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Transfer of extensities such as heat across sheared rough interfaces is considered, with par
attention to roughnesses characterized by a broad hierarchy of length scales. We analyze as a co
example the corrections to the Nu-Ra dependence in high Rayleigh number convection cells ind
when the thermal layer thicknessl , L Ra2b is of the order of the conducting walls roughnessesj.
We show that, providedlns5 Prd

Pr1y2 &
L
j Ra1y222b , the increase of exchange surface area due to the cover

of the rough surface by the thermal layer may significantly alter the transfer relationship in abso
value, and in law. [S0031-9007(98)07760-6]

PACS numbers: 47.27.Te, 44.30.+v, 47.20.Ft, 68.35.Ct
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Smoothness is an idealization of nature since a
material surface appears rough below a certain sca
Many physical phenomena are controlled by the ra
of transfer across an irregular boundary. The examp
include turbulent combustion and chemical reactions
distorted fronts [1–3], electrochemical transfers at poro
electrodes [4], momentum transfer and friction laws o
turbulent flow through rough pipes [5], pollutant transpo
in urban geometries [6], solute transfer at liquid-ga
interfaces [7], diffusion of heat from rough surfaces [8
and turbulent convection in heat exchangers [9] or in hig
Rayleigh number convection cells [10,11].

In all of these situations, the interface extent, it
roughness, and the net flux it absorbs are intimate
linked. When the net flux is imposed, the interface are
adapts itself for the product of the (mean) local conversio
rate at the interface by the surface area to be equal
the net flux [1,3]. When the potential difference, o
the local transfer rate across the boundary, is fixed, t
interface extent, possibly a function of its roughnes
imposes the net flux. This latter case concerns a wi
class of applications [4–11] and is particularly relevan
to convection over rough surfaces, discussed as a gen
example in this paper.

We consider, with no loss of generality, a convectio
cell as the one sketched in Fig. 1; this configuratio
has been appreciably well documented recently (se
e.g., Refs. [10–12] and references cited in [13]) an
presents, at high Rayleigh number, a coherent, large-sc
circulation induced sheared boundary layers at the wa
of the convection box. We could equally motivate wha
follows by considering a wind blowing over the urban
canopy [6] or the convection flow over the protrusions i
the channels of a heat exchanger [5,9], since the paradi
discussed here is the sheared boundary layer over a ro
surface.

The Nusselt number Nu­ Ly2l is a measure of the
heat flux transferred across the cell and is proportional
the ratio of the linear size of the cellL to the thickness of
the thermal boundary layer at the walll.
0031-9007y98y81(22)y4859(4)$15.00
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As the Rayleigh number Ra is increased, the therm
gradient steepens at the wall andl decreases asl ,
L Ra2b. For effectively flat boundaries (whenl exceeds
by far the typical roughness of the conducting plates
the cell),b ­

1
3 at moderate Ra,b ­ 2

7 at higher Ra, and
may reach1

2 at very high Ra [12,13]. We investigate in
this Letter the corrections to the Nu-Ra dependence wh
l is of the order of the conducting walls roughness, a
we are particularly interested in roughnesses characteri
by a broad hierarchy of length scales (Figs. 1 and 2). O
approach is as follows: (i) We assume that the therm
boundary layer thicknessl depends on Ra as it would fo
a flat and smooth surface according tol , L Ra2b . (ii)
we assume that the thermal layer covers the rough surf
(Figs. 1 and 2) like a thick sheet, able to fold withi
every unevenness of the surface provided the ruggedn
scale is larger than its own transverse sizel. (iii) We
assume that the net heat flux is augmented in proport
to the increase of surface area resulting from the cover
process (ii) [1,3].

Conditions (i) and (ii) are fulfilled provided crests
of the surface irregularities having the same height a

FIG. 1. Sketch of the convection cell in a Rayleigh numb
regime, where the boundary layers at the walls are sheared
large recirculation flow. When the diffusion timel2yk limits
the transfer rate, the thermal layer covers all of the unevenn
of the surface larger than its own thickness, thereby increas
the exchange surfaceSsld with respect to the reference smoot
surfaceS0.
© 1998 The American Physical Society 4859
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FIG. 2. A rough surface made as a collection of adjace
cubes with a given distribution of sizesPsjd.

sufficiently distant from each other. In that case, th
separated boundary layer in the wake of a given cre
forms a turbulent recirculating eddy before reaching th
next crest. In this limit, valid as soon as the distanc
between two consecutive crests is larger than abo
their height [6,7], it is easy to see that the resistan
to the transfer remains located in the thermal sublay
independently of the rugosity: Letj be the height of
any corrugation of the surface (Fig. 1). The recirculatin
eddy formed downstream of a protrusion of heightj has
a linear size proportional toj; estimating the mixing time
in this recirculating eddy as [14]tm , sjyud lns5 Prd for
Pr . 1 (tm , jyu for Pr , 1), where u is taken here
to be proportional to the mean circulating velocity, th
diffusion timel2yk, with l , L Ra2b is larger than the
uniformization time of temperature in the eddy as long
l2yk . tm, that is, lns5 PrdyPr1y2 & sLyjdRa1y222b. we
have made use of Pr­ nyk and Re­ sRayPrd1y2. This
condition is reached because of the factorLyj, even at
a high Rayleigh number forb ­

2
7 , and thick rugosities.

Taking, for instance, Ra­ 1010 and Pr­ 7, the diffusion
time l2yk actually limits the transfer rate as soon a
Lyj * 4, a condition always fulfilled in practice. The
relevant thickness which sets the intensity of the trans
rate is thusl in all cases (rough or not) and the therma
layer lies on the rough interface, visiting all availabl
unevennesses larger than its own size.

In the other limit, when crests of a given height ar
spaced by a distance much shorter than their heig
the flow essentially skims over the crests and over t
stable vortices in the grooves through which heat diffus
slowly, realizing a “quasismooth” situation for which
rugosity plays no role [7].

Under the assumptions (i) and (ii), iff0 is the
flux measured at the reference flat surfaceS0 (Fig. 1),
condition (iii), expressing flux conservation, writes

f0S0 ­ fsldSsld , (1)
with fsld , Lyl being the flux imposed by the thicknes
of the thermal gradientl and Ssld is the net area of
the interface measured at scalel. The apparent Nusselt
number is thus

Nu ,
L
l

Ssld
S0

. (2)

The effect of a multiple-scale roughness on the structu
of the transfer law (2) is readily demonstrated for a fra
tal or self-affine surface, a property exhibited by most
natural, fractured, unpolished surfaces for scales sma
4860
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that about a fraction of a millimeter [15]. Assume tha
betweenjM andjm, respectively, the maximal and mini-
mal scales of the surface rugosity, the surface of exchan
Ssld follows a power lawSsldyS0 , slyjMd22df , with
df the fractal dimension of the surface (df ­ 3 2 H if H
is the Hurst exponent of the roughness distribution for
self-affine surface [15]). Then, withl , L Ra2b , Eq. (2)
reads

Nu , Rab1bsdf 22d. (3)

The apparent exponentb 1 bsdf 2 2d is larger thanb

because the net surface of exchangeSsld increases when
l decreases. Fordf ­ 2.1 (a typical value, see [15]), the
apparent exponent of the transfer law (2) is thus increas
by 10% with respect to the smooth case.

Irregular surfaces are more likely to be described b
the histogram of their fluctuation heightj above a given
reference plane [15]. The histogram of heightsj can be
adjusted at will by constructing a rough surface as a set
adjacent objects of aspect ratio unity (cubes or spheric
balls, for instance), with variable sizesj, these being
chosen according to a given probability density functio
Psjd, as shown in Fig. 2.

This setup is easily realized in the laboratory an
presents, as for the fractal surface, an enhanced heat
with respect to the smooth case, but withnon-power-law
corrections to the Nusselt-Rayleigh dependence.

The distribution of object sizesPsjd is bounded by
maximal and minimal sizesjM andjm, and the reference
surfaceS0 is the sum of the projected areas on a plane
all of theN objects in the distribution

S0 ­ N
Z jM

jm

j2Psjddj . (4)

We cover entirely the smooth surface of areaS0 with
roughness elements so that, oncePsjd, jm, and jM are
given, the number of objectsN has to be adjusted so
that (4) is satisfied. Let the objects have a cubic shap
When projected on the reference plane, a cube of si
j has a projected areaj2. It contributes to the increase
of the exchange surface by its lateral sides as soon
l , j, and the corresponding increase of area, relati
to j2, is proportional tojsj 2 ld. We do not consider
any screening effect due to the presence of adjacent cu
on the surface increase so that our estimate is actually
upper bound. Thus the net increase of area is the su
of all of the contributions of cubes whose height is large
thanl,

Ssld 2 S0

S0
­

RjM

l jsj 2 ldPsjddjRjM

jm
j2Psjddj

. (5)

If the roughness distribution is peaked around a sing
value j0 [i.e., Psjd , dsj 2 j0d] as in the experiments
of Shenet al. [11], then (5) leads tofSsld 2 S0gyS0 ­
1 2 lyj0, for l , j0. The surface of exchange, inde-
pendent of Ra forl ¿ j0, increases sharply whenl
matchesj0, and then gets constant again forl ø j0 as
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the Rayleigh number is further increased, augmented
a constant factor. The Nusselt number thus experien
a jump, and the transition occurs at the Rayleigh numb
such thatl ø j0. Before and after the transition, Nu an
Ra are thus linked by the same power lawsNu , Rabd,
but with different prefactors, consistently with the obse
vations of Shenet al. [11].

The increase of surface area is, however, continuo
as Ra is varied ifPsjd is broadly distributed with, for
instance, a power-law shape of the formPsjd ­ Aj2a .
A is a normalizing constant. Figure 3(a) shows ho
the exchange surface relative to the smooth surfaceS0
depends onl for several integer values of the roughne
exponenta. As l becomes smaller than the maxima
corrugation scalejM , the whole hierarchy of ever smalle
and smaller cubes corrugates progressively the ther
layer and increases the surfaceSsld, as soon asl compares
to their sizej. Ultimately, whenl , jm, the interface
area has been augmented by a factor proportional toS0.

Ssld is not a power law ofl but rather a continuous
crossover. For a given thermal thicknesslyjM , the value
of the surface area is smaller for largera, but the width
of the crossover and the variation ratedSsldydl are more
large because the cube size distributionPsjd is steep, i.e.,
a is large.

The crossover is stretched and spread over a br
range of Rayleigh numbers by the transformationl ,
L Ra2b , sinceb , 1. By the conservation relation (2)
the Nusselt-Rayleigh law is found to exhibit, first, large
Nusselt numbers in absolute value with respect to t
smooth case and, second, a steeper dependence very
to a power law (although it is not a strict power law but
broad crossover) on a Rayleigh number range limited t
few decades.

Taking, for instance,a ­ 2 and assumingjmyjM ø
1, Eqs. (2) and (5) give
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FIG. 3. (a) Relative increase of exchange areasSsld 2 S0
with respect to the smooth surface areaS0 as a function of
the thermal layer thicknessl for the following: (dotted line) a
unique roughness size; (solid lines) a power law distribution o
the sizesPsjd , j2a ; and, from top to bottom,a ­ 0, 1, 2, 3.
(b) Nusselt-Rayleigh dependence for the following: (dashed
dotted line) the reference smooth transfer law Nu, Ra2y7;
(solid line) at a rough surface witha ­ 2 and LyjM ­ 40;
(dotted line) a power law fit of the form Nu, Ra1y3.
Nu ­ 0.2 Ra2y7

∑
2 2 2.5

L
jM

Ra22y7 1 2.5
L

jM
Ra22y7 ln

µ
2.5

L
jM

Ra22y7

∂∏
, (6)
s

.
-

”
h

-

where Nu­ 0.2 Ra2y7 has been chosen for the smooth
transfer law [10–13]. One sees in Fig. 3(b) how th
Nu-Ra relationship has been altered from the smooth
the rough case forLyjM ­ 40 (a maximal rugosity of
a few millimeters in a container about ten centimete
large). The effect is dramatic. The progressive surfa
increase transforms in that particular case a2

7 dependence
into a dependence close to1

3 .
The rate of dissipation of vorticity at a sheared roug

surface is fixed by the maximal roughness only becau
viscous dissipation takes place in the wakes and in t
recirculating eddies downstream of the largest surfa
protrusions. The size of the eddies and the mean she
ing velocity set the viscous dissipation rate and therefo
e
to
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the drag coefficient [5]. Unlike vorticity, and provided
the mixing time in the eddies is smaller than the dif-
fusion time in the thermal sublayer, that is, as long a
lns5 PrdyPr1y2 & sLyjdRa1y222b for Pr . 1, heat transfer
is sensitive to the details of the roughness distribution
This effect should be considered with caution in the inves
tigation of transfer laws and “universal ultimate regimes
at real, and therefore rough, surfaces in the high Rayleig
or Reynolds number limit.

I have benefited from useful discussions with S. An
quetin, B. Castaing, X. Chavanne, and S. Ciliberto.
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