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Order-Parameter Profiles and Casimir Amplitudes in Critical Slabs
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A critical phase confined between two parallel plates, with symmetry-breaking fieldsh1 andh2 acting
on each plate, is considered for (i)h1h2 . 0 (denotedab ­ 11) and (ii) h1h2 , 0 (ab ­ 12).
Using local-functional methods, we calculate order-parameter scaling functionsCabsxd and Casimir
amplitudesAab , for generaldimensiond. At d ­ 2, our C11sxd almost coincides withexactconformal
predictions. For the Ising universality class, we obtain expansions forAab in e ­ 4 2 d # 0 in excellent
agreement with those obtained from field theory and, ind ­ 3, new results are presented forAab and
Cabsxd. [S0031-9007(98)07753-9]

PACS numbers: 64.60.Fr, 05.70.Jk, 68.15.+e, 68.35.Rh
n

le

ent

al
av-

ed
d
er

at
in
r

The Casimir effect, occurring when either a quantu
field or a thermodynamic system at its bulk critica
point is confined between two plates, has generated
great deal of interest in both quantum field theory an
statistical physics [1]. Consider a statistical system,
its bulk critical point at temperatureTc, consisting of
a slab contained between two parallel plates of areaA
and separated by distanceL. Let z [ f0, Lg denote the
perpendicular distance of a point inside the slab from o
of the plates. IfF is the free energy of the system, the
reduced incremental free energy, f3, is defined as

f3sLd :­ lim
A!`

F
kBTcA

2 Lfb , (1)

wherefb is the reducedbulk free-energy density. Fisher
and de Gennes [2] predicted thatf3sLd takes the form

f3sLd ø S1 1 S2 1 AabL12dp

1 . . . (2)

as L ! ` wheredp :­ s2 2 adyn with a and n being
the usual specific heat and correlation length critic
exponents andS1 and S2 are critical wall tensions
coming from the two plates. Throughout, the subscri
a (respectively,b) refers to the boundary condition on
the plate at z ­ 0 (respectively, z ­ L). Assuming
hyperscaling,dp ­ d (i.e., the spatial dimension) for
2 # d # d. and dp ­ d. for all d $ d. whered. is
the upper critical dimension of the system. For the Isin
universality class,d. ­ 4. It was later argued that the
Casimir amplitude, Aab, is a universal number ford , d.

[3] (see also [4]), and a great deal of effort has gone in
calculating this amplitude for various universality classe
(see [1] and references therein). Suggested experime
approaches in, e.g., critical fluids include measuringAab

directly using atomic force microscopes orindirectly from
wetting experiments (see [1]).

In this Letter, we shall consider only those slabs whe
an external symmetry-breaking boundary field has be
applied toboth plates—i.e., a fieldh1 (respectively,h2)
acting on the plate atz ­ 0 (respectively,z ­ L). It
has been noted (see Ref. [1]) that if a symmetry-breaki
boundary condition acts on at least one of the plat
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then a field-theoretic expansion ine ­ 4 2 d applied to
the OsNd symmetricf4 theory (this, of course, includes
Ising uniaxial ferromagnets) shows thatAab ø Āabe21

as e # 0. This corresponds to a logarithmic anomaly i
the large L behavior of f3sLd when d ­ d. ­ 4, in
which case the termAabL12dp

in Eq. (2) is replaced by
ĀabL23 ln L.

One can also define critical order-parameter profi
scaling functions as follows. Ifmsz; Ld is the order-
parameter density as a function ofz at the bulk critical
point (e.g., the magnetization of a magnet) then asz ! `

and L ! `, keeping0 , zyL , 1, we have for a given
boundary conditionab

msz; Ld ø MabL2bynCabszyLd , (3)

whereb is the usual spontaneous magnetization expon
and the scaling function,Cabsxd, is universalonce its nor-
malization has been selected by specifying thenonuni-
versalamplitudeMab . Conformal invariance has yielded
exact predictions on the form ofCabsxd in d ­ 2 for
various boundary conditions [5–7] and also, for gener
d , d., it has been seen that the short distance beh
ior of Cabsxd can be simply related toAab via the short-
distance expansion [8,9].

Here we shall always seth1 . 0 and consider just two
types of boundary condition on the other plate: (i)h2 . 0
denoted byab ­ 11 and (ii) h2 , 0 denoted byab ­
12. The nonuniversal amplitudes,Mab , are chosen so
that C11s1y2d ­ 1 and the derivativeC0

12s1y2d ­ 21
[by antisymmetry,C12s1y2d ­ 0]. The Casimir ampli-
tudes and profile scaling functions are then determin
using a relatively newly developed method [10] base
on local free-energy functionals of the order-paramet
density, mszd, suitably adapted to cope withnonclassi-
cal criticality (i.e., for d # d.). The method isnon-
perturbativeand can be applied directly tod ­ 3—an
advantage over field-theoreticale expansions which re-
quire extrapolating tod ­ 3—thus yielding new reliable
results at the physically interesting dimension as well as
d ­ 2. But it can also be used to generate expansions
e for d " d.. Hence, we can significantly substantiate ou
© 1998 The American Physical Society 4911
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d ­ 3 predictions by making detailed comparisons wit
the results of conformal invariance [5–7,11,12] atd ­ 2
and with the recently derived field-theoreticale expan-
sions forA11 andA12 [13].

Following Ref. [10] we start by asserting that the
magnetization profile,mszd, minimizes a free-energy
functional,F fmg, of the following form:

F fmg ­
Z L

0
Asm, Ùmd dz 1 f1sm1d 1 f2sm2d , (4)

where Ùm :­ dmydz, m1 :­ ms0d, m2 :­ msLd, fjsmjd
for j ­ 1, 2, coming from the respective walls,
has the form fjsmjd ­ 2hjmj 1 . . . and f3sLd ­
minfmg F fmg. Mean-field theory is obtained by choosing
Asm, Ùmd of squared-gradient Landau type. In order t
go beyond mean-field theory for dimensionsd # d.

Fisher and Upton [10] considered integrands of the form
Asm, Ùmd ­ h1 1 JsmdGf ÙmLsmdgjWsmd , (5)

where Wsmd :­ Fsmd 2 Fsmbd with Fsmd being the
Helmholtz free energy density andmb the bulk magne-
tization. By symmetry,Gsxd must be an even function of
x with Gs0d ­ 0. Since scale invariance plays such a
important role at bulk critical points one insists that th
dimensionless combinationsJsmd and ÙmLsmd be scale-
free. Several possible choices forJsmd and Lsmd have
been considered [10], the simplest beingJsmd ­ 1 and
Lsmd ­ jsmdy

p
2xsmdW smd wherejsmd andxsmd are,

respectively, the bulk correlation length and susceptibili
for a homogeneous system with magnetizationm. From a
field theoretical point of view, the integral

R
Asm, Ùmd dz

in (4) can be regarded as alocal approximation to
the vertex generating functional (or effective action
Gfw ­ mszdg with the integrand (5) heuristically con-
structed, though made to satisfy numerous desiderata [1

Although much is known about the bulk quantitie
Wsmd, xsmd, andjsmd, which enter the local functional,
one now needs to know something of the formGsxd
takes. This was not the case in previous applicatio
of this method [10,14] to semi-infinite geometries wher
details ofG sxd were unimportant. It has been establishe
however, thatGsxd must satisfy several conditions [10].
These include the following expansion:

Gsxd ­ x2 1
X̀
j­2

G0,jx2j asx ! 0 , (6)

which follows from standard considerations based o
gradient expansions in density functional theory [15
Also, in order thatmszd remains analytic inz asm passes
through zero, such as occurs in theab ­ 12 boundary
condition, we must have [10]

Gsxd 1 1 ­ G`x22h̃

√
1 1

X̀
j­1

G`,jx2jt

!
(7)

as x ! ` whereh̃ ­ 2hysdp 1 hd and t ­ 2bysb 1

nd with h being the usual critical correlation function ex
ponent. Finally, in semi-infinite geometry, in order tha
critical adsorption profiles have the correct exponenti
4912
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decay for temperatures away fromTc and that thermo-
dynamic consistency holds off coexistence, it is requir
that [10]

Gs1d ­ 1, G0s1d ­ 2 . (8)

It is possible to write down expressions forGsxd which
fully satisfy all three requirements (6)–(8) [16] but th
following approximantwas found to be adequate for ou
purposes:

s2 2 h̃dGsxdy2 ­ f1 1 x2Rfnyngsx2dgs22h̃dy2 2 1, (9)

whereRfnyngsx2d ­ Pnsx2dyQnsx2d with Pns?d and Qns?d
being polynomials of degreen (usually one needsn $

2) having Pns0d ­ Qns0d ­ 1. Clearly, (9) completely
satisfies (6), and it captures the leading term on
right-hand side of (7). Condition (8) can be impose
by adjusting the polynomial coefficients inRfnyngs?d. One
requires that simple squared-gradient theory,G sxd ­ x2,
follows when h ­ h̃ ­ 0. Typical plots of Gsxd, for
the Ising universality class (see [17]), based on th
approximant are shown in Fig. 1. One notices thatGsxd is
virtually indistinguishable fromx2 when0 # x # 1 even
when enlarging the graph at this range ofx to a much
bigger size.

We now present the solution of the variational proble
needed to extremizeF fmg. The first thing to note is
that the Euler-Lagrange equations for functionals of t
type in (4) [where there is no explicitz dependence in
Asm, Ùmd] have a first integral given by the following
ordinary differential equation determining the profilemszd

Ùm
≠A

≠ Ùm
2 A ­ EsLd , (10)

which expresses an “energy” conservation law
the mechanical analog with the constantEsLd [with

0.0 1.0 2.0 3.0 4.0 5.0
x
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FIG. 1. Plots ofG sxd based on approximant (9) withn ­
2 for (a) d ­ 2 and (b) d ­ 3. Here, the polynomials
P2s yd ­ 1 1 p1y 1 p2y2 and Q2s yd ­ 1 1 q2y2 were used
ands p1, p2, q2d determined by imposing (8) and fixingG` ­ 1.
The curvex2 is plotted as (c) for comparison.
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limL!` EsLd ­ 0] corresponding to the energy. From
the boundary (and other) conditions,EsLd can be deter-
mined and hence the profilesmsz; Ld. When determining
f3sLd, and therefore the Casimir amplitudes, the calcul
tions are greatly simplified by noting the relation [18]

≠f3

≠L
1 EsLd ­ 0 , (11)

which corresponds to a Hamilton-Jacobi-like equatio
in the mechanical analog which, we stress, is true f
quite generalAsm, Ùmd provided it has no explicitz
dependence. Thus, when taking scaling limits,z ! `,
L ! `, at the bulk critical point,EsLd for largeL plays a
pivotal role in determining bothCabsxd andAab.

The results will be expressed in terms of the functio
Ĝ sxd, defined asĜsxd :­ xG0sxd 2 Gsxd, and its inverse
Ĝ21sxd, i.e., ĜfĜ21sxdg ­ x. Also, we define the func-
tionsJ11s yd andJ12s yd by

J16s yd :­
Z `

y

juj2s11nybd du

jĜ21s1 7 juj2dpnybdj
, (12)

wherey $ 1 for 11 andy [ s2`, `d for 12. Apply-
ing the scaling limit to (10) at the critical point determine
the scaling functions,C16sxd, which can be expressed as

C11sxd ­ J21
11f2J11s1dxg , (13a)

C12sxd ­ c1J21
12f2J12s0dxg , (13b)

whereJ21
16s?d are the inverse functions and the consta

c1 is given by
c1 ­ fs1 2 h̃dG`g1ys22h̃dy2J12s0d . (14)

Note that, givenGs?d, C16sxd dependsolelyon byn and
dp. Similarly, taking the largeL limit and using (11), we
obtain the Casimir amplitudes

A16 ­
7Rc

jf2dsd 1 1dgdpy2

sdp 2 1d sd 1 1d
3

(
fJ11s1dgdp

,
fJ12s0dgdp

, (15)

where, if along the critical isotherm in the bulk (T ­ Tc,
h fi 0) we have, as the bulk fieldh ! 0, the usual rela-
tions h ø Djmjd21m and j ø jcjhj2nybd —thus defin-
ing the exponentd and the critical amplitudesD and
jc —then thebulk universal amplitude relation,Rc

j , is de-
fined asRc

j :­ jdp

c D21yd. The quantityRc
j arrives from

hyperscaling and is therefore only universal ford # d..
It can be expressed in terms of the more standard bu
amplitude relations [19,20] for which, in the Ising univer
sality class, there exist estimates ind ­ 2 [19] andd ­ 3
[20] and also expansions ine ­ 4 2 d [19].

Observe, from (12), for the11 case thatĜ21sxd, and
thereforeG sxd [by its monotone property together with
(8)], is only ever evaluated for0 # x # 1, whereas for
the 12 caseG sxd is required only forx $ 1. Now
recall that for allx [ f0, 1g, Gsxd . x2 to a very good
approximation. Thus, puttinĝG21sxd ­

p
x into (12) for

J11s yd gives via (13a)
C11sxd ­ fcdp sxdg2byn . (16)

Although, of course,byn (the bulk scaling dimension)
depends on the bulk universality class of the particul
a-
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system under study, the functioncdp sxd is universal
in a more general sense in that it depends only
dp regardlessof the values of the bulk exponents—
property known to hold ford ­ 2 as a result of conformal
invariance [5]. Below, we give expressions forcdp sxd for
dp ­ 2, 3, 4,

c2sxd ­ sinpx , (17a)

c3sxd ­
s
p

3 1 1d cnfK3s1 2 2xd; k3g 2
p

3 1 1
cnfK3s1 2 2xd; k3g 1 1

,

(17b)

c4sxd ­
sns2K4x; k4d

p
2 dns2K4x; k4d

, (17c)

where sns?; kd, dns?; kd, and cns?; kd are the standard
Jacobian elliptic functions with modulusk, k3 ­ s

p
3 1

1dy2
p

2, k4 ­ 1y
p

2,

K3 ­ cn21

√p
3 2 1

p
3 1 1

; k3

!
. 1.845 375 . . . , (18)

and K4 ­ Ksk4d . 1.854 07 whereKs?d is the complete
elliptic integral of the first kind. Strikingly, (17a) sub-
stituted into (16) gives theexactexpression forC11sxd
as obtained by conformal invariance atd ­ 2 [5]. This
is remarkable as one might have expected these lo
functional methods to get less reliable the further one
ducesd away from the mean-field dimensiond.. It is
therefore not unfeasible to suppose that (17b) substitu
into (16) yields the exactd ­ 3 result for a givenbyn

or, if not exact, then it should give, for the first time
an accurate prediction forC11sxd for general (not just
Ising) d ­ 3 critical slabs. For the Ising model, (17c
substituted into (16) gives the mean-field result obtain
by Krech [13] from Landau theory.

In what now follows, we shall restrict ourselves t
the Ising universality class [17]. Results forC16sxd,
obtained by numerically integrating (12) and (13) an
using (9) forGsxd, are plotted in Fig. 2 ford ­ 2, d ­ 3,
and d $ 4. SinceC11sxd [C12sxd] is (anti)symmetric
about x ­ 1y2, results are presented only for the rang
0 # x # 1y2. For the11 case, the curves plotted her
are indistinguishable from those obtained usingGsxd ­
x2, leading to near exact agreement with the conform
results atd ­ 2. However, ourC12sxd at d ­ 2 no
longer agrees quite so well with the exact conformal res
[6,7]. This reflects the greater uncertainty in the form
Gsxd for x ¿ 1 which enters in calculations involving the
12 case only. In particular, it is uncertain what valu
G` should take although we found thatG` ­ 1 seems to
work best. In any case, we expect greater accuracy
d ­ 3.

As for the Casimir amplitudes, Eqs. (15) ford ­ 2
give A11 . 20.06667 and A12 . 1.586, and these
should be compared with the exact conformal resu
[11,12] which are A11 ­ 2py48 . 20.065 45 and
A12 ­ 23py48 . 1.505. Again, agreement is less goo
4913
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FIG. 2. Plots ofC11sxd andC12sxd for the Ising universal-
ity class at (a) d ­ 2, (b) d ­ 3, and (c) d $ 4 (mean-field
theory). For comparison, plotted as (d) are the exactd ­ 2
profiles,C11sxd ­ ssinpxd21y8 [which coincides exactly with
(a)] and C12sxd ­ p21ssinpxd21y8 cospx, both obtained by
conformal invariance.

for the 12 case and the (small) error in the11 case
may well reflect deficiencies in estimates for the bul
quantity Rc

j. For d ­ 3, we obtainA11 . 20.428 and
A12 . 3.1 which should be compared with the Monte
Carlo results of Krech [13] who quotesA11 . 20.35
and A12 . 2.45 but one should be wary of large finite-
size corrections in the Monte Carlo data. One can al
use Eqs. (15) to generate expansions ine ­ 4 2 d and
thus obtain

A11 ­
23K4

4

2p2e
f1 2 2.1035e 1 Ose2dg , (19a)

A12 ­
6K4

4

p2e
f1 2 1.6647e 1 Ose2dg . (19b)

On comparing with the field-theoretical expansions o
Krech [13], one findsexact agreement in theOse21d
prefactors of (19) and hence exact predictions for th
contribution Ā16L23 ln L in f3sLd at d ­ 4. As for
the Osed terms, Krech gets2.0987 instead of2.1035 in
A11 (i.e., agreement within0.23%) and 1.6956 instead
of 1.6647 in A12 (agreement within1.9%). Again, the
discrepancy, although small, is larger for the12 case.

To conclude, two important achievements have bee
reported here. First, local-functional methods have be
applied to yield new quantitative predictions for critica
4914
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slabs ind ­ 3. Second, by comparing with exact resul
in d ­ 2 and with thee expansion neard ­ 4, we have
demonstrated the remarkable accuracy of these meth
This adds confidence to ourd ­ 3 predictions. One
should also note that local functional theory has t
advantage of being easily extendable to situations sligh
away from the critical point.
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