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Nonlinear Diffusion of the Magnetic Field in Weakly Ionized Plasmas

A. I. Smolyakov and I. Khabibrakhmanov
Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S
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Enhanced nonlinear penetration of the external periodic magnetic field into a weakly ionized plasma
is investigated. The penetration is enhanced by the convection of the magnetic field due to the Lorentz
force. The nonlinearity leads to the wavelike propagation of the magnetic field or to the nonlinear
diffusion similar to the diffusion in porous medium depending on plasma collisionality. It is shown
that the periodic magnetic field experiences much slower decay inside the plasma compared to that of
the standard skin effect. [S0031-9007(98)07748-5]
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In this paper we study nonlinear effects that signi
cantly enhance the penetration of the magnetic field in
the weakly ionized plasma. The penetration is enhanc
by the nonlinear convection due to the Lorentz force a
sociated with induced magnetic field. It is also accom
panied by the nonlinear generation of higher harmon
leading to the steepening of the wave front and the fo
mation of a shock wave. Low frequency components
the external perturbation form a quasistationary long liv
magnetic field inside the plasma. The nonlinear mod
and behavior of the magnetic field in the weakly ionize
plasma described in this paper have direct applications
a wide variety of laboratory [1–4] and space [5–10] pla
mas. It is also similar to the nonlinear diffusion of th
magnetic flux in the superconductors [11].

The effects studied in this paper are associated with
nonlinear modification of the Ohm’s law due to the in
duced magnetic field̃B. The regime when the Lorentz
force (Hall term) is important in the electron momentu
balance equation and the ion motion can be neglected
commonly referred to as electron (Hall) magnetohydr
dynamic (EMH) [3]. Applicability conditions for EMH
are typically satisfied in the ionospheric plasma perturb
by electrodynamic tethers [5] and in the magnetosph
plasma [5] perturbed by short term variations of the so
wind, as well as in laboratory pulsed plasmas, in partic
lar, plasma opening switch [4]. For an unmagnetiz
weakly ionized plasma the approach of the electron ma
netohydrodynamic is applied when the electron cyclotr
frequencyvc ­ eB̃ymec in the induced magnetic field
B̃ becomes comparable to the electron-neutral collisio
frequencynen or to the characteristic frequency of the os
cillations v . B̃21≠B̃y≠t. The weakly ionized plasma
typically used in low density inductively coupled plasm
reactors for materials processing are often in the regim
with vc , 50 180, nen , 5 20, andv , 1 85 [1] (in
units of 106 s21). Thus the low temperature plasma i
inductive plasma reactors represents another example
plasma that is described by the EMH. In this paper w
consider a situation when, in general, ion motion is im
portant, so that the EMH condition will be slightly modi
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fied below. Nonlinear effects considered in this wo
are different from phenomena studied in [3] (see a
Refs. [4,12], and references therein). The latter are
lated to inhomogeneities of plasma density and/or to
curvature of the magnetic field. In particular, the nonli
ear diffusion considered in the present paper is opera
for a homogenous plasma density and in a slab geom
(we consider cylindrical geometry here to make conne
tion to experimental conditions in Ref. [1]).

The electron and ion components are described by
following moment equations:

dava

dt
­ 2

ea

ma

"
E 1

1
c

va 3 B

#
2nanva , (1)

wherenan is the collisional frequencies due to particle
neutral interaction,a ­ se, id, daydt ­ ≠y≠t 1 va ? =.
These equations are closed with the Ampere’s law

= 3 B ­
4p

c
J ­

4p

c
ensZivi 2 ved . (2)

We assume plasma quasineutrality,ni ­ ne ­ n, and
neglect all perturbations of plasma density. The plas
displacement current is also neglected in (2) assum
that the characteristic oscillation frequency is sufficien
low. The electron equation of motion (1) is convenient
written in the form of conservation of the generalize
momentum [3]

≠

≠t
= 3 pe 2 = 3 sve 3 = 3 ped ­ 2nenme= 3 ve ,

(3)
wherepe ­ meve 2 eAyc, andA is the magnetic vector
potential,B ­ = 3 A.

The ion and electron equations (1) are combined in
momentum balance equation

≠

≠t
u ­

1
cnm

J 3 B 2 nu 1
nenc
4pen

= 3 B , (4)

where mu ;meve 1 mivi , m ; mi 1 me, and n ­
snenme 1 ninmindym. We have used the orderingu ,
yi , meyeymi and neglected the small terms of the ord
of meymi.

When the collisionless skin depth is small compar
to the characteristic wavelength,k2c2yv2

pe , 1, the field
© 1998 The American Physical Society 4871
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component of the generalized momentum is domina
meye ø eAyc. Then Eq. (3) reduces to

≠

≠t
B 2 = 3 su 3 Bd 1 = 3

√
c

4pen
s= 3 Bd 3 B

!

­
nenmec

e
= 3

√
u 2

c
4pen

= 3 B

!
. (5)

Nonlinear Eqs. (4) and (5) describe complex couple
dynamics of the magnetic field and plasma velocity. I
particular, the last term on the left hand side of this equ
tion describes the nonlinear Hall effects associated w
gradient of plasma density and curvature of the magne
field [3,4,12]. In this work we study a simplest one
dimensional version of (4) and (5) where the nonlinea
convection of the magnetic field by the plasma flowu is
not masked by the Hall effect. We consider an infinit
plasma cylinder along thez axis and a uniform plasma
density,n ­ const. The azimuthally symmetric magneti
field is in thez direction and varies in radial directionr,
Bsrd ­ Bsrdẑ. Then the Hall term in (5) vanishes iden
tically and the magnetic induction equation (5) takes th
form

≠

≠t
b 1

1
r

≠

≠r
srurbd ­

1
r

≠

≠r

√
r

≠

≠r
b

!
. (6)

The radial plasma velocityur is directed toward the
axis of the cylinder. Here, the time is normalized t
the frequency of the external perturbation,t0 ­ vt, the
dimensionless length scaler 0 2 ! r2yd2, u0

r ! uryvd,
d2 ­ Dmyv. The magnetic diffusion coefficient isDm ­
nenmec2y4pe2n, and the dimensionless amplitudeb is
introduced by the relation

b2 ­
e2B2

snenme 1 ninmindnenmec2 . (7)

The parameterb is a ratio of the cyclotron frequency in
the induced magnetic field to the effective collisional fre
quencyneff ­ fsnen 1 ninmiymedneng1y2 and character-
izes the nonlinearity of the problem. Note that accordin
to Ref. [1] this parameter can be large in the inductive

FIG. 1. The averaged magnetic fieldkbl as a function of
distance for different amplitudes of the external perturbatio
b0 ­ 1, 2, and3.
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coupled plasma reactors. The second term in (6) describ
the convection of the magnetic field by the radial plasm
flow ur . The equation forur decouples from (4) and takes
the form

a
≠

≠t
ur ­ 2

≠

≠r
b2

2
2 ur , (8)

where a ­ vyn. The radial plasma velocityur is
driven by the gradient of the magnetic field pressur
Note the analogy to Darcy’s law for the fluid flow in
porous medium. Equations (6) and (8) constitute ou
main equations for the nonlinear evolution of the magnet
field. For an axisymmetric infinite plasma cylinder, a
singularity of the radial plasma velocityur may occur
at the boundaryr ­ R and at the center of the cylinder
r ­ 0. Practically, the continuity of the plasma flow can
be maintained by ionization and recombination processe

We investigate the inward penetration of the harmon
magnetic field along thez axis applied at the surface of
the plasma cylinderr ­ R. In order to illustrate the prop-
erties of nonlinear diffusion we solved the system (6)–(8
for a ­ 1, R ­ 10 with vanishing derivatives≠uy≠r and
≠by≠r at r ­ 0, usrd ­ bsrd ­ 0 at t ­ 0, andbst, r ­
Rd ­ b0 sins2ptd. The pseudospectral Chebyshev poly
nomial approximation in space and Crank-Nicholson di
cretization in time were used.

For a small amplitude of the external fieldb0std & 1
the magnetic pressure gradient force is small so th
nonlinear convective velocityur in (6) can be neglected.
Then the magnetic induction equation (6) reduces
the linear diffusion equation, and the penetration dep
is independent of the amplitude and given by the sk
depthd. The characteristic length scale (defined as th
distance where the amplitude decreases ine-fold times)
increases with the amplitude of the external field. Th
behavior is shown in Fig. 1 where the averaged over th
periodT profiles of the mean square of the magnetic fiel
kbl ­ s

H
B̃2 dtyT d1y2 are shown for different amplitudes.

The position where the amplitude decreases ine-fold
times for a given amplitude is marked on each curv

-3

-2

-1

0

1

2

3

0 5 10

b(
t)

t

FIG. 2. The time history of the magnetic field at differen
positions (r ­ 3Ry4, Ry2, Ry4, and 0) inside the plasma for
b0 ­ 4.2 sins2ptd.
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the characteristic length scale for the linear diffusion
marked on thex, axis. It should be noted also that th
magnetic field decay changes from the exponential in
linear regime to a much slower pattern with a noticeab
trend of changing the sign of the curvature of the profi
in the region where the amplitude is large (Fig. 1).

The remarkable feature of the nonlinear dynami
described by Eqs. (6) and (8) is the fast penetration (
the time scale of several periods) of the mean magne
field deep inside the plasma. We define the mean fieldb
as the average in time over the period,b ­

H
b dtyT . As

the magnetic field penetrates into the plasma an amplitu
of oscillations decreases while the amplitude of the me
component grows. This is illustrated in Fig. 2 wher
the time dependent magnetic field is plotted at seve
positions inside the plasma column. It can clearly b
seen that while the mean component of the magnetic fi
is absent at the plasma boundary it appears at a fin
distance inside the plasma. It reaches its maximum
a time scale of the order of several periods. It shou
be noted that this mean magnetic field is not stea
state but rather experiences a slow decay on a very lo
time scale of the order of several thousands of perio
When amplitudeb0 is increased characteristic decay tim
increases. The decay becomes faster again for lar
amplitudes, when the oscillating components penetr
to the plasma interior. In our simulations we observ
a significant amplitude of oscillations in the center fo
b0 ­ 6 as shown in Fig. 3. Very few oscillations ar
present forb0 ­ 4.2, and practically no oscillations in the
center are observed forb0 ­ 3.

The absolute value of the mean component of t
magnetic field inside the plasma depends on the init
conditions of the applied field. Applying at timet ­ 0
the perturbationb ­ b0 sins2pt 1 fd with initial b ­ 0,

1000 1010

1

2

3

FIG. 3. The magnetic field in the plasma center atr ­ 0 as a
function of time for different amplitudesb0 ­ 3, 4.2, and
6. Significant oscillations of the magnetic field penetrate
the center forb0 ­ 6. The damping of the field driven with the
amplitude aroundb0 ­ 4.2 is negligible. The inset shows the
magnetic field for the time period fromt ­ 1000 to t ­ 1010.
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u ­ 0 we found the amplitude of the mean field a
a function of the initial phasef. This dependence is
shown in Fig. 4. Though partially it is determined b
the low frequency part of the spectrum of the harmon
wave steplike switched on att ­ 0, it is further modified
by nonlinear effects. A similar behavior of the mea
field was observed also for nonlinear penetration of t
magnetic flux into the superconductors [11].

In the presence of a mean magnetic field the penetrat
of the external field is further enhanced due to appearan
of wave solutions to Eqs. (6)–(8) that are associated w
magnetosonic-type wavesv ­ kryA; kr is the radial wave
vector,y2

A ­ B2
0y4pnm is the Alfvén velocity, andB0 is

the permanent magnetic field. Wavelike propagation
the pulses of the magnetic field and reflection from th
center of the plasma cylinder was also observed in o
simulations.

The penetrating mean and oscillating components
the magnetic field create the finite averaged fieldkbl
in the interior region far deeper than the linear sk
depth as shown in Fig. 5. Such finite amplitude field
were observed experimentally in Ref. [1]. The averag
field kbl in Fig. 5 are given for the external harmoni
perturbationb ­ b0 sins2ptd started att ­ 0. For large
amplitudes of the external perturbation, oscillations
the magnetic field penetrate plasma interior and th
contribution tokbl becomes essential.

In the inertialess limit, when the characteristic fre
quency is small compared to the collisional frequencie
v ø n, thea parameter is small and the time derivativ
term in (8) can be neglected so that we obtain a nonline
evolution equation for the magnetic field [9]

≠

≠t
b ­

1
r

≠

≠r

√
rs1 1 b2d

≠

≠r
b

!
. (9)

This equation is similar to the porous medium equ
tion and describes the diffusion of the magnetic field in
plasma with a strong plasma-neutral friction [9]. In gen
eral, numerical solutions of this equation show properti
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FIG. 4. The mean component of the magnetic field as
function of the initial phasef of the external perturbation
b ­ b0 sins2pt 1 fd for b0 ­ 6 and b0 ­ 3 (initial b ­ 0,
u ­ 0 are used).
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FIG. 5. The averaged magnetic fieldkbl as a function of
distance forb0 ­ 4.2 and b0 ­ 6 at t ­ 200T , 800T , and
1200T . A weak decay of the mean magnetic field inside
noticeable for b0 ­ 6; it is practically negligible for b0 ­
4.2 where the profiles att ­ 200T , 800T , and 1200T are
indistinguishable.

similar to those observed for Eqs. (6)–(8). Notice, how
ever, that the characteristic time scale for the decay of
mean field is much shorter for (9) as illustrated in Fig.
compare with Fig. 3 for Eqs. (6)–(8).

The importance of the effects of the induced magne
field on the heating and transport in the inductive plasm
was emphasized in Refs. [2,13–16]. In the present pa
we have developed a self-consistent nonlinear model
the magnetic field penetration into such a plasma. No
that the detailed comparison with the experimental data
low temperature inductive discharges require considerat
of the thermal dispersion effects [17] which are beyond t
scope of this paper. The nonlinear mechanism analyzed
this paper can possibly explain a number of other pheno
ena in laboratory and space plasmas such as extremely l
propagation of the magnetic pulses generated by lightn
in the ionosphere [18] and formation of quasisteady ma
netic structures in the ionosphere of Venus due to dynam
interaction with the magnetic field of the solar wind [6].

This research was supported by the Natural Scienc
and Engineering Research Council of Canada. The
thors thank E. J. Llewellyn for his encouragement of th
work.
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