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Textures and the Shapes of Domains in Langmuir Monolayers
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Two-dimensional domains containing &t -like order parameter exhibit nontrivial internal structure
and take on shapes controlled by the configuration that the order parameter adopts. The textures
exhibited by the order parameter in such domains are controlled by the interplay between bulk and
surface contributions to the energy. We report calculations of the internal texture and the shape of such
domains. These calculations lead to the determination of the equilibrium properties of two-dimensional
domains, such as those observed in Langmuir monolayers. This allows for the unambiguous exploration
of the implications of experimental findings. [S0031-9007(98)07795-3]

PACS numbers: 68.55.Ln, 68.18.+p, 68.60.—p

Monolayers of surfactants confined to the air/water inclose to reality, and results obtained in both cases can be
terface have been found to possess complex textures siméegitimately called into question.
lar to those observed in liquid crystals. The textures are This Letter describes a successful evaluation of equi-
generally observed in “tilted” phases—that is, in phasedibrium properties of a domain of surfactants. The evalu-
in which the long axes of the molecules in the film are notation is based on the numerical solution of the extremum
perpendicular to the water surface but are uniformly tiltedequations for the energy of axiy-like texture confined
with respect to the normal. The textures are the result ofo a compact, but not necessarily circular, domain. We
the spontaneous organization of the molecular tilt azimutfare able to explore the texture and the associated domain
on macroscopic length scales. They can be understood, sthape that result from various forms of the boundary and
least qualitatively, in terms of continuum elastic theories ofoulk energy of the two-dimensional system.
smectic liquid crystals [1] or, more relevant to the present The starting point in the analysis is the Hamiltonian
work, in terms of the two-dimensionalY model. of the XY order parameter, represented as the two-
When the surfactants organize into domains of condimensional unit vectoé(x, y), which is parametrized in
densed tilted phases, such as the phase, surrounded terms of the angle®(x,y) betweené(x,y) and thex
by an isotropic phase [2], many striking textures haveaxis. The order parameter fie@(x, y) will be referred to
been observed. Such textures range from continuous boas the texture. The Hamiltonia#][®] = fQ HydA +
jums, textures with point and/or line defects [1], to striped$ o (¢ — @) ds, whereH,, is given by
textures in spiral domains [3]. We will, however, focus
our discussions on the boojums in which the tilt azimuth Hy, = (VO + B[(-02 + ©2) cos20
varies continuously and appears to radiate in some cases 2 ’
from a defect located at the edge of the domain or from — 20,0, sin20]}, (1)

a “virtual” defect in the isotropic phase [4]. Domains 0 40 ial derivati 6F with
containing a boojum texture are not circular. Rather,2x 8nd®, represent partial derivatives &f with respect

they reflect the various nonisotropic influences that conl® * andy, respectively. The integraf, is over the
main’s bulk, Whllegﬁr is an integral over the closed

trol domain shape in the presence of a nonhomo eneoﬁjé) . ) = .
P p ) ounding the domain. The coefficiertis the

background. Among the features seen are protrusions, §t'"V€ b
times sharp enough to be characterized as “cusps” [5]M€a@N Frank constant, the average of the bend and splay

and indentations, which give the domains a heartlike, o oduli, while,_B s pro_p_ortional to the difference between
scardioid,” appearance [6,7]. the two moduli. Specmcal!yzlx =K, + K{, and2«x B =
While there are notable cases in which the full analyti-Ks — K» whereK/2 multiplies [V x ¢|* in the energy
cal solution can be obtained [5], the determination of theof the XY order parameter an&,/2 multiplies |V - &[*.
properties of a domain in which such a texture has formedhe constants, and K, are, respectively, the bend and
presents a calculational challenge. Energy minimizatiorsplay modulus. The boundary energy(d — ©), will
entails the simultaneous adjustment of the orientations diave the general form
surfactant molecules in the interior of the domain and the
shape of the domain’s boundary. Past work on the prob-
lem of the shape of surfactant domains has relied on eithérhe angled in the argument of the boundary energy is
the assumption of a texture that is unaffected by variationthe angle between the unit normal to the curve bounding
in the boundary [8] or on the approximation of a nearlythe domain and the axis. The fact that the harmonic
circular domain [5,9]. Neither assumption is necessarilyexpansion, (2), of the boundary energy consists entirely of

o(@) =ap + a; COSp + a; cos2¢ + .... (2)
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cosine terms reflects the absence of “chiral” interactions between the texture and the domain boundary.
The minimization of the energy leads to equations for the texfueg y) and the bounding curvE. ©(x, y) satisfies
both a bulk and a boundary extremum equation. The bulk equation is

V20 + Bl(O — Oyy) c0s20 + 20,, sin20 + (=07 + 07) sin20 + 20,0, cos20] = 0. (3)

The double-subscripte®’s represent second partial derivatives with respect to the relevant variables. The extremum
equation for® (x, y) on the boundary is

k®,[1 — B cos2(3 — O®)] — kB8O, sin2(d — O) — o'(F — O) =0, 4)

where ®,, and O, are, respectively, the normal and tangential derivatives. The extremum equation for the bounding
curvel is

H, — d'(® — 0)0, — o"(9 — 0)0, + [c(I — O) + (¥ — @)]% + A=0. 5)

The quantityr is a Lagrange multiplier that enforces th|e they flatten at both ends when < 0. For larger domains
condition of constant enclosed area. in which p ~ 1 and ax/a; < 1, we find a protrusion
We first solve numerically for the equilibriu®(x,y)  when a; > 0, and an indentation when, < 0. The
using a variational formulation of the finite element feature lies on the end of the domain boundary closest
method [10], assuming an initial boundafy”’. A mesh to the virtual defect. The loss of twofold symmetry is
of triangles is generated ové€r using an adaptive method largely due to the fact that the dominant contribution of
that refines the grids where necessary. Functions are déhe domain texture, which in turn induces deformation
fined by their values on the vertices of the triangles. Thehrougha,, comes from the; contribution in the boundary
value of a function elsewhere is obtained by interpolationanisotropy. Boundary features are more prominent as
The system energyf[ @] is then a function of the values the domain size increases. Figure 1 shows the shapes of
of @(x,y) at the vertices® = (0;), which can be de- domains for—0.5 < a, < 0.5 for p = 5. Numerically,
termined by solvingH(®)/90; = 0 [11], wherei runs  the boundary features are well defined for domains of sizes
from 1 to the number of vertices. We label the texturep ~ 1. To the numerical accuracy that we are able to
determined at this poir®©, achieve, there is no discontinuity in slope on the domain
Equation (5), after being cast into a coordinate-boundary. That this ought to be the case can be verified
dependent form, turns out to be a second order differentianalytically [12,13]. The numerical result we have is
equation forl". Substituting®© for the ®(x,y) in the  compatible with those discussed in Refs. [5,8,12]. For
equation, I' can be determined by the Runge Kuttaeven larger domaing > 1, the features are confined in
method [11]. The solution, which is labeleB", is  a small portion of the boundary. The domains become
in turn utilized to determine a new textu®). The nearly circular again in the largedimit. Up to the largest
process is iterated until self-consistency is achieved. domain we have examinedy = 32, we can identify
Making use of the numerical scheme outlined aboveprotrusions whena,/ay > 0.1. Because of the rapid
we have investigated the texture and shape of the boundexture variation in the immediate vicinity of the boundary,
ing curve under the influence of variations in the boundanassociated with the approach to the boundary of the virtual
energy coefficients; in Eq. (2) and the stiffness coeffi- boojum singularity, we are unable to perform dependable
cient 8. Before presenting our results, we note that whemumerical investigations of extremely large domains. This
a, = 0 andB = 0, the exact result [5] is given by a cir- leaves open the question of the asymptotic behavior of the
cular boundary of radiug, with the boojum texture, i.e., domain in the larger regime. Figure 2 shows the shapes
a defect with winding numbet-2 [8] located at a distance of domains in which the normalized radius ranges from
Rz = R(1 + /1 + p?)/p from the center of the domain, p = 0.2top = 10 fora; = 1 anda, = 0.6.
wherep = Ra,/« is the normalized domain radius. The As regards the texture, we are able to numerically repro-
normalized domain radiup will be used as a gauge of duce the exact result of Rudnick and Bruinsma [5] when
the domain size throughout the discussion. For cases in = 0 anda, = 1 and the boundary is fixed at a circle.
which the domains are not circulaR, is the effective ra- This texture is associated with two virtual defects. When
dius, in thatzR? will be the area of the domain. the boundary is allowed to relax, the domain acquires a
We first look at our result by varying only, while  “cigar shape.” When botla; and a, are not equal to
keepingB = 0. In the limit of very small domaingy <  zero, the texture can be thought of as a superposition of
1, the line tension anisotropy has very little effect on thepurea; and pureu, textures. Typically fopp ~ 1, the ef-
texture, which exhibits almost no spatial variation. Thefect of the second defect becomes observable, in the form
boundary response of the domain is not affected byuthe of a distortion of constant-order-parameter contours, when
contribution. If a, # 0, small domains exhibit twofold a»/a; = 1/4. The progressive changes of the texture and
symmetry. They become elongated when> 0, and domain shape from a system with pureto a system with
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cally deviate significantly from the boojum textures
utilized in Refs. [8,14]. The sizes of the features on the
boundaries are no more thd of the overall domain
radii. We do not expect such features to be observable
experimentally.

When|B| = 0.8 andp = 8, the domains are no longer
circular in appearance. Domains acquire small protrusions
for negative 3. Domains have an indentation wheh
is positive. Figure 4 shows the domain shapes and tex-
tures computed witlB = +0.8 for p = 8. The deviation
from the boojum texture is more clearly observable when
B = +0.8 in Fig. 4b. The constant-order-parameter con-
tours distort so as to push the virtual defect away from
the boundary. Figure 5 shows the changes in the domain
shape whemp decreases froto 0.5 for 8 = =0.8. The
amplitude of the protrusion of the domain with negative
B decreases witlp. At the same time, segments of the
boundary with negative curvature start to develop adjacent
to the protrusion. Afp = 2, the negative curvature seg-
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ments of the boundary overwhelm the protrusion and give
the domain an indentation. Whegn= 0.5, the indenta-

tion disappears, while the protrusion continues to decrease

o gg@;&gﬁ‘?gﬁ}?gdir'ﬁ’aﬁrge;er contours and shapes ff amplitude. The domain appears circular. The complex

1. @)a = ~05, (b)as = 76'31 (é)’al; _ 7’0'(1‘ ) a; _  boundary behavior described above can be attributed to the

0.1, (€)a> = 0.3, and (f)ay = 0.5. rapid variation of the order parameter along the boundary
near the singularity. In contrast to this behavior, the size of

purea, are depicted in Fig. 3. Domains with indentations,the indentation on the boundary decregses monotqmcally
sp decreases whef = 0.8. The domain appears circu-

protrusions, and cigar-shaped domains have all been o?— fatp = 2. Itis the strength of the splay modulus that

served [7].
[7] e'smooths out the variation of the order parameter along the

We now investigate the textures and boundaries that r
sult wheng # 0. The parameters, anda, are assumed segment of the boundary near the singularity and results in
' simple boundary behavior.

to be finite, while all otherg;’s are set equal to zero.
We have computed the textures and domain shapes for

-08< B8 <08 and0.5 < p <8 When|B| =0.5,

our results are in qualitative agreement with those reported (a) (b)
in Ref. [8]. ForB < 0, the texture is modified as if the vir-
tual singularity has moved closer to the domain boundary,
and the domain acquires a very small protruding feature.
On the other hand, wheB > 0, the texture relaxes as

if the virtual defect has moved away from the bound-
ary, and the boundary correction is similar to that of

a domain with an indentation. There are, however, (C) (d)
quantitative differences. The textures obtained numeri-
(a) (b)

FIG. 2. The shapes of domains of various sizes computed for

ap = 4,a; = 1,anda, = 0.6. (a) Smaller domains witlp = FIG. 3. The constant-order-parameter contours and the shapes
0.2, 0.25, 0.33, 0.5, and1 which exhibit twofold symmetry. of domains withp = 1 anday = 4. The coefficients of the

(b) Larger domains withp = 2,2.5,3.3,5, and10 which  anisotropic line tension are as follows: @)= 1, a, = 0;

have a protrusion on one end of the boundary. Each of théb) a; = 0.8, a;, = 0.2; (C) a; = 0.6, a, = 0.4; (d) a; = 0.4,

sets of domains are plotted to scale. a, = 0.6; (€)a; =02,a, =0.8;and (f)a; =0, a, =
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(a) (b) energy con_figurat_ion of aIXY.order parameter confined

to a two-dimensional domain and the extremal shape

of the boundary of that domain. We have utilized the
method to investigate the response of the texture-boundary

system under the influence of a nontrivial anisotropy in

the boundary energy as well as the bulk elastic energy.

Both line-tension anisotropy and elastic anisotropy result

in nontrivial domain shapes. The observed domains with

FIG. 4. _The_constant-order-parameter contours and the _Shapﬁ)?’otrusions and cigar shape can be attributed to the line-
g{igﬁgi'gzg}’#g’é s %rgo(;% 4 Y ;'r?a ?B%’Z:O% Their  tension anisotropy. On the other hand, elastic anisotropy
' h cannot be ruled out as the source of the observed cardioids.
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