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Liquid-State Anomalies and the Stell-Hemmer Core-Softened Potential
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We study the liquid anomalies arising from the Stell-Hemmer interaction, using molecular dynamics
simulations and approximate 2D solutions. We observe in the liquid phase three types of anomalies:
(i) An increase in specific volume upon cooling, (i) an increase in isothermal compressibility upon
cooling, and (iii) an increase in the diffusion coefficient with pressure. We relate the anomalies to the
existence of two different local structures in the liquid phase. [S0031-9007(98)07749-7]

PACS numbers: 61.20.Gy, 61.25.Em, 64.70.Ja, 65.70.+y

In their pioneering work, Stell and Hemmer proposedequation of state, following the methods of [4,9,12,13].
the possibility of a second critical point in addition to The resulting isobars shown in Fig. 1(b) exhibit two
the normal liquid-gas critical point for potentials that different types of behavior depending on the pressure.
have a region of negative curvature in their repulsiveNote that there is a discontinuity i) the average distance
core (henceforth referred to as core-softened potentialg)er particle, at an upper pressufe= P,, along the
[1]. They also pointed out that for the 1D model with aT = 0 isotherm. For allP > P,,, ¢ = a atT = 0, and
long range attractive tail, the isobaric thermal expansiorf increases monotonically with. For P < Py,, { = b
coefficient, ap = V" '(0V/aT)p (where V, T, and P atT = 0, and the{(T) isobars show a maximum and a
are the volume, temperature, and pressure), can takaeinimum, which correspond, respectively, to points of
an anomalous negative value. Debenedettal., using  minimum and maximum density [4,9,14].
thermodynamic arguments, noted that a “softened core” We also study the isothermal compressibili&; =
can lead tawp < 0[2]. —V~YaV/aP)ry. Figure 1(c) shows an anomalous re-

The issue of liquid anomalies by itself is an interestinggion along isobars in whictK; increases upon cool-
phenomenon which is not limited to the density anomalying. We find that the maximum value & grows as
In this Letter we also discuss two other types of liquidP — P,,, and Kr diverges asl/T when we approach
anomalies, increase of isothermal compressibility (den-
sity fluctuations) upon cooling, and increase of diffusion
coefficient (decrease of viscosity) with pressure. These
anomalies occur in many liquids [3,4], including liquid Y®
water [3,5]. Ab initio calculations [6] or inversion of 0
structure factor data [6,7] reveal that a core-softened po- -,
tential can be considered a realistic first order approxima-
tion for the interaction [7,8], even in the case of network  -¢
forming anomalous liquids [3].

Previous works showed that a density anomaly derived
in 1D does not necessarily hold in higher dimensions 9
[9,10]. Here we demonstrate, by means of numerical
simulations ford = 2, that the core-softened potential can
lead to all three anomalies and that an explanation for the 45
occurrence of these anomalies can be given in terms of
the shape and parameters of the potential. To the best of
our knowledge this is the first time that a simple radially | e e
symmetric potential is shown to yield these anomalies. *%o 65 T 10 00 02 o047 05 08

We also revisit the guestion of the second critical point InFIG. 1. (a) General form for the core-softened potential stud-

relation with these anomalie§. . _ied here. The length parametersb, c and energy parameters
The core-softened potential that we study is shown i, ) are shown. The dashed curve is the smooth version [11].
Fig. 1(a). It is composed of a hard core of diameter (b) Isobars off, the average distance per particle, for the dis-
which has a repulsive shoulder of width— a and depth  crete 1D core-softened potential [11] with, = 2.5 in agree-
e, and an attractive well of width — » and deptre [11]. ment with Eq. (1). Th&yp point is marked by an open circle.

. . i - (c) Isothermal compressibility for the discrete potential along
We first study the system in 1D to get familiar with the different isobars, with their maxima marked by filled circles.

possible properties that might arise in higher dimensionsg,. along P,,, isobar diverges as/T. (d) The loci ofTyp and
We derive the exact form of partition function and K; extrema for the discrete potential.
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the point C’ with coordinates(T = 0,P = P,,) which  integrator method [18] foN = 2500 disks [19]. Figure 2
we interpret as a critical point [15]. Further, the locus ofshows the results derived for the smooth version. Our MD
Kr extrema joins the poin€’ [Fig. 1(d)]. We also note results are qualitatively similar for the discrete and smooth
that the locus oKy extrema intersects the temperature ofversions. Figure 2(a) showB versusT along liquid
maximum density Typ) locus at its infinite slope point, isochores (constanp) which terminate at the freezing
a result that is thermodynamically required [16]. Such dine. We identify the freezing line as the locus of the
point on theTyp line has been observed in simulations points where the diffusion coefficient vanishes and the
which support the existence of a second critical point insystem acquires the structure of a 2D solid [20]. For
supercooled water [17]. P < Py ~ 1, where the freezing line has a negative slope,
Next we consider whether the anomalies derived fothe liquid has al'vip characterized by a minimum along
d =1 hold for d > 1 [10]. To this end, we perform the isochore [21], and it freezes into a solid with a lower
molecular dynamics (MD) simulations for a 2D systemdensity than the liquid [22]. This solid has a triangular
composed ofN disks in a rectangular box. For the lattice structure with a lattice constant ForP > Py, the
discrete version of the potential, we use the collisionliquid Tyip vanishes, the solid is denser than the liquid,
table technique [18] forN = 896 disks, and for the and it has a square lattice structure with lattice constant
smooth version of the potential, we use the velocity VerletNear the freezing line, the liquid acquires a local structure
similar to the nearby solid.
The three anomalies can be related to the interplay
3 between two local structures, an open structure in which
p=0.56 the nearest neighbor particles are typically at a distance
(@) ' b, and a denser structure in which the nearest neighbors
penetrate into the softened core and are typically at a
smaller distanceu. The configurations are determined
by the minima of the Gibbs potentiad;(T,P) = U +

g:' / PV — TS (whereG, U, and S are the Gibbs potential,
P - / internal energy, and entropy). Figure 3(a) shows
M

for 1D at T = 0 for two different values ofP. The
gualitative shape should not change for higlker For
low pressures at smadil, the open structure is favored by
the Gibbs potential. Increasirgfor these pressures will

p=0.46 increase local fluctuations in the form of dense structures
0 ‘ ‘ ‘ which can lead to an overall contraction of the system

04 0.3 0.5 0.7T 0.9 upon heating, causing a density anomaly. Increaging
BRRC) 03 on the other hand, raises the relative free energy of
. = CoreSofened  © the open structure, until the dense structure will be the

Q.2 | *77a* Lennard-Jones favored local structure, as seen r> P, in Fig. 3(a).
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FIG. 2. MD results for the smooth potential with the same
parameters as in Fig. 1(a) [11]. (a) Constant density curves P<P,
with, from bottom to top, densities between 0.46 to 0.56 in
steps of 0.01. The open circles maflp, and the dashed
line crossing theTyp line is the locus ofKy minima from a b ¢
(b). The thick gray line is the approximate loci of the freezing

points, and the dashed line ending at the critical pdintis FIG. 3. (a) The 1D Gibbs potential & = 0 as a function
the LDL to HDL transition line derived from the cell theory of the extra “degree of freedom?, for the discrete form
approximation. (b) Isothermal compressibility along isobars.of potential in Fig. 1(a). The equilibrium value df(P) is
Except for theP = 0.25 isobar, the graphs show anomalous determined as the absolute minimum of this function, which is
increase upon cooling. (c) Diffusion coefficiet(slope of the  located att = b below P, and atl = a aboveP,,. (b) First
mean square displacement as a function of time) for differenfew peaks ofg(r) for P = 0.5 (dashed line) an@ = 2.0 (solid
pressures ai’ = 0.65, showing an anomalous increase in theline) on theT = 0.65 isotherm which was used in Fig. 2(c).

P < 1.7 range. For comparison, we shaw/4 for a Lennard- The changes in the first (split) peak indicate that increasing
Jones liquid atf’ = 0.7, from simulation of 2304 disks. The P lowers the total number of particles in the open structure
zero values at low pressure for the core softened and at highr = 1.5) and increases the number of particles in the dense
pressures for both correspond to a solid phase. structure ¢ = 1.1).
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At small T this pressure dependence can lead to a firstFig. 2(c)]. We explain this anomaly by noting thBatis
order transition, while for larg& the transition is smooth. proportional to the mean free path of particles. The mean
At T = 0, the value ofP,, is found by equating Gibbs free path increases with free volume per particlg. =
potentials, v — Ve, Wherev is the excluded volume per particle
Pup = —(Uopen — Udense)/(Vopen — Vaense) - (1) resulting from the effezctive_ hard core. Note that fog the
. . . i dense structure., « a* which is smaller thar., « b
For the discrete potential of Fig. 1(a), we fimtl, =, yhe open structure. Increasimydecreases but can

(1 = AMe/(b — a) in 1D, in agreement with the value also decrea ;
: ; ; se. by transforming some of local open struc-
of Py, derived from the 1D equation of state [Fig. 1(b)] y;re5 to dense structures. Since betland v, decrease

[9]._ In_high(_ard, Eq. (1) helps to estim_ate the PressUreih p and sinceAvge. = Av — Avy,, the effect ofP
region in which we expect an overall shift from one IocalOn D depends on whethekv or Av,, dominates. The
ex .
structure to gnother. . anomalous increase i along the isotherms near the
. We investigate the cor_npressmlllty ano_maly by me‘?‘surfreezing line is a sign of the dominance of the., term.
ing K for each state point [23] and plotting it along iS0- 1, i the anomaly i must disappear near a certain pres-

bars as in Fig. 2(b). We observe that along some isobargwe above which the average distance between particles

KTt mcrez_;\stes up?ntcoollnlg. A? 'Itn 1'? .'f[he IIOCUSIO%f N corresponds to the dense structure and as a result the con-
extrema intersects thByp line at its infinite slope poin tribution of the open structure ta., is negligible [25].

[Fig. 2(a)], which i_s consist_ent With thermodyn_amic argu- 14 examine the transition from the open to the dense
ments [16]. .If th? Increase Iy Is due to the eX|stence.of structure, we study the pair distribution functignr)

a critical pointC on the liquid free energy surface (I|!<e for configurations corresponding to different state points
in 1D), then by f'ttmg. thekr curve to a power I_aw di- [Fig. 3(b)]. We observe a uniform value gfr) = 1 at
vergence we can e?'m%t? the Iocatlcl)r;aﬁftol be in _tcf;e large » which confirms that all the state points shown
region0.3 <T < 0.5 and1p < P <15. C'lIs Inside Fig. 2(a) are in the liquid state. For small the

the solid phase region, and is not accessible to the liqui quid shows a few peaks corresponding to the local
in our MD mgthod._ . , structure in the liquid. The first peak ig(r) splits into

In order to investigate the possibility 6f, we perform . two subpeaks, which correspond to the locations of the
S . . Shearest neighbors in the dense and open structures. The
a method S|m_|lar to the original spherical Lenrjard—Jone%pen structure subpeak decreases Withwhile the dense
and Devonrs]hlre cerl]l theo_ryl mgthod E¢.24]a This m?tholdstructure subpeak increases. We observe the same change
assumes that each particle Is confined to a circulal, 7 ajong liquid isobars. These observations agree

cell, whose radius is determined by the average are&ith our previous arguments about the effect fand

per par_tlcle,u. The cell th_eory me_thod negle_cts thedT on the relative occurrence of the two types of structure.
correlation between the positions of different particles and || summary, we have found that a core-softened inter-
assumes that the potential acting on each particle is&n )

It of int " ith all it t neighb ction can generate the three types of liquid anomalies
result of interacting with all 1ts nearest neignbors SMearegy ,jieq in this work. We have also found that all three

around its cell. The Helmholtz potential per cell is anomalies are related to the existence of two general types
h(v,T) = hig(v,T) — kT In[vess(v,T)/v], (2)  of local structures.
where hiq(v, T) is the ideal gas Helmholtz potential and We thank D. Wolf for essential discussions, M.

the effective volume of a cell is defined as Canpolat, S. Harrington, S. Havlin, B. Urbanc, M. Meyer,
S. Sastry, A. Skibinsky, F.W. Starr, and G. Stell for
Vet (v, T) = f e P gx (3)  helpful suggestions and NSF for support.
cell

with the core-softened potential used fdix). For each
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