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Double Curl Beltrami Flow: Diamagnetic Structures
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It is shown that in an ideal coupled magnetofluid, the equilibrium magnetic (velocity) field is
described by a two-parameter, double oWl X VX) system of equations. The new system allows,
among others, a novel, fully diamagnetic, pressure confining, minif@jnsonfiguration with velocity
fields comparable (in appropriate units) to the magnetic fields. [S0031-9007(98)07765-5]

PACS numbers: 47.65.+a, 52.30.—q, 52.55.Dy

Thg coupling between the magnetic field and the flpw aVi e E -V, X [L B+V X V,

velocity (through the nonlinear induction effect and its gr M Mc

reciprocal Lorentz force) tends to impart considerable 1 V2

complexity to magnetohydrodynamics (MHD). In spite = ——V(p,- + g; + —‘) 3

of this complexity, MHD does allow regular and ordered n 2

behavior. An example is the appearance of the equilibriumvhere v;(V,) and p;(p.) are, respectively, the ion (elec-

magnetic field B) satisfying the “Beltrami condition,” tron) velocity and pressuré/ is the ion massy is the

constant particle density, ang(g.) represent all other

VXB=aB, (1) gradient forces including an externally applied electro-

when the flow energy can be neglected. Herés a scalar static field. To derive (2) and (3), we have used the vec-

\ . _ , i tor identity V; - VV; = V(V?/2) — V; X (V X V;). In
field that must satisfB - Va = 0 to insureV - B = 0. ! ! ! ! . !

The Beltrami magnetic field represents a “stationar;ffjlrc,'(;ar tOIWV_'tteg)_and S) JSFIT/IF)\'}’ and E:Jllj‘)f[mje{]ms ofdthe
(no-flow)” force-free [the Lorentz forceJ X B = ﬂ:“ ve Oc'ty A le(sm o ti)t/h(m ol ) = h and -
(c/47)(V X B) X B = 0] macroscopic plasma state. € magnetic Tields, we afiect the foflowing changes.

: - L : Writing E = —(1/c)dA/dt [whereA is the vector poten-

Woltjer [1] derived (1) by minimizing the magnetic energy tiadl (VXA=BL V=V V. =V — _V o
with the constraint that the local magnetic “helicity” is "2 ( =B), Vi=V, V. = J/ne =

conserved. Taylor [2] introduced the far-reaching concepgc./ 4W;f)v X B (us'ltng Am;:)\(]erte’?r:av'x\)l%va’nd then dr/]orTaI-
of relaxation: He conjectured that a small amount of2iNg B to some arbitrarys,, V to the €n Speedis =

resistivity present in a realistic plasma would tend to rela>ﬁ0/v47TM”' the space and time scales, respectively, to

all the local helicity constraints leaving only the conser-11€ 100 skin depthy; = ¢/wpi = c/(4mnoe’/M)'2, and
vation of global helicity intact. The minimization of the the cyclotron timer. = (Mc/eBy), we obtain
field energy with the global constraint, then, leads to the 9A/dt — (V — VX B) X B =V(8, + &.), (4
“relaxed state” characterized by a spatially homogeneous
a in (1), i.e., a “constant: Beltrami field.” A +V)/at = VX (B +VXYV)

The aim of this paper is to show that a more adequate — —V(B: + & + 0.5V?), (5)

formulation of the plasma dynamics allows a much h g he | q el
wider class of special equilibrium solutions. The set ofVhereS; and 5. are the ion and electron pressures nor-

new solutions contains field configurations which canMalized t033/477, andg;(g.) are the normalized gradient
be qualitatively different from the constaatBeltrami fOrces. To derive (4) and (5), we have also assumed that
magnetic fields (which are naturally included in the set)tn€ particle density is spatially uniform. Our intention,
The larger new set may help us understand a variet{f this Letter, is to concentrate on an _algebrau_:ally simple
of structures generated in plasmas. It also opens upyStem to delineate new and interesting physics. The ef-
the possibility of experimenting with altogether different I€Cts Of electron inertia, nonuniform density, etc., will be
configurations, some of which may lead to a novel regimél€@lt with in a forthcoming detailed publication.

of high-pressure plasma confinement. Taking the curl of these equations, we can cast them in
When electron inertia is neglected, the normalized two@ "evealing symmetric form
fluid equations with arbitrary flows can be written as 0Q;/at =V X (U; X ;) =0 (6)

in terms of a pair of generalized vortices
leB, QQ=B+VXV, (7)

V. X B
4 e 7
C

E — = V(pe + g0, @
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and effective velocities, especially with the idea of imparting a finite pressure and
U =V -V XB, U, =V. (8) a finite rov_v Fq the “relaxed state.’j Different combina}tipns
] ) ) i ] ) ) of the helicitiesh; and h, were invoked (cross-helicity
The first equation is the induction equation with the;, Ref. [4], for example) for this purpose. Although
difference that we do not negled X B (~J) with  he “gouble curl Beltrami” system was accessible to
respect toV as is often done in MHD. This departure gny of these approaches, it was not recovered. For
from the standard one-fluid treatment is crucial; it ISexample, the assumptioB = aV in Ref. [5], makes
the source of theV X V X B term in Eq. (11), and he more general solution inaccessible. We do wish to

hence of the possible diamagnetic structures. The secongyphasize, however, that our interest (in this paper) was
equation is the Lorentz force equation which also includesg,q; o develop another minimum energy principle; we
the standard fluid forc& X (V X V). Let us introduce \yere looking for a new genre of equilibria which will

U =U; = 1;Q; (j = 1,2), and rewrite (6) as simultaneously satisfy the induction and the force balance
0Q; /ot =V x (0; xQ;))=0 (j=12), (9) equations.

whereu,; and u, are scale parameters that can be consid- (2) The general steady-state solution allowed by (9)

ered as intensives in a possible thermodynamic inter, reqonsists of a set of nonlinear equati_oﬁ§ - AJ(X)Q!"
tation (to be discussed rIJater). The simp?/est equilibriEnﬂnin - VA;(x) = OSJ = 1,2) of which (10) is a spe-
solution to (9) isU; = 0 (j = 1,2), or equivalently the cial case wherel;(x) = u; = constant(j = 1,2). Ina
system of linear equations iB andV (a = 1/u; and thermodynamic Sense, the Spa“‘”?".'y .'”homog‘?'.‘e‘.’us (ho-
b= 1/u) mogeneous)A; imply a nonequilibrium (equilibrium)
state. The latter corresponds to the Euler-Lagrange equa-
B =a(V—-VXB), (10) tions associated with the global free enerfly= E —
B+VXV=hV, > mjh; with u; acting as Lagrange multipliers. The
system can be viewed as a “grand-canonical ensemble” in

which describes, explicitly, the strong coupling betweenjicp, the injection of a “helicity’; creates an equivalent

the magnetic a!”d the fluid aspects .Of the plasma. !t i%nergy,uhhj. Equations (10) then follow as the global
from this coupling that new physics is expected to arise«a|axed state.”

Equations (10) can be Comb'”?d to y!eld, n e|_tnéror Before writing down some highly revealing solutions,

B, the second order partial differential equatiom £ ¢ analyze the mathematical structure of the double

b —(l/a)andp =1 = b/d] Beltrami flow (11). We rewrite it in the form
VX(VXB)—aVXB+8B=0, (11 (¥ X 1) (T X —AB = 0 13)

which, will, naturally lead to magnetic field (and flow " - ’

velocity) structures far richer than the ones contained itwhereA. = [a@ = {/a? — 43]/2. At the boundaryQ

the “constante Beltrami-Taylor” (BT) system. of the three-dimensional bounded domaih, we as-
The equilibrium solution (10), when substituted into (2)sumen - B=0,n - (VX B)=0,n- (VX V X B) =
and (3) leads to the Bernoulli conditioV8, + g.) = 0, wheren is the unit normal vector onté{). The third

0 = V(B; + gi + V?/2) suggesting a mechanism for condition follows, for smooth solutions, from the first and
creating pressurég) gradients in this extended relaxed second conditions and (11). {f is simply connected, the
state. Inthe simplest cag¢, = 0 = 2.), boundary value problem has nontrivial solutioB £ 0
B; + 0.5V = constant (12) in Q), only.if at Iea;t one ofA+ belongs to_the po_int
) ) o spectrum [discrete eigenvalues, (curl)] associated with
revealing that an appropriate sheared velocity field cag,e self-adjoint part of the curl operator [7]. Whéh
sustain a dgsired ion pressure gradient._ Equation_s (119 multiply connected, howeven and A_ can take ar-
and (12) will serve as a basis for designing a highlypitrary real values (and, moreover, complex values) for
effective plasma confinement machine. We note that:  nontrivial solutions. For a multiply connected dom&in
(1) The set of equations (10) can be derived by, # ¢, (curl)] with the topological genus (first Betti
following the Taylor prescription of relaxed equilibria number)» # 1, the boundary value problem will have

applied to (9), which allows two bilinear constants of 5, degrees of freedom. L&y (¢ = 1,..., ») be the cuts
mation, the usual total magnetic helicity = —0.5 [A -+ of () such thatQ\ N%_, S, becomes a simply connected
B d*x, and the generalized heliciy, = 0.5 [(A + V) ©  domain. On each cut, we define fluxes (currents)

B +V >f< V) d3x [3]. Minimization of the total energy

E = 0.5 [(B* + V2)d3x with the constraints of constant B _ f . J_ [ _

hi and i, will directly lead us to (10). The constanis e S, n - Bds, 7 S, n - (VX B)ds
andb are related to the Lagrange multipliers needed in the €=1.....v) (14)
constrained minimization. The approach of constrained e

minimization of an appropriate free energy has been usedheren is the unit normal vector ont§, andds is the
by many authors [4—6] to generalize the BT systemsurface element o8,. Because of the divergence-free
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property of B and V X B, these fluxes are homotopy 1.0
invariants with respect t§,. For a given set of values ' \\Vt—> 0.0150
®f, ... ®B &f,...,d/ we can solve (13) uniquely, and 0.8/ Bt \\ 0.0125
if at least one of these values is nonzero, the soluBon 0.6 \> ——-{0.0100
is nontrivial (#0) [8]. This assertion can be derived by W N\ 0.0075
generalizing Theorem 2 of Yoshida-Giga [7]. 04 P N 10,0050
The magnetic (velocity) fields described by (13) have g 7 N 10,0025
two characteristic length scaléa!) determined by the // N
amounts of helicity and of generalized helicity [mani- 24 6 8 10

fested through the values ¢, b) and hence ofa, 8)]

present in the system. The consequences of two inhereftG- 1. A radial plot ofB,, B, (left vertical axis) andv,,V,
scales are best illustrated by studying the explicit §°|“£1r_lghTthVeerS§?;r%§fgr's Tal?ee iys_tig,s;fi]%f 2?%%(; 3_2(2 4;
tions of (13) in simple coordinate systems. An obvioUSimplying A, = 59.98 and A_ = 0.2440. S was chosen to be
choice would have been the generalization of the wellequal toA_ to eliminate the fast-varying component.

known Cartesian three-dimensioaaC flow. In spite of

its tremendous interest, however, we concentrate, in this

paper, on the one-dimensional cylindrical system. The If the boundary value/.(r = 0) = S were exactly
cylinder should be seen as the limiting case of a largequal toA—, then (15) tells us that the highly varying part
aspect ratio torus. We choose this example because tioé B, andB, will vanish. Here we see a glimpse of how
main message of this paper is to show that new and ex@ smooth magnetic field could emerge (as it seems to do,
citing, high-pressure confining, highly compact magnetidor example, in a reversed field pinch) in a system with

configurations can be created in the laboratory. nonzero flow. Aided, perhaps, by turbulence, the system
With boundary conditionsB,(r = 0) = B, = 1, and may organize itself in such a way that the central current

J, = (VX B),(r =0) =8, Eq. (13) yields acquires the needed correct value. In Fig. 1, we can see
B, = Ay — A)'[(S = AWo(Asr) an example of such a smooth equilibrium. The size of

the system id0A; (~25 cm forn ~ 10'%). The velocity
— (8§ = A )Jo(A-r)], (15) fields are small but not negligible. This configuration

B, = (A — A_)"'[(S — AW (Asr) produces very insignificant pressure confinement by the
i Bernoulli mechanism.
— (8 = A)Ji(A-r)], The most interesting and novel aspects of (15) emerge,

whereJ, andJ; are the ordinary Bessel functions, and wewhen the termV X (V X B) plays a fundamental role;
have chosen to writ8,s) andB,(,) wherer(p) stands for ~ that is when both terms of (15) are in full play. (This
toroidal (poloidal). The rest of this paper is an explorationhappens wheriB| and |V| are comparable.) For this
of (15). regime, we shall present two representative cases. The
Let us begin by deriving from (15), the well-known system size is taken to b2\;, and the edges;(r =
solutions for the reversed field pinch [2]; the solutions2) = 0. The parameters were so chosen that the toroidal
which are seen as a display of the remarkable property afurrent profile follows the beta profile (so that the current
the plasma to organize itself. We remind the reader thatan be Ohmically driven), and/;(r = 0) = 0. The
the BT type of solution§V — 0) are characterized by a latter was done to optimize central beta. In the first
single real valued scale parameter. From (10) and (11jgase [Fig. 2], A~ are real, while in the second case
we see that the limib > |V| > b~ with b — = (or
equivalently « — b, 8 — —b/a) produces the desired

result VX B = B/a. Notice, however, that this is a ~

“singular” limit of Eq. (11); the highest derivative term 1'50\ B~ 209

V X (V X B) has been neglected. 1.25 / N
The inescapable conclusion, therefore, is that even a 1.00-'/XV v -0.4

small velocity field could cause “singular” perturbations 0.75 P \

to the flowless magnetic field structures. For a large 0.50 N “0'6

finite » (and moderatda| < |b]), A+ = b and A_ = 0.2 ‘_Bp/, i‘-o ]

a~!' implying that the magnetic field [Eq. (15)] varies e '

not only on the moderate scale| but also on the finer 05 1 15 9

scale|b|™!'. This latter part, unless dissipated by finite

resistivity, should emerge as a wavy part superimpose light vertical axis). The System size B;, B,(r — 0). the

upon a moderately smooth part. Thi$ feature_ should b elocity is measured in units of the central Alfvén speed. The
common to most magnetofluid equilibria and will be dealtparameters are = —1.9, » = —1.5, andS = 0.52, implying

with elsewhere. Ay = —0.64 andA_ = 0.32.

IG. 2. A radial plot ofB,, B, (left vertical axis) andV,,V,
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™~ y Beta profile
NN o
1o 0.2
1.00 //>< \VtH 0.06
: Vp -0.4 l
0.75 \\\\&T}\
050 «—pp N -0.6 0.04
0.25 _— % 0.8
0.5 1 15 2 0.02
FIG. 3. A radial plot ofB,, B, (left vertical axis) andv,,V,
(right vertical axis). The system size &\;, B,(r = 0) = 1,

the velocity is measured in units of the central Alfvén speed. 0.5 1 1.5 2
The parameters are= —2, b = —1.4, andS = 0.5, implying

As = —045 + 031 FIG. 4. A radial plot ofB; for cases displayed in Figs. 2 and

3. The toroidal current (not shown) follows the pressure profile.

[Fig. 3], they are a complex conjugate pair (even for
complexAy, A— = A%, the physical quantitie8,, B,,, ... believe that these configurations point to a possible new

remain real). For both of these examples, we noticdath in our quest for controlled thermonuclear fusion. A
the following: (1) The magnetic field increase away tentative theoretician’s machine design is being worked on.
from the center[B;(r = 0) = 1]; (2) the magnitude Discussions with Dr. Prashant Valanju are acknowl-
of the velocity field (refer to the right vertical axis), €dged. This work was supported by the U.S. Department
normalized to the central Alfvén speed, is sizable, and i®f Energy under Contract No. DE-FG03-96ER-54346.
monotonically increasing; (3) the configurations through
the Bernoulli mechanism [Eq. (11)]; produce excellent
and almost identical pressure confinements [Fig. 4] with [1] L. Woltjer, Proc. Natl. Acad. Sci. U.S.A4, 489 (1958).
a centralg; = 0.08. [2] J.B. Taylor, Phys. Rev. LetB3, 1139 (1974); Rev. Mod.
Notice that for the Bernoulli condition Eg. (11), the Phys.58, 741 (1986). T )

standard one-fluid model, is perfectly adequate if the [3 FOr a vorticity &, the “helicity” is defined ash; =
flow energy is not neglected. However, for the Bernoulli =05 J(eurl™ Q) - 2, d’x, where curl | is the inverse

. . ) . . operator of the curl that is represented by the Biot-Savart
mechanlsm_to provide plasma confinement, the veIomty integral. We choose the sign in an appropriate way.
fields must increase away from the plasma center. Thisj4] 3. M. Finn and T.M. Antonsen, Phys. Fluid, 3540
becomes generally possible when the term proportional to ~ (1983).
J ~ V X B (absent in one-fluid models) is retainedln [5] R.N. Sudan, Phys. Rev. Le#t2, 1277 (1979).
[Eq. (6)]. [6] L.C. Steinhauer and A. Ishida, Phys. Rev. L&, 3423

It follows then, that by the strong coupling of the fluid- (1997).

kinetic and magnetic aspects of the plasma, a highly con-[7] Z. Yoshida and Y. Giga, Math. 2204, 235 (1990).
fining, fully diamagnetic (fields in plasma are everywhere [8] If one of A, and A- belongs to the point spec-
smaller than the edge plasmas), and everywhere minimum ~ 'um o, (curl, we cannot assign independent values to
|B| configuration [this will persist even in a large aspect ~ he fluxes ¢ ®¢ (€ =1.c.....»). For example, if
ratio torus as long as th&/R variation is less than the A+ € o(cur, we must assume; — AP =0 (¢ =

A 1,c,...,v). Therefore, the degree of freedom becomes
differenceB.q,e — B(0)] can naturally emerge for a very If both A. and A_ belong too,(curl), we must assume
compact plasma.

_ _ _ _ O] = DPE =0 =1,c,...,v), and hence, the degree of
These highly compact diamagnetic structures with scale  freedom is zero. Indeed, the nontrivial solution is given

length of a fewa;, V_VhiCh _reql_Jire strong plasma flows, de- by the two eigenfunctions of the self-adjoint curl opera-
serve a thorough investigation. Being the states of low-  tor, which carry no flux through every cross section of the
est free energy, they are expected to be MHD stable. We  domain.

4866



