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We study the liquid anomalies arising from the Stell-Hemmer interaction, using molecular dynam
simulations and approximate 2D solutions. We observe in the liquid phase three types of anoma
(i) An increase in specific volume upon cooling, (ii) an increase in isothermal compressibility up
cooling, and (iii) an increase in the diffusion coefficient with pressure. We relate the anomalies to
existence of two different local structures in the liquid phase. [S0031-9007(98)07749-7]

PACS numbers: 61.20.Gy, 61.25.Em, 64.70.Ja, 65.70.+y
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In their pioneering work, Stell and Hemmer propose
the possibility of a second critical point in addition to
the normal liquid-gas critical point for potentials tha
have a region of negative curvature in their repulsiv
core (henceforth referred to as core-softened potentia
[1]. They also pointed out that for the 1D model with a
long range attractive tail, the isobaric thermal expansio
coefficient, aP ; V 21s≠Vy≠T dP (where V , T , and P
are the volume, temperature, and pressure), can ta
an anomalous negative value. Debenedettiet al., using
thermodynamic arguments, noted that a “softened cor
can lead toaP , 0 [2].

The issue of liquid anomalies by itself is an interestin
phenomenon which is not limited to the density anomal
In this Letter we also discuss two other types of liqui
anomalies, increase of isothermal compressibility (de
sity fluctuations) upon cooling, and increase of diffusio
coefficient (decrease of viscosity) with pressure. The
anomalies occur in many liquids [3,4], including liquid
water [3,5]. Ab initio calculations [6] or inversion of
structure factor data [6,7] reveal that a core-softened p
tential can be considered a realistic first order approxim
tion for the interaction [7,8], even in the case of networ
forming anomalous liquids [3].

Previous works showed that a density anomaly deriv
in 1D does not necessarily hold in higher dimension
[9,10]. Here we demonstrate, by means of numeric
simulations ford ­ 2, that the core-softened potential ca
lead to all three anomalies and that an explanation for t
occurrence of these anomalies can be given in terms
the shape and parameters of the potential. To the bes
our knowledge this is the first time that a simple radiall
symmetric potential is shown to yield these anomalie
We also revisit the question of the second critical point
relation with these anomalies.

The core-softened potential that we study is shown
Fig. 1(a). It is composed of a hard core of diametera
which has a repulsive shoulder of widthb 2 a and depth
le, and an attractive well of widthc 2 b and depthe [11].

We first study the system in 1D to get familiar with the
possible properties that might arise in higher dimension
We derive the exact form of partition function and
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equation of state, following the methods of [4,9,12,13
The resulting isobars shown in Fig. 1(b) exhibit tw
different types of behavior depending on the pressu
Note that there is a discontinuity in,, the average distance
per particle, at an upper pressureP ­ Pup along the
T ­ 0 isotherm. For allP . Pup, , ­ a at T ­ 0, and
, increases monotonically withT . For P , Pup, , ­ b
at T ­ 0, and the,sT d isobars show a maximum and a
minimum, which correspond, respectively, to points o
minimum and maximum density [4,9,14].

We also study the isothermal compressibilityKT ;
2V 21s≠Vy≠PdT ,N . Figure 1(c) shows an anomalous re
gion along isobars in whichKT increases upon cool-
ing. We find that the maximum value ofKT grows as
P ! Pup , and KT diverges as1yT when we approach
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FIG. 1. (a) General form for the core-softened potential stu
ied here. The length parametersa, b, c and energy parameters
e, l are shown. The dashed curve is the smooth version [1
(b) Isobars of,, the average distance per particle, for the di
crete 1D core-softened potential [11] withPup ­ 2.5 in agree-
ment with Eq. (1). TheTMD point is marked by an open circle.
(c) Isothermal compressibility for the discrete potential alon
different isobars, with their maxima marked by filled circles
KT alongPup isobar diverges as1yT . (d) The loci ofTMD and
KT extrema for the discrete potential.
© 1998 The American Physical Society 4895
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the point C0 with coordinatessT ­ 0, P ­ Pupd which
we interpret as a critical point [15]. Further, the locus o
KT extrema joins the pointC0 [Fig. 1(d)]. We also note
that the locus ofKT extrema intersects the temperature o
maximum density (TMD) locus at its infinite slope point,
a result that is thermodynamically required [16]. Such
point on theTMD line has been observed in simulation
which support the existence of a second critical point
supercooled water [17].

Next we consider whether the anomalies derived f
d ­ 1 hold for d . 1 [10]. To this end, we perform
molecular dynamics (MD) simulations for a 2D system
composed ofN disks in a rectangular box. For the
discrete version of the potential, we use the collisio
table technique [18] forN ­ 896 disks, and for the
smooth version of the potential, we use the velocity Verl
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FIG. 2. MD results for the smooth potential with the sam
parameters as in Fig. 1(a) [11]. (a) Constant density curv
with, from bottom to top, densities between 0.46 to 0.56
steps of 0.01. The open circles markTMD , and the dashed
line crossing theTMD line is the locus ofKT minima from
(b). The thick gray line is the approximate loci of the freezin
points, and the dashed line ending at the critical pointC0 is
the LDL to HDL transition line derived from the cell theory
approximation. (b) Isothermal compressibility along isobar
Except for theP ­ 0.25 isobar, the graphs show anomalou
increase upon cooling. (c) Diffusion coefficientD (slope of the
mean square displacement as a function of time) for differe
pressures atT ­ 0.65, showing an anomalous increase in th
P , 1.7 range. For comparison, we showDy4 for a Lennard-
Jones liquid atT ­ 0.7, from simulation of 2304 disks. The
zero values at low pressure for the core softened and at h
pressures for both correspond to a solid phase.
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integrator method [18] forN ­ 2500 disks [19]. Figure 2
shows the results derived for the smooth version. Our M
results are qualitatively similar for the discrete and smoo
versions. Figure 2(a) showsP versus T along liquid
isochores (constantr) which terminate at the freezing
line. We identify the freezing line as the locus of the
points where the diffusion coefficient vanishes and th
system acquires the structure of a 2D solid [20]. Fo
P , P0 , 1, where the freezing line has a negative slope
the liquid has aTMD characterized by a minimum along
the isochore [21], and it freezes into a solid with a lowe
density than the liquid [22]. This solid has a triangula
lattice structure with a lattice constantb. ForP . P0, the
liquid TMD vanishes, the solid is denser than the liquid
and it has a square lattice structure with lattice constanta.
Near the freezing line, the liquid acquires a local structur
similar to the nearby solid.

The three anomalies can be related to the interpla
between two local structures, an open structure in whic
the nearest neighbor particles are typically at a distan
b, and a denser structure in which the nearest neighbo
penetrate into the softened core and are typically at
smaller distancea. The configurations are determined
by the minima of the Gibbs potential,GsT , Pd ­ U 1

PV 2 TS (where G, U, and S are the Gibbs potential,
internal energy, and entropy). Figure 3(a) showsG
for 1D at T ­ 0 for two different values ofP. The
qualitative shape should not change for higherd. For
low pressures at smallT , the open structure is favored by
the Gibbs potential. IncreasingT for these pressures will
increase local fluctuations in the form of dense structure
which can lead to an overall contraction of the system
upon heating, causing a density anomaly. IncreasingP,
on the other hand, raises the relative free energy
the open structure, until the dense structure will be th
favored local structure, as seen forP . Pup in Fig. 3(a).
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FIG. 3. (a) The 1D Gibbs potential atT ­ 0 as a function
of the extra “degree of freedom”,, for the discrete form
of potential in Fig. 1(a). The equilibrium value of,sPd is
determined as the absolute minimum of this function, which i
located at, ­ b below Pup and at, ­ a abovePup . (b) First
few peaks ofgsrd for P ­ 0.5 (dashed line) andP ­ 2.0 (solid
line) on theT ­ 0.65 isotherm which was used in Fig. 2(c).
The changes in the first (split) peak indicate that increasin
P lowers the total number of particles in the open structur
(r ø 1.5) and increases the number of particles in the dens
structure (r ø 1.1).
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At small T this pressure dependence can lead to a fi
order transition, while for largeT the transition is smooth.
At T ­ 0, the value ofPup is found by equating Gibbs
potentials,

Pup ­ 2sUopen 2 UdensedysVopen 2 Vdensed . (1)

For the discrete potential of Fig. 1(a), we findPup ­
s1 2 ldeysb 2 ad in 1D, in agreement with the value
of Pup derived from the 1D equation of state [Fig. 1(b)
[9]. In higher d, Eq. (1) helps to estimate the pressur
region in which we expect an overall shift from one loca
structure to another.

We investigate the compressibility anomaly by measu
ing KT for each state point [23] and plotting it along iso
bars as in Fig. 2(b). We observe that along some isob
KT increases upon cooling. As in 1D, the locus ofKT

extrema intersects theTMD line at its infinite slope point
[Fig. 2(a)], which is consistent with thermodynamic argu
ments [16]. If the increase inKT is due to the existence of
a critical pointC0 on the liquid free energy surface (like
in 1D), then by fitting theKT curve to a power law di-
vergence we can estimate the location ofC0 to be in the
region 0.3 , T , 0.5 and 1.0 , P , 1.5. C0 is inside
the solid phase region, and is not accessible to the liqu
in our MD method.

In order to investigate the possibility ofC0, we perform
a 2D cell theory estimate of the equation of state usin
a method similar to the original spherical Lennard-Jon
and Devonshire cell theory method [24]. This metho
assumes that each particle is confined to a circu
cell, whose radius is determined by the average ar
per particle, y. The cell theory method neglects the
correlation between the positions of different particles an
assumes that the potential acting on each particle is
result of interacting with all its nearest neighbors smear
around its cell. The Helmholtz potential per cell is

hsy, T d ­ hidsy, T d 2 kBT lnfyeffsy, T dyyg , (2)

wherehidsy, T d is the ideal gas Helmholtz potential and
the effective volume of a cell is defined as

yeffsy, T d ;
Z

cell
e2busxd dx (3)

with the core-softened potential used forusxd. For each
state pointsP, T d, we find the value ofy by minimizing
hsy, T d 2 Py. The resulting phase diagram has two line
of first order phase transition, a low pressure line which
the liquid-gas phase transition line terminating at a critic
point C, and a high pressure line that separates a lo
density liquid (LDL) and a high-density liquid (HDL) and
terminates in a critical pointC0 [Fig. 2(a)]. The location
of C0 agrees with our previous estimate fromKT .

We next study the diffusion anomaly using our MD
results. We measure the diffusion coefficientD from
the slope of the mean square displacement as a funct
of time. In analogy with the case of liquid water [5],
along low T liquid isotherms increasingP increasesD
rst
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[Fig. 2(c)]. We explain this anomaly by noting thatD is
proportional to the mean free path of particles. The me
free path increases with free volume per particleyfree ;
y 2 yex, whereyex is the excluded volume per particle
resulting from the effective hard core. Note that for th
dense structureyex ~ a2 which is smaller thanyex ~ b2

for the open structure. IncreasingP decreasesy but can
also decreaseyex by transforming some of local open struc
tures to dense structures. Since bothy andyex decrease
with P and sinceDyfree ­ Dy 2 Dyex, the effect ofP
on D depends on whetherDy or Dyex dominates. The
anomalous increase inD along the isotherms near the
freezing line is a sign of the dominance of theDyex term.
Thus the anomaly inD must disappear near a certain pre
sure above which the average distance between parti
corresponds to the dense structure and as a result the
tribution of the open structure toyex is negligible [25].

To examine the transition from the open to the den
structure, we study the pair distribution functiongsrd
for configurations corresponding to different state poin
[Fig. 3(b)]. We observe a uniform value ofgsrd ø 1 at
large r which confirms that all the state points show
in Fig. 2(a) are in the liquid state. For smallr the
liquid shows a few peaks corresponding to the loc
structure in the liquid. The first peak ingsrd splits into
two subpeaks, which correspond to the locations of t
nearest neighbors in the dense and open structures.
open structure subpeak decreases withP, while the dense
structure subpeak increases. We observe the same ch
with T along liquid isobars. These observations agr
with our previous arguments about the effect ofP and
T on the relative occurrence of the two types of structu

In summary, we have found that a core-softened int
action can generate the three types of liquid anomal
studied in this work. We have also found that all thre
anomalies are related to the existence of two general ty
of local structures.
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