulat
transition. This ensures that the electron-electron inte
actionsgs in the singlet channel are irrelevant. Indeed
existing explicit calculations on the metallic side show n
singular correction to the compressibility in leading orde
in disorder [8,9,11].

Here we seek to add an important physical featu
to the theory of interacting disordered fermions so th
the modified theory has a metal-insulator transition.
might be argued that Finkelstein’s theory scales at lo
temperatures to a metallic state but with strong coupling
the spin-spin interaction channel where the analysis brea
down. Could a strong-coupling analysis of the same theo
lead to a new low energy scale below which an insulatin
state emerges? We believe the experimentally observ
metal-insulator transition is not due to the emergence
a new energy scale primarily because such a transition
apparent already at temperatures ofOsEFd [1–6].
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We have been motivated to reexamine the question
the renormalization of the compressibility by two argu
ments: First, the metal-insulator transition in the pu
limit, i.e., the Wigner transition. Asrs is increased, either
in two or three dimensions, a first-order transition to th
Wigner crystal is expected to occur due to the long-ran
nature of the Coulomb interaction even for spinless ele
trons. The Wigner transition appears to satisfy conditio
in which disorder turns a first-order transition to a co
tinuous transition [12]. It seems surprising then that t
singlet interaction would become irrelevant in the diso
dered problem. Second, if the insulating state has u
screened interactions, as commonly assumed, for insta
in the Efros-Shklovskii [13,14] derivation, the screenin
length on the metallic side must diverge as the met
insulator transition is approached. The screening length
generally proportional to the inverse compressibility [s
Eq. (5) below].

The correction to the compressibility can be calculat
from the correction to the exchange and correlation con
bution to the ground state energy (per unit area) from t
so-called ring diagrams, with disorder, shown in Fig. 1:

Ering ­
i
2

Z
dv

Z
d2q lnf1 1 Usqdpsq, vdg . (1)

Here Usqd ­ 2pe2yeq in two dimensions. Theproper
polarization in the diffusive regime is

psq, vd ­ n
Dq2

iv 1 Dq2 , for q ø ,21, v ø t21.

(2)

FIG. 1. Series for the ring contribution to the ground sta
energy with disorder. The hatched lines represent thet matrix
for impurity scattering, and the dashed lines represent
Coulomb interaction.
© 1998 The American Physical Society 4951
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For otherq andv which we refer to as the ballistic regime
the polarizability is given by the generalization of the usu
form [15] to include the leading order contribution of im
purity scattering,v ! v 1 iyt, where1yt is the single-
particle scattering rate [16]. In Eq. (2)D is the diffusion
constant,, the mean free path, andn the density of states.
The compressibility at fixed densityk is calculated by
k21 ­ d2Eydn2, wheren is the density.

First consider the contribution toEring from the diffusive
part. For, ¿ s0, wheres0 ; s2pe2nyed21 is the screen-
ing length in the Thomas-Fermi approximation, the leadin
contribution toEring is ,Dy,4. This yields a nonsingular
correction to the inverse compressibilitys 1

k d , skF,d23,
which decreases the compressibility with increasing d
order. For, ø s0, the contribution to (Ering) is ,Dys4

0.
This is proportional to the density, so it produces no co
rection to the compressibility.

Consider next the contribution of the ballistic part. Th
is similar to the classic calculation of Gell-Mann an
Brueckner [17,18] and others, but with the lower cutoff i
theq integral given by,21. Upon evaluation, the energy
per particle, to the leading order in disorder, may be writte
in units of a Rydberg as

Ering ­ E 0
ring 2 A

s0

,
. (3)

HereE
0
ring is the contribution for, ! `, and the constant

A ø 4yp. The disorder correction comes mostly from
correction to the zero point energy of the plasmons. T
corresponding additive correction to the inverse compre
ibility is µ

k0

k

∂
ring

ø 0.16r2
s

s0

,
, (4)

wherek0 ­ n is the contribution to the compressibility of
the kinetic energy. Here we have takent to be indepen-
dent of the density, as is appropriate for the experimen
systems in the immediate vicinity of the metal-insulato
transition [19].

The actual screening lengths is related to the compress-
ibility through

sys0 ­ k0yk . (5)

Thus the screening length increases as,21. We look for
the condition thats ¿ ,0, the value of, at temperatures
of the order of the Fermi energy. Equation (4) provide
the dominant contribution forrs ¿ 1 and gives the
condition

rs * 3sv0t0d1y2, (6)

wheret0 is the scattering time andv0 ­ h̄yma2
0.

So far we have focused on the ring-diagram contributio
to the ground state energy. The ring diagrams take in
account direct processes and are sufficient for small m
mentum transfers even whenrs is not small. For large
momentum transfers, processes beyond ring diagrams,
4952
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resenting exchange corrections at short distances, bec
important. We have calculated the contributions fro
these additional processes following the Hubbard inte
polation scheme [20], in which the bare Coulomb in
teraction in the susceptibility is multiplied by a facto
f1 2 Fsqdg, whereFsqd ­ q2y2sq2 1 k2

Fd. The leading
order-disorder correction to the ground state energy is
sentially unchanged from that given in Eq. (3).

We next consider the problem in a finite box of siz
L much larger than,sLd (or equivalently a temperature
T ­ DL22). For our considerations to be meaningful
is necessary that,sLd ø ssLd for L of order a few times
,, i.e., condition (6), be satisfied and remain consisten
so asL is increased. To test the latter, we must first ca
culate the correction to, as a function ofL through the
calculation of the conductancegsLd. In calculating the
corrections to the conductance we assume that the con
tion ssLd ¿ L ¿ ,sLd is satisfied and check later for its
consistency.

In this limit, the bare Coulomb interaction appears in th
exchange correction to the conductivity. Consequent
the infrared singularity ind ­ 2 (and 3) is stronger than
in the opposite limit. Fors ø ,, the perturbative correc-
tion is proportional to lnsLy,d, with a universal (and nega-
tive) coefficient [9]. The same processes with unscreen
Coulomb interactions give

dg
g

. 2
21y2

p2

rsL
,

, for s ¿ L ¿ , . (7)

whose coefficient isrs dependent. This singular contribu
tion arises from the contribution of momenta less than,21

and is related to the diffusion poles.
Next consider the Hartree corrections to the conduct

ity, which tend to enhance the conductivity in the lim
s ø ,. The interactions appearing in Hartree correctio
do not depend on the total momentum of the particle-ho
pair carrying the current. They involve characteristic m
menta ofOskFd. The only effect of the interactions a
small momentum transfers is to produce a lnssd enhance-
ment to the triplet amplitude. The Hartree terms provid
the same logarithmic corrections fors ¿ , as in the op-
posite limit, and so may be neglected compared to t
contribution of Eq. (7).

We can now check for the consistency of the assumpti
of unscreened interactions over the length scaleL. The
compressibility given by Eq. (4) isL dependent through
,sLd. First we note that Eq. (7) leads to a linear decrea
of the mean free path asL is increased. It introduces a
length scaleLp at which the mean free path decreases
the atomic scale,

Lp ø ,0

µ
1 1

p2

21y2rs

∂
. (8)

The initial increase of the screening length, asL is in-
creased, is given by

ssLd ø ss,0d 1

p
2 rs

p2

ss,0d
,0

sL 2 ,0d . (9)
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It is then easily seen thatssLd ¿ L ¿ ,sLd, provided that
ss,0dy,0 ¿ maxs1, p2y

p
2 rsd.

We have also calculated the correction to the single
particle density of states for the case thats ¿ ,,

dn

n
. 2

1
p

2 p

rsL
,

. (10)

Equation (10) implies that the leading correction to the
single-particle density of states at zero energy is propo
tional to 2T21y2. Equation (10) also implies that the
single-particle self-energy is momentum dependent. Th
single-particle scattering time is then singularly modified
in a form similar to that of the transport lifetime.

It ought to be stressed that the results of this pape
give only the leading high temperature corrections to th
quantities calculated. However, Eq. (7) implies that the
scale for the low temperature phenomena is of the ord
of the Fermi energy. The leading correction suggests tha
provided the condition (6) is fulfilled, the screening length
is consistently much longer than the mean free path an
the relevant size of the systemL so that the Coulomb
interaction is unscreened insideL. The conductivity in
that case rapidly tends to zero. In the opposite regim
ss,0d ø ,0, the singularities found here are absent. Th
problem then is dominated by the diffusion processes
and the Finkelstein scaling equations, which scale toward
the metallic state, are valid. In the transition regime
ssLd ø ,sLd, processes considered in both theories mus
be included. We hope to pursue such an analysis. B
since the initial flow downwards of the conductance in
Eq. (8) is much faster than the behavior in Finkelstein’s
theory, ss,0d ø ,0 may be taken as a good approximate
condition for the metal-insulator transition.

The insulating state with disorder and Coulomb interac
tions is most likely a glass exhibiting the Efros-Shklovskii
[13] phenomena. The precise behavior in the critica
regime of the transition to such a glassy state is a diffi
cult question which needs further study.

The major new result here is the demonstration of a rou
to a metal-insulator transition in two dimensions as densit
is decreased, as is found in experiments [1–6]. The meta
insulator transition is evident in the theory at temperature
of OsEFd, also as in experiments. The theory preserve
Finkelstein’s prediction that a magnetic field coupling to
spins turns the metallic state insulating, sincegt becomes
irrelevant. But the approach to the insulating state is likel
to be different.

The most important prediction of the theory is the van
ishing of the compressibility as the transition is approache
from the metallic side. Some existing observations [21
in n-GaAs are consistent with the compressibility ap-
proaching zero as density is decreased towardsrs ø 6.8.
But the metal-insulator transition was not monitored in
this experiment. We urge simultaneous compressibilit
and transport measurements to check Eq. (6). Frequenc
dependent transport and susceptibility experiments are al
-
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suggested in the critical regime to test the idea that the tra
sition is to a glassy state.

Another prediction of the theory is the condition (6)
for the metal-insulator transition. There is not enoug
data to test this condition systematically. What exists
consistent with it in thet dependence and approximately
in magnitude of the criticalrs. In the reported results
[1–6], the metal-insulator transition occurs atv0t0 of
about 100 and rs of about 20 with rs at the transition
showing slight increases as sample quality is improve
Equation (6) also implies thatkF, at the transition point
is of order unity, as is seen in the experiments [1–6].

While considerations of the variation of compressibility
in a problem with Coulomb interactions lead to a meta
insulator transition in two dimensions, such a transition i
already present in Finkelstein’s theory in three dimension
However, such considerations change the nature of t
transition. We urge a study of the variation in compress
ibility as well as a study of frequency-dependent transpo
as well as magnetic susceptibilities near and across t
metal-insulator transition, in three dimensions as well.

The basic ideas of this paper are of interest to sever
other electronic transitions, for example, the superco
ductor to insulator transitions [22] and the quantum-Ha
transitions [23].
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