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Textures and the Shapes of Domains in Langmuir Monolayers
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Two-dimensional domains containing anXY -like order parameter exhibit nontrivial internal structur
and take on shapes controlled by the configuration that the order parameter adopts. The t
exhibited by the order parameter in such domains are controlled by the interplay between bul
surface contributions to the energy. We report calculations of the internal texture and the shape o
domains. These calculations lead to the determination of the equilibrium properties of two-dimen
domains, such as those observed in Langmuir monolayers. This allows for the unambiguous expl
of the implications of experimental findings. [S0031-9007(98)07795-3]

PACS numbers: 68.55.Ln, 68.18.+p, 68.60.–p
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Monolayers of surfactants confined to the air/water i
terface have been found to possess complex textures s
lar to those observed in liquid crystals. The textures a
generally observed in “tilted” phases—that is, in phas
in which the long axes of the molecules in the film are n
perpendicular to the water surface but are uniformly tilte
with respect to the normal. The textures are the result
the spontaneous organization of the molecular tilt azimu
on macroscopic length scales. They can be understood
least qualitatively, in terms of continuum elastic theories
smectic liquid crystals [1] or, more relevant to the prese
work, in terms of the two-dimensionalXY model.

When the surfactants organize into domains of co
densed tilted phases, such as theL2 phase, surrounded
by an isotropic phase [2], many striking textures hav
been observed. Such textures range from continuous b
jums, textures with point and/or line defects [1], to stripe
textures in spiral domains [3]. We will, however, focu
our discussions on the boojums in which the tilt azimu
varies continuously and appears to radiate in some ca
from a defect located at the edge of the domain or fro
a “virtual” defect in the isotropic phase [4]. Domain
containing a boojum texture are not circular. Rathe
they reflect the various nonisotropic influences that co
trol domain shape in the presence of a nonhomogene
background. Among the features seen are protrusions
times sharp enough to be characterized as “cusps” [
and indentations, which give the domains a heartlike,
“cardioid,” appearance [6,7].

While there are notable cases in which the full analy
cal solution can be obtained [5], the determination of th
properties of a domain in which such a texture has form
presents a calculational challenge. Energy minimizati
entails the simultaneous adjustment of the orientations
surfactant molecules in the interior of the domain and t
shape of the domain’s boundary. Past work on the pro
lem of the shape of surfactant domains has relied on eit
the assumption of a texture that is unaffected by variatio
in the boundary [8] or on the approximation of a near
circular domain [5,9]. Neither assumption is necessar
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close to reality, and results obtained in both cases can
legitimately called into question.

This Letter describes a successful evaluation of equ
librium properties of a domain of surfactants. The evalu
ation is based on the numerical solution of the extremu
equations for the energy of anXY -like texture confined
to a compact, but not necessarily circular, domain. W
are able to explore the texture and the associated dom
shape that result from various forms of the boundary an
bulk energy of the two-dimensional system.

The starting point in the analysis is the Hamiltonian
of the XY order parameter, represented as the two
dimensional unit vector̂csx, yd, which is parametrized in
terms of the angle,Qsx, yd betweenĉsx, yd and thex
axis. The order parameter fieldQsx, yd will be referred to
as the texture. The Hamiltonian,HfQg ­

R
V HbdA 1H

G ssq 2 Qd ds, whereHb is given by

Hb ­
k

2
hj=Qj2 1 bfs2Q2

x 1 Q2
yd cos2Q

2 2QxQy sin 2Qgj , (1)

Qx andQy represent partial derivatives ofQ with respect
to x and y, respectively. The integral

R
V is over the

domain’s bulk, while
H

G is an integral over the closed
curve bounding the domain. The coefficientk is the
“mean” Frank constant, the average of the bend and spl
moduli, whileb is proportional to the difference between
the two moduli. Specifically,2k ­ Ks 1 Kb and2kb ­
Ks 2 Kb whereKby2 multiplies j $= 3 ĉj2 in the energy
of the XY order parameter andKsy2 multiplies j $= ? ĉj2.
The constantsKb and Ks are, respectively, the bend and
splay modulus. The boundary energy,ssq 2 Qd, will
have the general form

sswd ­ a0 1 a1 cosw 1 a2 cos2w 1 . . . . (2)

The angleq in the argument of the boundary energy is
the angle between the unit normal to the curve boundin
the domain and thex axis. The fact that the harmonic
expansion, (2), of the boundary energy consists entirely
© 1998 The American Physical Society 4935
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cosine terms reflects the absence of “chiral” interactions between the texture and the domain boundary.
The minimization of the energy leads to equations for the textureQsx, yd and the bounding curveG. Qsx, yd satisfies

both a bulk and a boundary extremum equation. The bulk equation is

2=2Q 1 bfsQxx 2 Qyyd cos2Q 1 2Qxy sin 2Q 1 s2Q2
x 1 Q2

y d sin 2Q 1 2QxQy cos2Qg ­ 0 . (3)

The double-subscriptedQ’s represent second partial derivatives with respect to the relevant variables. The extr
equation forQsx, yd on the boundary is

kQnf1 2 b cos2sq 2 Qdg 2 kbQt sin 2sq 2 Qd 2 s0sq 2 Qd ­ 0 , (4)

whereQn and Qt are, respectively, the normal and tangential derivatives. The extremum equation for the bou
curveG is

Hb 2 s0sq 2 QdQn 2 s00sq 2 QdQt 1 fssq 2 Qd 1 s00sq 2 Qdg
dq

ds
1 l ­ 0 . (5)
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The quantityl is a Lagrange multiplier that enforces th
condition of constant enclosed area.

We first solve numerically for the equilibriumQsx, yd
using a variational formulation of the finite elemen
method [10], assuming an initial boundaryGs0d. A mesh
of triangles is generated overV using an adaptive method
that refines the grids where necessary. Functions are
fined by their values on the vertices of the triangles. T
value of a function elsewhere is obtained by interpolatio
The system energyHfQg is then a function of the values
of Qsx, yd at the vertices,Q ; sQid, which can be de-
termined by solving≠HsQdy≠Qi ­ 0 [11], wherei runs
from 1 to the number of vertices. We label the textu
determined at this pointQs0d.

Equation (5), after being cast into a coordinate
dependent form, turns out to be a second order differen
equation forG. SubstitutingQs0d for the Qsx, yd in the
equation, G can be determined by the Runge Kutt
method [11]. The solution, which is labeledGs1d, is
in turn utilized to determine a new textureQs1d. The
process is iterated until self-consistency is achieved.

Making use of the numerical scheme outlined abov
we have investigated the texture and shape of the bou
ing curve under the influence of variations in the bounda
energy coefficienta2 in Eq. (2) and the stiffness coeffi-
cientb. Before presenting our results, we note that whe
a2 ­ 0 andb ­ 0, the exact result [5] is given by a cir-
cular boundary of radiusR, with the boojum texture, i.e.,
a defect with winding number12 [8] located at a distance
RB ; Rs1 1

p
1 1 r2dyr from the center of the domain,

wherer ; Ra1yk is the normalized domain radius. The
normalized domain radiusr will be used as a gauge of
the domain size throughout the discussion. For cases
which the domains are not circular,R is the effective ra-
dius, in thatpR2 will be the area of the domain.

We first look at our result by varying onlya2 while
keepingb ­ 0. In the limit of very small domains,r ø
1, the line tension anisotropy has very little effect on th
texture, which exhibits almost no spatial variation. Th
boundary response of the domain is not affected by thea1
contribution. If a2 fi 0, small domains exhibit twofold
symmetry. They become elongated whena2 . 0, and
4936
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they flatten at both ends whena2 , 0. For larger domains
in which r , 1 and a2ya1 ø 1, we find a protrusion
when a2 . 0, and an indentation whena2 , 0. The
feature lies on the end of the domain boundary clos
to the virtual defect. The loss of twofold symmetry i
largely due to the fact that the dominant contribution
the domain texture, which in turn induces deformatio
througha2, comes from thea1 contribution in the boundary
anisotropy. Boundary features are more prominent
the domain size increases. Figure 1 shows the shape
domains for20.5 , a2 , 0.5 for r ­ 5. Numerically,
the boundary features are well defined for domains of siz
r , 1. To the numerical accuracy that we are able
achieve, there is no discontinuity in slope on the doma
boundary. That this ought to be the case can be verifi
analytically [12,13]. The numerical result we have
compatible with those discussed in Refs. [5,8,12]. F
even larger domains,r ¿ 1, the features are confined in
a small portion of the boundary. The domains becom
nearly circular again in the large-r limit. Up to the largest
domain we have examined,r ­ 32, we can identify
protrusions whena2ya0 . 0.1. Because of the rapid
texture variation in the immediate vicinity of the boundar
associated with the approach to the boundary of the virt
boojum singularity, we are unable to perform dependab
numerical investigations of extremely large domains. Th
leaves open the question of the asymptotic behavior of
domain in the large-r regime. Figure 2 shows the shape
of domains in which the normalized radius ranges fro
r ­ 0.2 to r ­ 10 for a1 ­ 1 anda2 ­ 0.6.

As regards the texture, we are able to numerically rep
duce the exact result of Rudnick and Bruinsma [5] wh
a1 ­ 0 anda2 ­ 1 and the boundary is fixed at a circle
This texture is associated with two virtual defects. Whe
the boundary is allowed to relax, the domain acquires
“cigar shape.” When botha1 and a2 are not equal to
zero, the texture can be thought of as a superposition
purea1 and purea2 textures. Typically forr , 1, the ef-
fect of the second defect becomes observable, in the fo
of a distortion of constant-order-parameter contours, wh
a2ya1 ø 1y4. The progressive changes of the texture a
domain shape from a system with purea1 to a system with
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FIG. 1. The constant-order-parameter contours and shapes
domains computed for20.5 , a2 , 0.5, r ­ 5, a0 ­ 4, a1 ­
1. (a) a2 ­ 20.5, (b) a2 ­ 20.3, (c) a2 ­ 20.1, (d) a2 ­
0.1, (e) a2 ­ 0.3, and (f ) a2 ­ 0.5.

purea2 are depicted in Fig. 3. Domains with indentations
protrusions, and cigar-shaped domains have all been o
served [7].

We now investigate the textures and boundaries that
sult whenb fi 0. The parametersa0 anda1 are assumed
to be finite, while all otherai ’s are set equal to zero.
We have computed the textures and domain shapes
20.8 , b , 0.8 and 0.5 , r , 8. When jbj # 0.5,
our results are in qualitative agreement with those report
in Ref. [8]. Forb , 0, the texture is modified as if the vir-
tual singularity has moved closer to the domain boundar
and the domain acquires a very small protruding featur
On the other hand, whenb . 0, the texture relaxes as
if the virtual defect has moved away from the bound
ary, and the boundary correction is similar to that o
a domain with an indentation. There are, howeve
quantitative differences. The textures obtained nume

(a) (b)




FIG. 2. The shapes of domains of various sizes computed
a0 ­ 4, a1 ­ 1, anda2 ­ 0.6. (a) Smaller domains withr ­
0.2, 0.25, 0.33, 0.5, and1 which exhibit twofold symmetry.
(b) Larger domains withr ­ 2, 2.5, 3.3, 5, and10 which
have a protrusion on one end of the boundary. Each of t
sets of domains are plotted to scale.
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cally deviate significantly from the boojum textures
utilized in Refs. [8,14]. The sizes of the features on th
boundaries are no more than1% of the overall domain
radii. We do not expect such features to be observab
experimentally.

Whenjbj ­ 0.8 andr ­ 8, the domains are no longer
circular in appearance. Domains acquire small protrusio
for negativeb. Domains have an indentation whenb

is positive. Figure 4 shows the domain shapes and te
tures computed withb ­ 60.8 for r ­ 8. The deviation
from the boojum texture is more clearly observable whe
b ­ 10.8 in Fig. 4b. The constant-order-parameter con
tours distort so as to push the virtual defect away from
the boundary. Figure 5 shows the changes in the doma
shape whenr decreases from8 to 0.5 for b ­ 60.8. The
amplitude of the protrusion of the domain with negative
b decreases withr. At the same time, segments of the
boundary with negative curvature start to develop adjace
to the protrusion. Atr ­ 2, the negative curvature seg-
ments of the boundary overwhelm the protrusion and giv
the domain an indentation. Whenr ­ 0.5, the indenta-
tion disappears, while the protrusion continues to decrea
in amplitude. The domain appears circular. The comple
boundary behavior described above can be attributed to t
rapid variation of the order parameter along the bounda
near the singularity. In contrast to this behavior, the size
the indentation on the boundary decreases monotonica
asr decreases whenb ­ 0.8. The domain appears circu-
lar at r # 2. It is the strength of the splay modulus tha
smooths out the variation of the order parameter along t
segment of the boundary near the singularity and results
simple boundary behavior.

FIG. 3. The constant-order-parameter contours and the sha
of domains withr ­ 1 and a0 ­ 4. The coefficients of the
anisotropic line tension are as follows: (a)a1 ­ 1, a2 ­ 0;
(b) a1 ­ 0.8, a2 ­ 0.2; (c) a1 ­ 0.6, a2 ­ 0.4; (d) a1 ­ 0.4,
a2 ­ 0.6; (e) a1 ­ 0.2, a2 ­ 0.8; and (f ) a1 ­ 0, a2 ­ 1.
4937
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FIG. 4. The constant-order-parameter contours and the shap
of domains withr ­ 8, a0 ­ 4, a1 ­ 1.6, anda2 ­ 0. Their
stiffness coefficients are (a)b ­ 20.8 and (b)b ­ 0.8.

Our attempts to compare our results with experiments in
dicate that all the observed domain shapes in Refs. [7,9,1
can be accounted for, at least qualitatively, by line-tensio
anisotropy alone. Although we have established th
existence of nontrivial domain shapes due to purel
elastic anisotropy, domains with the protrusions and in
dentations discussed immediately above occur only whe
the anisotropy is very strongjbj ­ 0.8. Furthermore,
the protrusions that are generated in our calculation
do not resemble those reported to have been observ
experimentally [9,14]. We conclude that line-tension
anisotropy must be present in such monolayers. On th
other hand, both line-tension and elastic anisotropie
may be responsible for indentations on the boundary o
domains of the compressed phase. Further measureme
on the size dependence of the domain shapes are nee
to identify the underlying mechanism.

We note here that our analysis is based on a highly sim
plified model of monolayers. Other factors that contribute
to the boundary shapes and textures—such as the dip
lar interaction [15], the tilt degree of freedom [16], and
the bond-orientational ordering [1]—have been neglected
However, the results reported here are useful in that the
do indicate the influence of various features that make u
the model discussed.

In conclusion, we have devised a numerical schem
that enables us to solve simultaneously for the minimum

FIG. 5. The domain shapes computed fora0 ­ 4, a1 ­
1.6, and a2 ­ 0, and r ­ 0.5, 1, 2, 4, and8. Their stiffness
coefficients are (a)b ­ 20.8 and (b)b ­ 0.8. For ease of
observation, domains are not shown to scale.
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energy configuration of anXY order parameter confined
to a two-dimensional domain and the extremal shap
of the boundary of that domain. We have utilized th
method to investigate the response of the texture-bounda
system under the influence of a nontrivial anisotropy i
the boundary energy as well as the bulk elastic energ
Both line-tension anisotropy and elastic anisotropy resu
in nontrivial domain shapes. The observed domains wi
protrusions and cigar shape can be attributed to the lin
tension anisotropy. On the other hand, elastic anisotro
cannot be ruled out as the source of the observed cardioi
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