
VOLUME 81, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 30 NOVEMBER 1998

is
,

Double Curl Beltrami Flow: Diamagnetic Structures
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It is shown that in an ideal coupled magnetofluid, the equilibrium magnetic (velocity) field
described by a two-parameter, double curls= 3 =3d system of equations. The new system allows
among others, a novel, fully diamagnetic, pressure confining, minimumjBj configuration with velocity
fields comparable (in appropriate units) to the magnetic fields. [S0031-9007(98)07765-5]

PACS numbers: 47.65.+a, 52.30.–q, 52.55.Dy
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The coupling between the magnetic field and the flo
velocity (through the nonlinear induction effect and it
reciprocal Lorentz force) tends to impart considerab
complexity to magnetohydrodynamics (MHD). In spit
of this complexity, MHD does allow regular and ordere
behavior. An example is the appearance of the equilibriu
magnetic fieldsBd satisfying the “Beltrami condition,”

= 3 B ­ aB , (1)

when the flow energy can be neglected. Here,a is a scalar
field that must satisfyB ? =a ­ 0 to insure= ? B ­ 0.
The Beltrami magnetic field represents a “stationa
(no-flow)” force-free [the Lorentz forceJ 3 B ­
scy4pd s= 3 Bd 3 B ; 0] macroscopic plasma state
Woltjer [1] derived (1) by minimizing the magnetic energ
with the constraint that the local magnetic “helicity” is
conserved. Taylor [2] introduced the far-reaching conce
of relaxation: He conjectured that a small amount
resistivity present in a realistic plasma would tend to rela
all the local helicity constraints leaving only the conse
vation of global helicity intact. The minimization of the
field energy with the global constraint, then, leads to th
“relaxed state” characterized by a spatially homogeneo
a in (1), i.e., a “constant-a Beltrami field.”

The aim of this paper is to show that a more adequa
formulation of the plasma dynamics allows a muc
wider class of special equilibrium solutions. The set
new solutions contains field configurations which ca
be qualitatively different from the constant-a-Beltrami
magnetic fields (which are naturally included in the se
The larger new set may help us understand a varie
of structures generated in plasmas. It also opens
the possibility of experimenting with altogether differen
configurations, some of which may lead to a novel regim
of high-pressure plasma confinement.

When electron inertia is neglected, the normalized tw
fluid equations with arbitrary flows can be written as

E 1
Ve 3 B
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whereVisVed andpisped are, respectively, the ion (elec
tron) velocity and pressure,M is the ion mass,n is the
constant particle density, andgisged represent all other
gradient forces including an externally applied electr
static field. To derive (2) and (3), we have used the ve
tor identity Vi ? =Vi ­ =sV 2

i y2d 2 Vi 3 s= 3 Vid. In
order to write (2) and (3) simply, and fully in terms of th
fluid velocity V ­ smVe 1 MVidysm 1 Md . Vi , and
the magnetic fieldB, we affect the following changes:
Writing E ­ 2s1ycd≠Ay≠t [whereA is the vector poten-
tial s=== 3 A ­ Bd], Vi ­ V , Ve ­ V 2 Jyne ­ V 2

scy4pned=== 3 B (using Ampére’s law), and then normal
izing B to some arbitraryB0, V to the Alfvén speedVA ­
B0y

p
4pMn, the space and time scales, respectively,

the ion skin depthli ­ cyvpi ­ cys4pn0e2yMd1y2, and
the cyclotron timetc ­ sMcyeB0d, we obtain

≠Ay≠t 2 sV 2 === 3 Bd 3 B ­ =sbe 1 ĝed , (4)

≠sA 1 Vdy≠t 2 V 3 sB 1 = 3 Vd

­ 2=sbi 1 ĝi 1 0.5V 2d , (5)

wherebi and be are the ion and electron pressures no
malized toB2

0y4p, andĝis ĝed are the normalized gradien
forces. To derive (4) and (5), we have also assumed t
the particle density is spatially uniform. Our intention
in this Letter, is to concentrate on an algebraically simp
system to delineate new and interesting physics. The
fects of electron inertia, nonuniform density, etc., will b
dealt with in a forthcoming detailed publication.

Taking the curl of these equations, we can cast them
a revealing symmetric form

≠Vjy≠t 2 = 3 sUj 3 Vjd ­ 0 (6)

in terms of a pair of generalized vortices

V1 ­ B, V2 ­ B 1 === 3 V , (7)
© 1998 The American Physical Society 4863
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and effective velocities,

U1 ­ V 2 === 3 B, U2 ­ V . (8)

The first equation is the induction equation with th
difference that we do not neglect=== 3 B s, Jd with
respect toV as is often done in MHD. This departure
from the standard one-fluid treatment is crucial; it
the source of the=== 3 === 3 B term in Eq. (11), and
hence of the possible diamagnetic structures. The sec
equation is the Lorentz force equation which also includ
the standard fluid forceV 3 s= 3 Vd. Let us introduce
Ûj ­ Uj 2 mjVj s j ­ 1, 2d, and rewrite (6) as

≠Vjy≠t 2 = 3 sÛj 3 Vjd ­ 0 s j ­ 1, 2d , (9)

wherem1 andm2 are scale parameters that can be cons
ered as intensives in a possible thermodynamic interp
tation (to be discussed later). The simplest equilibriu
solution to (9) isÛj ­ 0 s j ­ 1, 2d, or equivalently the
system of linear equations inB and V (a ­ 1ym1 and
b ­ 1ym2)

B ­ asV 2 = 3 Bd ,

B 1 = 3 V ­ bV ,
(10)

which describes, explicitly, the strong coupling betwee
the magnetic and the fluid aspects of the plasma. It
from this coupling that new physics is expected to aris
Equations (10) can be combined to yield, in eitherV or
B, the second order partial differential equation [a ­
b 2 s1yad andb ­ 1 2 bya]

= 3 s= 3 Bd 2 a= 3 B 1 bB ­ 0 , (11)

which, will, naturally lead to magnetic field (and flow
velocity) structures far richer than the ones contained
the “constant-a Beltrami-Taylor” (BT) system.

The equilibrium solution (10), when substituted into (2
and (3) leads to the Bernoulli conditions=sbe 1 ĝed ­
0 ­ =sbi 1 gi 1 V 2y2d suggesting a mechanism fo
creating pressuresbd gradients in this extended relaxed
state. In the simplest cases ĝ1 ­ 0 ­ ĝed,

bi 1 0.5V 2 ­ constant, (12)

revealing that an appropriate sheared velocity field c
sustain a desired ion pressure gradient. Equations (
and (12) will serve as a basis for designing a high
effective plasma confinement machine. We note that:

(1) The set of equations (10) can be derived b
following the Taylor prescription of relaxed equilibria
applied to (9), which allows two bilinear constants o
motion, the usual total magnetic helicityh1 ­ 20.5

R
A ?

B d3x, and the generalized helicityh2 ­ 0.5
R

sA 1 Vd ?

sB 1 = 3 Vd d3x [3]. Minimization of the total energy
E ­ 0.5

R
sB2 1 V 2d d3x with the constraints of constant

h1 and h2 will directly lead us to (10). The constantsa
andb are related to the Lagrange multipliers needed in t
constrained minimization. The approach of constrain
minimization of an appropriate free energy has been us
by many authors [4–6] to generalize the BT syste
4864
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especially with the idea of imparting a finite pressure an
a finite flow to the “relaxed state.” Different combinations
of the helicitiesh1 and h2 were invoked (cross-helicity
in Ref. [4], for example) for this purpose. Although
the “double curl Beltrami” system was accessible t
any of these approaches, it was not recovered. F
example, the assumptionB ­ aV in Ref. [5], makes
the more general solution inaccessible. We do wish
emphasize, however, that our interest (in this paper) w
not to develop another minimum energy principle; w
were looking for a new genre of equilibria which will
simultaneously satisfy the induction and the force balan
equations.

(2) The general steady-state solution allowed by (9
consists of a set of nonlinear equationsUj ­ AjsxdVj ,
andVj ? =Ajsxd ­ 0 s j ­ 1, 2d of which (10) is a spe-
cial case whereAjsxd ; mj ­ constants j ­ 1, 2d. In a
thermodynamic sense, the spatially inhomogeneous (h
mogeneous)Aj imply a nonequilibrium (equilibrium)
state. The latter corresponds to the Euler-Lagrange eq
tions associated with the global free energyF ­ E 2P

j mjhj with mj acting as Lagrange multipliers. The
system can be viewed as a “grand-canonical ensemble”
which the injection of a “helicity”hj creates an equivalent
energymhhj. Equations (10) then follow as the globa
“relaxed state.”

Before writing down some highly revealing solutions
we analyze the mathematical structure of the doub
Beltrami flow (11). We rewrite it in the form

s= 3 2l1d s= 3 2l2dB ­ 0 , (13)

wherel6 ­ fa 6
p

a2 2 4b gy2. At the boundary≠V

of the three-dimensional bounded domainV, we as-
sumen ? B ­ 0, n ? s= 3 Bd ­ 0, n ? s= 3 = 3 Bd ­
0, wheren is the unit normal vector onto≠V. The third
condition follows, for smooth solutions, from the first and
second conditions and (11). IfV is simply connected, the
boundary value problem has nontrivial solution (B 6; 0
in V), only if at least one ofl6 belongs to the point
spectrum [discrete eigenvalues,spscurld] associated with
the self-adjoint part of the curl operator [7]. WhenV

is multiply connected, however,l1 and l2 can take ar-
bitrary real values (and, moreover, complex values) fo
nontrivial solutions. For a multiply connected domainV

fl6 fi spscurldg with the topological genus (first Betti
number)n fi 1, the boundary value problem will have
2n degrees of freedom. LetS, s, ­ 1, . . . , nd be the cuts
of V such thatVn >n

,­1 S, becomes a simply connected
domain. On each cut, we define fluxes (currents)

F
B
, ­

Z
S,

n ? B ds, F
J
, ­

Z
S,

n ? s= 3 Bd ds

s, ­ 1, . . . , nd , (14)

wheren is the unit normal vector ontoS, and ds is the
surface element onS,. Because of the divergence-free
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property of B and = 3 B, these fluxes are homotopy
invariants with respect toS,. For a given set of values
F

B
1 , . . . , FB

n , F
J
1 , . . . , FJ

n , we can solve (13) uniquely, and
if at least one of these values is nonzero, the solutionB
is nontrivial s 6;0d [8]. This assertion can be derived b
generalizing Theorem 2 of Yoshida-Giga [7].

The magnetic (velocity) fields described by (13) hav
two characteristic length scalessl21

6 d determined by the
amounts of helicity and of generalized helicity [man
fested through the values ofsa, bd and hence ofsa, bd]
present in the system. The consequences of two inhe
scales are best illustrated by studying the explicit so
tions of (13) in simple coordinate systems. An obviou
choice would have been the generalization of the we
known Cartesian three-dimensionalABC flow. In spite of
its tremendous interest, however, we concentrate, in t
paper, on the one-dimensional cylindrical system. T
cylinder should be seen as the limiting case of a lar
aspect ratio torus. We choose this example because
main message of this paper is to show that new and
citing, high-pressure confining, highly compact magne
configurations can be created in the laboratory.

With boundary conditions,Bzsr ­ 0d ­ B0 ; 1, and
Jz ­ s= 3 Bdzsr ­ 0d ­ S, Eq. (13) yields

Bt ­ sl1 2 l2d21fsS 2 l2dJ0sl1rd

2 sS 2 l1dJ0sl2rdg ,

Bp ­ sl1 2 l2d21fsS 2 l2dJ1sl1rd
(15)

2 sS 2 l1dJ1sl2rdg ,

whereJ0 andJ1 are the ordinary Bessel functions, and w
have chosen to writeBzsud andBts pd wheretspd stands for
toroidal (poloidal). The rest of this paper is an exploratio
of (15).

Let us begin by deriving from (15), the well-known
solutions for the reversed field pinch [2]; the solution
which are seen as a display of the remarkable property
the plasma to organize itself. We remind the reader th
the BT type of solutionssV ! 0d are characterized by a
single real valued scale parameter. From (10) and (1
we see that the limitb ¿ j=j ¿ b21 with b ! ` (or
equivalently a ! b, b ! 2bya) produces the desired
result = 3 B ­ Bya. Notice, however, that this is a
“singular” limit of Eq. (11); the highest derivative term
= 3 s= 3 Bd has been neglected.

The inescapable conclusion, therefore, is that even
small velocity field could cause “singular” perturbation
to the flowless magnetic field structures. For a lar
finite b (and moderatejaj ø jbj), l1 . b and l2 .
a21 implying that the magnetic field [Eq. (15)] varies
not only on the moderate scalejaj but also on the finer
scale jbj21. This latter part, unless dissipated by finit
resistivity, should emerge as a wavy part superimpos
upon a moderately smooth part. This feature should
common to most magnetofluid equilibria and will be dea
with elsewhere.
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FIG. 1. A radial plot ofBt , Bp (left vertical axis) andVt , Vp
(right vertical axis). The system size is10li andBtsr ­ 0d ­
1. The parameters area ­ 24.4, b ­ 60, and S ­ 0.2440,
implying l1 ­ 59.98 and l2 ­ 0.2440. S was chosen to be
equal tol2 to eliminate the fast-varying component.

If the boundary valueJzsr ­ 0d ­ S were exactly
equal tol2, then (15) tells us that the highly varying par
of Bt andBp will vanish. Here we see a glimpse of how
a smooth magnetic field could emerge (as it seems to d
for example, in a reversed field pinch) in a system wit
nonzero flow. Aided, perhaps, by turbulence, the syste
may organize itself in such a way that the central curre
acquires the needed correct value. In Fig. 1, we can s
an example of such a smooth equilibrium. The size o
the system is10li (,25 cm for n , 1014). The velocity
fields are small but not negligible. This configuration
produces very insignificant pressure confinement by t
Bernoulli mechanism.

The most interesting and novel aspects of (15) emerg
when the term= 3 s= 3 Bd plays a fundamental role;
that is when both terms of (15) are in full play. (This
happens whenjBj and jV j are comparable.) For this
regime, we shall present two representative cases. T
system size is taken to be2li, and the edgebisr ­
2d ­ 0. The parameters were so chosen that the toroid
current profile follows the beta profile (so that the curren
can be Ohmically driven), andVtsr ­ 0d ­ 0. The
latter was done to optimize central beta. In the firs
case [Fig. 2], l6 are real, while in the second case

FIG. 2. A radial plot ofBt , Bp (left vertical axis) andVt , Vp
(right vertical axis). The system size is2li , Btsr ­ 0d, the
velocity is measured in units of the central Alfvén speed. Th
parameters area ­ 21.9, b ­ 21.5, andS ­ 0.52, implying
l1 ­ 20.64 andl2 ­ 0.32.
4865
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FIG. 3. A radial plot ofBt , Bp (left vertical axis) andVt , Vp
(right vertical axis). The system size is2li, Btsr ­ 0d ­ 1,
the velocity is measured in units of the central Alfvén spee
The parameters area ­ 22, b ­ 21.4, andS ­ 0.5, implying
l6 ­ 20.45 6 0.31i.

[Fig. 3], they are a complex conjugate pair (even fo
complexl1, l2 ­ lp

1, the physical quantitiesBt , Bp , . . .
remain real). For both of these examples, we notic
the following: (1) The magnetic field increase awa
from the center fBtsr ­ 0d ­ 1g; (2) the magnitude
of the velocity field (refer to the right vertical axis),
normalized to the central Alfvén speed, is sizable, and
monotonically increasing; (3) the configurations throug
the Bernoulli mechanism [Eq. (11)]; produce excellen
and almost identical pressure confinements [Fig. 4] wi
a centralbi . 0.08.

Notice that for the Bernoulli condition Eq. (11), the
standard one-fluid model, is perfectly adequate if th
flow energy is not neglected. However, for the Bernoul
mechanism to provide plasma confinement, the veloc
fields must increase away from the plasma center. Th
becomes generally possible when the term proportional
J , === 3 B (absent in one-fluid models) is retained inU1
[Eq. (6)].

It follows then, that by the strong coupling of the fluid
kinetic and magnetic aspects of the plasma, a highly co
fining, fully diamagnetic (fields in plasma are everywher
smaller than the edge plasmas), and everywhere minim
jBj configuration [this will persist even in a large aspec
ratio torus as long as the1yR variation is less than the
differenceBedge 2 Bs0d] can naturally emerge for a very
compact plasma.

These highly compact diamagnetic structures with sca
length of a fewli, which require strong plasma flows, de
serve a thorough investigation. Being the states of low
est free energy, they are expected to be MHD stable. W
4866
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FIG. 4. A radial plot ofbi for cases displayed in Figs. 2 and
3. The toroidal current (not shown) follows the pressure profile

believe that these configurations point to a possible ne
path in our quest for controlled thermonuclear fusion. A
tentative theoretician’s machine design is being worked o
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