VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NVEMBER 1998

Order-Parameter Profiles and Casimir Amplitudes in Critical Slabs
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A critical phase confined between two parallel plates, with symmetry-breaking figlaisd 2, acting
on each plate, is considered for (B4, > 0 (denotedab = ++) and (ii) hjh, <0 (ab = +-).
Using local-functional methods, we calculate order-parameter scaling funciigns) and Casimir
amplitudes,,;,, for generaldimensiond. At d = 2, our ¥, . (x) almost coincides witexactconformal
predictions. For the Ising universality class, we obtain expansiong fomn e = 4 — d | 0 in excellent
agreement with those obtained from field theory and{ isr 3, new results are presented fay, and
W, (x). [S0031-9007(98)07753-9]

PACS numbers: 64.60.Fr, 05.70.Jk, 68.15.+e, 68.35.Rh

The Casimir effect, occurring when either a quantumthen a field-theoretic expansion in= 4 — d applied to
field or a thermodynamic system at its bulk critical the O(N) symmetricé* theory (this, of course, includes
point is confined between two plates, has generated ing uniaxial ferromagnets) shows that, =~ A,,e!
great deal of interest in both quantum field theory andas e | 0. This corresponds to a logarithmic anomaly in
statistical physics [1]. Consider a statistical system, athe large L behavior of f*(L) when d = d~ = 4, in
its bulk critical point at temperaturd,, consisting of which case the term,,L'~¢ in Eq. (2) is replaced by
a slab contained between two parallel plates of atea A,,L 3InL.
and separated by distanée Let z € [0, L] denote the One can also define critical order-parameter profile
perpendicular distance of a point inside the slab from onecaling functions as follows. lin(z;L) is the order-
of the plates. IfF is the free energy of the system, the parameter density as a function pfat the bulk critical

reduced incremental free energy”, is defined as point (e.g., the magnetization of a magnet) then as oo
F and L — oo, keeping0 < z/L < 1, we have for a given
L) = Aim T A Lfy, (1)  boundary conditiorb
—00 B c
. ~ -B/v
wheref, is the reducedbulk free-energy density. Fisher miz; L) ~ MapL ™" Wap(2/L), (3)
and de Gennes [2] predicted that (L) takes the form whereg is the usual spontaneous magnetization exponent
P ~ Sy + S+ ApL' T + @) and the scaling function’,;,(x), is universalonce its nor-

malization has been selected by specifying tteuni-
asL — o« whered* := (2 — a)/v with « and v being  versalamplitudeM,,. Conformal invariance has yielded
the usual specific heat and correlation length criticalexact predictions on the form d¥,,(x) in d = 2 for
exponents andX; and X, are critical wall tensions various boundary conditions [5—7] and also, for general
coming from the two plates. Throughout, the subscriptd < d-, it has been seen that the short distance behav-
a (respectively,b) refers to the boundary condition on ior of ¥,,(x) can be simply related td,, via the short-
the plate atz = 0 (respectively,z = L). Assuming distance expansion [8,9].
hyperscaling,d* = d (i.e., the spatial dimension) for = Here we shall always sét > 0 and consider just two
2=d=d- andd* = d- for all d = d~ whered- is types of boundary condition on the other plate:h{)> 0
the upper critical dimension of the system. For the Isingdenoted byab = ++ and (ii) h, < 0 denoted byab =
universality classd~ = 4. It was later argued that the +—. The nonuniversal amplitudes/,,, are chosen so
Casimir amplitudeA,;, is a universal number fat < d~  that V.. (1/2) = 1 and the derivativel’, _(1/2) = —1
[3] (see also [4]), and a great deal of effort has gone intdby antisymmetry, ¥, _(1/2) = 0]. The Casimir ampli-
calculating this amplitude for various universality classedudes and profile scaling functions are then determined
(see [1] and references therein). Suggested experimentasing a relatively newly developed method [10] based
approaches in, e.g., critical fluids include measuriig  on local free-energy functionals of the order-parameter
directly using atomic force microscopesiodirectly from  density, m(z), suitably adapted to cope withonclassi-
wetting experiments (see [1]). cal criticality (i.e., for d = d~). The method isnon-

In this Letter, we shall consider only those slabs wheregerturbativeand can be applied directly td = 3—an
an external symmetry-breaking boundary field has beeadvantage over field-theoretical expansions which re-
applied toboth plates—i.e., a field:, (respectively,k;)  quire extrapolating te/ = 3—thus yielding new reliable
acting on the plate at = 0 (respectively,z = L). It  results at the physically interesting dimension as well as at
has been noted (see Ref. [1]) that if a symmetry-breaking = 2. But it can also be used to generate expansions in
boundary condition acts on at least one of the plateg for d T d~. Hence, we can significantly substantiate our
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d = 3 predictions by making detailed comparisons withdecay for temperatures away froM and that thermo-

the results of conformal invariance [5-7,11,12dat= 2  dynamic consistency holds off coexistence, it is required

and with the recently derived field-theoreticalexpan-  that [10]

sions forA.+ andA. [13] g(l) =1, g/(l) - (8)
Following Ref. [10] we start by asserting that the

magnetization profile,m(z), minimizes a free-energy

functional, F[m], of the following form:

It is possible to write down expressions fGi(x) which
fully satisfy all three requirements (6)—(8) [16] but the
. following approximantwas found to be adequate for our
Fiml= [ Almydz + fi6m) + folms), (@) purposes
0 _ — 2 2y12-m/2 _
where i := dm/dz, my := m(0), my := m(L), f;(m;) . n)Q(x)z/Z g Jg ) R[,,/z,,](x.)] L )
for j=1,2, coming from the respective walls, WhereRp/u(x*) = Py(x%)/Qn(x*) with P,(-) and Q,(")
has the form f;(m;) = —hjm; + ... and f*(L) = being polynomials of degree (usually one needs =
ming,.y F [m]. Mean-field theory is obtained by choosing 2) having P,,(0) = 0,(0) = 1. Clearly, (9) completely
A(m,m) of squared-gradient Landau type. In order toSatisfies (6), and it captures the leading term on the
go beyond mean-field theory for dimensioms= 4. ~ fght-hand side of (7). Condition (8) can be imposed
Fisher and Upton [10] considered integrands of the form bY aQJUSt;EQtth? pc;lynomlal goefflg]en:st fl,égx]/(~)). Or;e
N . requires that simple squared-gradient the@yy) = x°,
Alm, m) = {1 + J(m)G[m[,\(m)]}W(m)’_ (5) follows whenn = f = 0. Typical plots of G(x), for
where W(m) := ®(m) — ®(mp) with ®(m) being the  he |sing universality class (see [17]), based on this
Helmholtz free energy density and;, the bulk magne- 555 0ximant are shown in Fig. 1. One notices §ét) is
tization. By symmetryG(x) must be an even function of virtually indistinguishable from:> when0 < x = 1 even

x with G(0) = 0. Since scale invariance plays such anyhen enlarging the graph at this rangeoto a much
important role at bulk critical points one insists that thebigger size.

dimensionless combination&(m) and A (m) be scale- \ye now present the solution of the variational problem
free. Several possible choices fotm) and A(m) have  needed to extremizeF[m]. The first thing to note is
been considered [10], the simplest bein@z) = 1 and  h4t the Euler-Lagrange equations for functionals of the
Alm) = &(m)/\2x (m)W (m) where£(m) and x(m) are, type in (4) [where there is no explicit dependence in
respectively, the bulk correlation length and susceptlblhtyﬂ(m’m)] have a first integral given by the following

for a homogeneous system with magnetizationFroma  qqinary differential equation determining the profitéz)
field theoretical point of view, the integrdl A (m, m) dz 52

in (4) can be regarded as lacal approximation to m—— — A = E(), (10)
the vertex generating functional (or effective action) am
I'l¢ = m(z)] with the integrand (5) heuristically con- which expresses an “energy” conservation law in
structed, though made to satisfy numerous desiderata [1Ghe mechanical analog with the constaBtL) [with
Although much is known about the bulk quantities
W(m), x(m), and &é(m), which enter the local functional, s, ‘ ‘ ‘ ‘
one now needs to know something of the foig(x) 4
takes. This was not the case in previous applications S
of this method [10,14] to semi-infinite geometries where 200 | - (E) ?;é y ,
details ofG(x) were unimportant. It has been established, [ | EC; Xz_ S
however, thatG(x) must satisfy several conditions [10]. ys
These include the following expansion: 150 1 P

G(x) =x? + Z G()’szj asx — 0, (6) Vs
Jj=2 100 - S
which follows from standard considerations based on e
gradient expansions in density functional theory [15].
Also, in order thatn(z) remains analytic i asm passes 50 |
through zero, such as occurs in the = +— boundary
condition, we must have [10]

it 0.0 s ‘ ‘ ‘
G(X) +1= Gooxzﬁ(l + Z G:)c,j.xj7> (7) 0.0 1.0 2.0 « 3.0 4.0 5.0
j=1

- o * _ FIG. 1. Plots of G(x) based on approximant (9) with =
asx — o where7) = 27n/(d" + n) andr =28/(B + 2 for (@) d =2 and (b) d = 3. Here, the polynomials

v) with n being the usual critical correlation function ex- Pa(y) =1+ piy + pay? and 0s(y) = 1 + ¢oy? were used

ponent. Finally, in semi-infinite geometry, in order that and( p,, p,, ¢») determined by imposing (8) and fixir@. = 1.
critical adsorption profiles have the correct exponentialThe curvex? is plotted as ¢) for comparison.
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lim; . E(L) = 0] corresponding to the energy. From system under study, the functios, (x) is universal
the boundary (and other) condition8(L) can be deter- in a more general sense in that it depends only on
mined and hence the profiles(z; L). When determining d* regardlessof the values of the bulk exponents—a
£*(L), and therefore the Casimir amplitudes, the calculaproperty known to hold forl = 2 as a result of conformal

tions are greatly simplified by noting the relation [18] invariance [5]. Below, we give expressions ify-(x) for
af d* = 2,3,4,
+ E(L) =0, (11) :
dL Po(x) = sinax, (17a)
which corresponds to a Hamilton-Jacobi-like equation (V3 + DenKs(1 — 2x); k] — /3 + 1

in the mechanical analog which, we stress, is true for ¥s3(x) =
quite general A(m,m) provided it has no explicitz
dependence. Thus, when taking scaling limigsy oo,

L — oo, at the bulk critical pointE(L) for largeL plays a

pivotal role in determining boti,;, (x) andA;.

The results will be expressed in terms of the function ) ) .
G(x), defined ag (x) := xG'(x) — G(x), and its inverse /Nere sn(:k), dn(:3k), and cii-3k) are the standard
G_I(X) e G[G‘l(x)] — . Also. we define the func- Jacobian elliptic functions with modulus k3 = (/3 +
tionsJ; 1 (y) andJ+_(y) by D/2V2, ke = 1/32,

B B U/ 7 K = cn‘l(@-k > = 1.845375 18
J+t(y) : j; |G_1(] - |M|*d*V/B)| s (12) 3 \/5 1 3 ( )
wherey = 1 for ++ andy € (—o,%) for +—. Apply- andK, = K(ks;) = 1.85407 whereK(-) is the complete
ing the scaling limit to (10) at the critical point determines elliptic integral of the first kind. Strikingly, (17a) sub-
the scaling functions¥' . + (x), which can be expressed as stituted into (16) gives thexactexpression for¥ ; (x)
Wy (x) = J 274+ (1)x], (13a) as obtained by conformal invariance &t= 2 [5]. This
is remarkable as one might have expected these local-

cnK3(1 — 2x); k3] + 1 ’
(17b)
Jalx) = sn(2K4x; ks)

 V2dn(Kyx;ks) (17c)

— -1
1 V- (x) - C‘J+*[2J+‘_(O)x]’ (13b) functional methods to get less reliable the further one re-
whereJ i (-) are the inverse functions and the constanty,cesy away from the mean-field dimensiaf.. It is
c1 is given by o) therefore not unfeasible to suppose that (17b) substituted
ci = [(1 = 7)G=]"=""/2J:-(0). (14)  into (16) yields the exactl = 3 result for a giveng/v

Note that, givenG(-), ¥~ (x) dependsolelyon 8/v and  or, if not exact, then it should give, for the first time,
d*. Similarly, taking the large. limit and using (11), we an accurate prediction fow ., (x) for general (not just

obtain the Casimir amplitudes Ising) d = 3 critical slabs. For the Ising model, (17c)
FRE[26(8 + 1)]4/? [Jor (D] substituted into (16) gives the mean-field result obtained
A — £ ++ L (15)
= @ — 1) + 1) [J._(0)]4, by Krech [13] from Landau theory.

In what now follows, we shall restrict ourselves to
the Ising universality class [17]. Results fdr, +(x),
obtained by numerically integrating (12) and (13) and
using (9) forG(x), are plotted in Fig. 2 fodd = 2,d = 3,
andd = 4. SinceV,,(x) [V4+_(x)] is (anti)symmetric
aboutx = 1/2, results are presented only for the range
0 = x = 1/2. For the++ case, the curves plotted here

re indistinguishable from those obtained usiG@c) =

2, leading to near exact agreement with the conformal
results atd = 2. However, our¥._(x) atd =2 no
; X longer agrees quite so well with the exact conformal result
[20] and also expansions in= 4 — d [19]. .- [6,7]. This reflects the greater uncertainty in the form of

Observe, from (12), for the + case thalg ™ (x), and ¢ () for x > 1 which enters in calculations involving the
thereforeG(x) [by its monotone property together with 3 _"cage only. In particular, it is uncertain what value
(8)], is only ever evaluated fob = x = 1, whereas for  _ghould take although we found that, — 1 seems to

the +— caseG(x) is required only 21‘orx = 1. Now ok pest. In any case, we expect greater accuracy in
recall that for allx € [0,1], G(x) = x* to a very good ; _ 3

approximation. Thus, putting ' (x) = /x into (12) for As for the Casimir amplitudes, Egs. (15) far= 2
J++(y) gives via (13a) give Ai+ = —0.0666; and A;_ = 1.586, and these
Wiy (x) = [ (0)] P77 (16)  should be compared with the exact conformal results
Although, of course,8/v (the bulk scaling dimension) [11,12] which are A;;+ = —7/48 = —0.06545 and
depends on the bulk universality class of the particulad,_ = 237 /48 = 1.505. Again, agreement is less good

where, if along the critical isotherm in the bulk & T,

h # 0) we have, as the bulk field — 0, the usual rela-
tions h = D|m|° 'm and ¢ = &.|h|7*/B%—thus defin-
ing the exponents and the critical amplitude® and
£.—then thebulk universal amplitude relatioR, is de-
fined asr§ := ¢4'D~1/°. The quantityR¢ arrives from
hyperscaling and is therefore only universal b= d-..

It can be expressed in terms of the more standard bul
amplitude relations [19,20] for which, in the Ising univer-
sality class, there exist estimatesdin= 2 [19] andd = 3
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3.0

v — ‘ ‘ ‘ slabs ind = 3. Second, by comparing with exact results

1: \ — (@d=2 in d = 2 and with thee expansion nea# = 4, we have

25 ———- (b)d=3 | demonstrated the remarkable accuracy of these methods.
RN AR (c)d*=4 This adds confidence to owf = 3 predictions. One
1‘ [N — (d) Exactd=2 should also note that local functional theory has the
II| \

advantage of being easily extendable to situations slightly
away from the critical point.
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