VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NVEMBER 1998

Nonlocal Bottleneck Effect in Two-Dimensional Turbulence
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The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D)
turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect,
which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D
electron MHD (EMHD) turbulence, and 2D thermal convection, which all exhibit direct energy
cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
[S0031-9007(98)07802-8]

PACS numbers: 47.27.Eq, 47.27.Gs, 47.65.+a

The local enhancement of the energy spectrum in fronintegral in the expression foE; o fg’ kr sinkrD(r) dr,
of the dissipation range, which is now generally called thesee [8], byff)c krJo(kr)D(r) dr, whereD(r) = (v, (x +
bottleneck effect, is a well-established phenomenon. It) — v,(x)]?) is the second-order longitudinal structure
has been observed in numerous experiments [1,2] and néunction. Assuming again a Batchelor fit fdb(r), a
merical simulations [3-5], and has been discussed theatraightforward evaluation shows that the bump on the
retically [6] pointing out the physical mechanism. Even aspectrum would be of similar magnitude and width as in
guantitative formula was derived assuming a Batchelor fithe 3D case, contrary to the much weaker effect revealed
for the second-order structure function [7,8]. It is inter-in 2D simulations, which invalidates this assumption. It
esting to note that the magnitude of the bottleneck effectis therefore necessary to investigate the character of the
however, seems to depend on the character of the turbtransition from the inertial to the dissipation range in 2D
lent eddies. In simulations of supersonic turbulence [9turbulence more in detail.
the irrotational compressible part of the velocity field ex- In this Letter we present results of a series of simu-
hibits a considerably weaker spectral enhancement thdation runs for the turbulence systems mentioned above,
the solenoidal part. For higher-order dissipation term2D MHD, 2D EMHD, and also 2D thermal convection
vV? — —p,(—V?)", as often used in turbulence simu- [19], using highn in order to amplify the inherently weak
lations to maximize the inertial range, the amplitude of2D bottleneck effect and going to higher spatial resolu-
the bottleneck effect increases, such that #ox»> 1 it  tion than done previously. All three systems are two-field
seems to affect also the lowinertial range behavior [10], models which, though formally of similar structure, ex-
though these results are probably not asymptotic. hibit rather different turbulence properties. Here the main

Contrary to the attention the bottleneck effect attractednterest is, however, not in the physics described by these
in three-dimensional (3D) turbulence, it has to our knowl-models, for which we refer to the original papers. We first
edge not yet been discussed in 2D turbulent systems. It isonsider EMHD turbulence, which is most closely related
true that for the enstrophy cascade in 2D Euler turbulencée (3D) Navier-Stokes turbulence. The 2D EMHD equa-
no such effect exists, which is attributed to the negativeions are [15]
sign of the eddy viscosity [11], making the energy spec- (0 + Ve - V) — d%j) = —mu(=VD)"¢, (1)
trum slightly steeper than the corresponding Kolmogorov ) ) i
law, E; ~ k=3(Ink/ko)~"/3. But for 2D systems domi- (9 + Ve - V)(¢ — d;w) + B - Vj = —n,(=V)'w,
nated by a direct energy cascade there isangriori (2)
argument, why the same mechanism leading to the bowhere the flux functionys describes the magnetic field
tleneck effect in 3D should not also be active in 2D. Thein the plane,B = e, X Vi, j = V¢, and the stream
effect seems, however, to be much weaker, since numertnction ¢ describes the electron flow in the plavg,=
cal simulations of such turbulent systems, in particular ine. X V¢, w = V?>¢. v, is proportional to the current
2D magnetohydrodynamics (MHD) [12—14] and 2D elec-density in the plane, such thgt gives the out-of-plane
tron magnetohydrodynamics (EMHD) [15,16] have foundfield fluctuation,¢¢ = 6B,. The equations are written in
energy spectra exhibiting almost perfect power laws dowmondimensional form and, = ¢/w,.L is the normalized
to the dissipative falloff with no visible bottleneck pileup. collisionless electron skin depth; for details, see [15]. The

One could argue that the difference is only due to theequations are solved on a periodic box of linear 9ze
geometry of the triad interactions, now restricted to oneusing a standard pseudospectral method with dealiasing
plane, and that applying the analysis of Ref. [8] to a 2Daccording to the 23 rule. The dissipation terms are
system might lead to a less pronounced effect than imtegrated exactly. As in [15] we consider turbulence
3D. The only change in the algebra is to replace thelecaying from a random initial state. It has been shown
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in [15] that for large wave numbelsi, > 1, 2D EMHD &, but not increase its amplitude; see, e.g., [8]. We will
turbulence exhibits a Kolmogorov energy spectrm~  now show that such behavior is in general not true for
€23k =53, 2D turbulence. Figure 3 gives the energy spectrum for
Figure 1 gives the energy spectrufy = (Exe %),  three 2D EMHD turbulence runs, where we choase:
averaged over about one energy decay time. (Sincg to amplify the effect,ngs = 10732,10736, 1074 using
at high n the dissipation length is essentially indepen-N? = 10242,20482,40962, respectively. While there is
dent of €, the average can be performed at constant no visible bottleneck effect fors = 10732, it becomes
[17].) Shown are three cases wilh = 0.3, N> = 20482, more and more pronounced with decreasing dissipation
kmax = 682, chosen as in [15], (ap = 3,773 =6 X coefficient leading to a flattening of the spectrufi
1071, (b)n = 8,5 = 10738, (c) n = 20,2 = 107%°.  (i.e., a steepening of the compensated spectk&hE;
The modal energy is defined by, = Zangle(k2|¢k|2 + in Fig. 3) in an increasingly larger fraction of the inertial
l#i?) (1 + d?k?). While no bottleneck effect is visible rangek > « ~ 60.
for n = 3, in agreement with the spectrum shown in [15], This behavior is not limited to 2D EMHD turbulence,
there is a clear spectral enhancement/for 8 of 20%  but is found to occur in a similar and even clearer form
and forn = 20 of about a factor of 2. For comparison in 2D MHD turbulence simulations. Here the dynamical
with the corresponding 3D behavior several 3D EMHDequations are
simulation runs have been performed for similar parame- . R A
ter values, though at lower Reynolds numbers. 3D EMHD Ot v VY = = (V) ()
follows the equation 0w +v-Vo —B-Vj=—1,(-V)"w, (5)

(B — d;V*B) — V X [v, X (B — d;V’B)] wherev = e, X V¢ is the plasma flow (note that in
= —,(—=V»)"B, (3) spite of the formal similarity EMHD doesot converge to

wherev, = —V X B. In Fig. 2 we plot the compensated MHD for d, <'1. EMHD is limited tod, > v/m./mi,
energy spectrum from three simulation runs of decayingvhile MHD is valid only at larger, macroscopic scales;
3D turbulence withN3 = 2563, kyax = 85, for d, = 1 see [15]). Previous numerical studies of decaying 2D
and n = 3,8,20, which show bottleneck enhancementMHD turbulence have revealed the spectral &y ~
factors of 2.5,4, 10, respectively. Hence the bottlenecl{vA6)1/2"_3/,2 (see, e.g., [14]), wheresy = B/\/4mp
effect is indeed quantitatively much weaker in 2D thaniS the Alfvén speed and the modal energy A% =
in 3D. (Note that forkd, > 1 3D EMHD formally re-  Xangle k2(|¢k|2, + 1gil?). The k=32 spectrum  results
duces to the Navier-Stokes equation in the vorticity formffom the Alfvén effect [18], the coupling of small-scale
V2B =V X v, — V X v. Infactthen = 8 spectrum in Velocity, and magnetic field fluctuations by the magnetic
Fig. 2 is practically identical with that observed for the field of the large-scale eddies. For normal diffusion no
corresponding Navier-Stokes case [17].) bott_leneck is dlsperna_ble in the energy spectra [12,14}].
The general understanding of the bottleneck seems thO investigate this point more closely, we choose again
be that the spectral enhancement, while depending & & high-order dissipation operator in order to amplify the
independent of the extent of the inertial range. Increasin?’omeneCk effect, which may be hidden in the noise level
the Reynolds number should only shift the bump to largefor » = 1. Three simulation runs have been performed
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FIG. 1. Compensated energy speck®’E; of 2D EMHD  FIG. 2. Compensated energy spect& for 3D EMHD
turbulence for diffusion operator order= 3,8,20. Note the turbulence simulations with = 3,8,20. Normalization is such
linear vertical scale. that the horizontal parts of the spectra coincide.
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6F 1 for sufficiently largek > « ~ 20 the inertial range is
modified by a logarithmic factor
55 3 Ex ~ k3%In(k/x), (6)
8 E where the magnitude of the effect is expected to depend
4F 3 onn, such that form = 1 it becomes invisibly small at the
achievable spatial resolution. The possibility of a loga-
\OI)JJX 3F E rithmic factor has been discussed in [6] for 3D turbulence,
Rk though only as a subdominant effect in the spectral
2 E correction term. The wave numberis connected with
some structure of the macrostate of the system. The fact
1- E that « is lower in the MHD runs than observed in the
EMHD runs is due to the choic&, = 0.3 in the latter.
0t - s These results show that the bottleneck effect in the
1 10 100 1000 2D turbulence systems considered, though very weak

k for normal diffusionrn = 1, exhibits a nonlocal behavior
FIG. 3. Compensated energy spectra for three 2D EMHDwhen enhanced by choosing high The mechanism for
turbulence simulations with = 8, ns = 107,107,107, thjs property must be connected with a stronger direct
interaction of small- and large-scale modes in 2D than
for decaying MHD turbulence using the same numericain 3D, which is also reflected in configuration space by
scheme as in the EMHD simulations described abovéhe large-scale intermittency typical for 2D turbulence.
and similar initial conditions (called B-type in [12]). The observed behavior is probably not due to the Alfvén
Figure 4 gives the time-averaged MHD energy spectr&ffect, since the latter is not present in EMHD [15].
Er = (Ex(va€)~'/2), plotted in compensated form for ~We would like to discuss briefly also a third type

ns = vs = 10730,107%,10™% with resolutions N2 =  of turbulence, 2D thermal convection in the Boussinesq
10242, 20482, 40962, respectively. Comparing with the approximation described by the equations
corresponding 2D EMHD cases given in Fig. 3, Fig. 4 T +v- VT + 9,¢ = —xn(=V)"T, @)

shows a similar qualitative trend, a nonlocal influence of ) R p

the dissipation range on the inertial range. The difference %% TV Vw_+ T = v(=V)'w, — (8)

is probably due to the choiag = 0.3 in the EMHD runs ~ gain written in nondlmenslonal form; see [19], Wh@Te

in Fig. 3. Since a pure scaling behavior exists only forlS the temperature fluctuation amd= e. X V¢ the fluid

kd, > 1, the effective scaling range is shorter by a factorvelocity. Contrary to MHD or EMHD, where stationary

of 3—4 for the same resolution, such that amplitude of thdurbulence can be achieved only by an external stirring

bottleneck pileup in the highest resolution EMHD caseforce, this system is linearly unstable over a broad

4096 in Fig. 3 corresponds to the lowest-resolution MHD fange with growth ratey « k,/k, which generates a

casel0242 in Fig. 4. stationary level of turbulence. This is caused by the

- . / .

There is a nearly linear increase of the compensatefiozen-in mean temperature gradiefi, v.7p = 9,4 in

energy invariant; instead, one has

g ” ] % %(T2+v2)d2x=2]vde2x—6, )]
4§ 1 where € is the energy dissipation rate. Equations (7)
g 1 and (8) have recently been studied numerically on a
3C E periodic box using a similar scheme as in the EMHD
g 1 simulations. In spite of the anisotropic linear drive the
N © spectraE] = |Tx|> andE{ = |v;|* are highly isotropic,
%x 2c E which demonstrates the strong influence of the nonlinear
E WA 1 terms. The energy dissipation rate= €} + e; +
1E E €V + €I in (9) consists of the dissipation on the velocity
§ 1 and the temperature fluctuations both at largé &nd
g 1 small () wave numbers. The kinetic energy’ has
Ot - N~ ] an inverse cascade and is primarily dissipated at small
1 10 100 1000 wave numbers, where the modes are atrtificially damped to
k prevent condensation and suppression of turbulence [19],
FIG. 4. Compensated 2D MHD energy speck#’E; for e/ < e, while the thermal fluctuation enerdy* has a
ns = vg = 107,104, 107%. direct cascades; > €.
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30r 7 The simulation results suggest a logarithmic modification
r 1 of the spectrum. This behavior reflects a strong direct in-
25F - teraction of disparate scales, which also manifests itself
r 1 in the large-scale intermittency typically seen in configu-
200 ] ration space plots of 2D turbulence. Also the deviations
f 1 in the spectral laws from Bolgiano scaling in 2D thermal
oF 150 4 convection reported previously could be attributed to this
3 i 1 nonlocal bottleneck effect. As a consequence the popu-
~ 1oL 1 lar use of high-order diffusion operators in 2D turbulence
i {1 simulations becomes rather doubtful.
05k ] Though the results presented in this Letter refer only
x 1 to high-order diffusion, we believe that this behavior is
oot . ... ... ... 00 .. .7 generic for 2D turbulent systems with a direct energy
1 10 100 1000 cascade. In fact, recent very high-resolution studies of 2D
k MHD turbulence [21] using Newtonian dissipatian= 1

FIG. 5. 2D thermal convection. Compensated temperaturéeveaI a similar tendency, though bottleneck amplitudes
fluctuation spectrunt'4E; for n = 8. are of course much Smgller. _
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