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Nonlocal Bottleneck Effect in Two-Dimensional Turbulence
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The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (
turbulence systems by numerical simulation using high-order diffusion terms to amplify the effe
which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2
electron MHD (EMHD) turbulence, and 2D thermal convection, which all exhibit direct energ
cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spec
[S0031-9007(98)07802-8]
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The local enhancement of the energy spectrum in fro
of the dissipation range, which is now generally called t
bottleneck effect, is a well-established phenomenon.
has been observed in numerous experiments [1,2] and
merical simulations [3–5], and has been discussed th
retically [6] pointing out the physical mechanism. Even
quantitative formula was derived assuming a Batchelor
for the second-order structure function [7,8]. It is inte
esting to note that the magnitude of the bottleneck effe
however, seems to depend on the character of the tur
lent eddies. In simulations of supersonic turbulence [
the irrotational compressible part of the velocity field e
hibits a considerably weaker spectral enhancement t
the solenoidal part. For higher-order dissipation term
n=2 ! 2nns2=2dn, as often used in turbulence simu
lations to maximize the inertial range, the amplitude
the bottleneck effect increases, such that forn ¿ 1 it
seems to affect also the low-k inertial range behavior [10],
though these results are probably not asymptotic.

Contrary to the attention the bottleneck effect attract
in three-dimensional (3D) turbulence, it has to our know
edge not yet been discussed in 2D turbulent systems.
true that for the enstrophy cascade in 2D Euler turbulen
no such effect exists, which is attributed to the negati
sign of the eddy viscosity [11], making the energy spe
trum slightly steeper than the corresponding Kolmogor
law, Ek , k23sln kyk0d21y3. But for 2D systems domi-
nated by a direct energy cascade there is noa priori
argument, why the same mechanism leading to the b
tleneck effect in 3D should not also be active in 2D. Th
effect seems, however, to be much weaker, since num
cal simulations of such turbulent systems, in particular
2D magnetohydrodynamics (MHD) [12–14] and 2D ele
tron magnetohydrodynamics (EMHD) [15,16] have foun
energy spectra exhibiting almost perfect power laws do
to the dissipative falloff with no visible bottleneck pileup

One could argue that the difference is only due to t
geometry of the triad interactions, now restricted to o
plane, and that applying the analysis of Ref. [8] to a 2
system might lead to a less pronounced effect than
3D. The only change in the algebra is to replace t
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integral in the expression forEk ~
R

`

0 kr sinkrDsrd dr,
see [8], by

R`

0 krJ0skrdDsrd dr, whereDsrd ­ kfyr sx 1

rd 2 yrsxdg2l is the second-order longitudinal structur
function. Assuming again a Batchelor fit forDsrd, a
straightforward evaluation shows that the bump on t
spectrum would be of similar magnitude and width as
the 3D case, contrary to the much weaker effect revea
in 2D simulations, which invalidates this assumption.
is therefore necessary to investigate the character of
transition from the inertial to the dissipation range in 2
turbulence more in detail.

In this Letter we present results of a series of sim
lation runs for the turbulence systems mentioned abo
2D MHD, 2D EMHD, and also 2D thermal convection
[19], using highn in order to amplify the inherently weak
2D bottleneck effect and going to higher spatial resol
tion than done previously. All three systems are two-fie
models which, though formally of similar structure, ex
hibit rather different turbulence properties. Here the ma
interest is, however, not in the physics described by the
models, for which we refer to the original papers. We fir
consider EMHD turbulence, which is most closely relate
to (3D) Navier-Stokes turbulence. The 2D EMHD equ
tions are [15]

s≠t 1 ve ? =d sc 2 d2
ejd ­ 2hns2=2dnc , (1)

s≠t 1 ve ? =d sf 2 d2
evd 1 B ? =j ­ 2hns2=2dnv ,

(2)
where the flux functionc describes the magnetic field
in the plane,B ­ ez 3 =c , j ­ =2c, and the stream
function f describes the electron flow in the plane,ve ­
ez 3 =f, v ­ =2f. ve is proportional to the current
density in the plane, such thatf gives the out-of-plane
field fluctuation,f ­ dBz. The equations are written in
nondimensional form andde ­ cyvpeL is the normalized
collisionless electron skin depth; for details, see [15]. T
equations are solved on a periodic box of linear size2p

using a standard pseudospectral method with dealias
according to the 2y3 rule. The dissipation terms are
integrated exactly. As in [15] we consider turbulenc
decaying from a random initial state. It has been show
© 1998 The American Physical Society 4855
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in [15] that for large wave numberskde . 1, 2D EMHD
turbulence exhibits a Kolmogorov energy spectrumEk ,
e2y3k25y3.

Figure 1 gives the energy spectrumEk ­ kEke22y3lt

averaged over about one energy decay time. (Sin
at high n the dissipation length is essentially indepen
dent of e, the average can be performed at constantk
[17].) Shown are three cases withde ­ 0.3, N2 ­ 20482,
kmax ­ 682, chosen as in [15], (a)n ­ 3, h3 ­ 6 3

10211, (b) n ­ 8, h8 ­ 10238, (c) n ­ 20, h20 ­ 10296.
The modal energy is defined byEk ­

P
anglesk2jckj2 1

jfkj
2d s1 1 d2

ek2d. While no bottleneck effect is visible
for n ­ 3, in agreement with the spectrum shown in [15
there is a clear spectral enhancement forn ­ 8 of 20%
and for n ­ 20 of about a factor of 2. For comparison
with the corresponding 3D behavior several 3D EMHD
simulation runs have been performed for similar param
ter values, though at lower Reynolds numbers. 3D EMH
follows the equation

≠tsB 2 d2
e=2Bd 2 = 3 fve 3 sB 2 d2

e=2Bdg
­ 2hns2=2dnB , (3)

whereve ­ 2= 3 B. In Fig. 2 we plot the compensated
energy spectrum from three simulation runs of decayin
3D turbulence withN3 ­ 2563, kmax ­ 85, for de ­ 1
and n ­ 3, 8, 20, which show bottleneck enhancemen
factors of 2.5, 4, 10, respectively. Hence the bottlene
effect is indeed quantitatively much weaker in 2D tha
in 3D. (Note that forkde ¿ 1 3D EMHD formally re-
duces to the Navier-Stokes equation in the vorticity form
=2B ­ = 3 ve ! = 3 v. In fact then ­ 8 spectrum in
Fig. 2 is practically identical with that observed for the
corresponding Navier-Stokes case [17].)

The general understanding of the bottleneck seems
be that the spectral enhancement, while depending onn, is
independent of the extent of the inertial range. Increasi
the Reynolds number should only shift the bump to larg
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FIG. 1. Compensated energy spectrak5y3Ek of 2D EMHD
turbulence for diffusion operator ordern ­ 3, 8, 20. Note the
linear vertical scale.
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k, but not increase its amplitude; see, e.g., [8]. We wi
now show that such behavior is in general not true fo
2D turbulence. Figure 3 gives the energy spectrum f
three 2D EMHD turbulence runs, where we choosen ­
8 to amplify the effect,h8 ­ 10232, 10236, 10240 using
N2 ­ 10242, 20482, 40962, respectively. While there is
no visible bottleneck effect forh8 ­ 10232, it becomes
more and more pronounced with decreasing dissipati
coefficient leading to a flattening of the spectrumEk

(i.e., a steepening of the compensated spectrumk5y3Ek

in Fig. 3) in an increasingly larger fraction of the inertia
range,k . k , 60.

This behavior is not limited to 2D EMHD turbulence,
but is found to occur in a similar and even clearer form
in 2D MHD turbulence simulations. Here the dynamica
equations are

≠tc 1 v ? =c ­ 2hns2=2dnc , (4)

≠tv 1 v ? =v 2 B ? =j ­ 2nns2=2dnv , (5)

where v ­ ez 3 =f is the plasma flow (note that in
spite of the formal similarity EMHD doesnot converge to
MHD for de ø 1. EMHD is limited to de .

p
meymi,

while MHD is valid only at larger, macroscopic scales
see [15]). Previous numerical studies of decaying 2
MHD turbulence have revealed the spectral lawEk ,
syAed1y2k23y2 (see, e.g., [14]), whereyA ­ By

p
4pr

is the Alfvén speed and the modal energy isEk ­P
angle k2sjckj2 1 jfkj

2d. The k23y2 spectrum results
from the Alfvén effect [18], the coupling of small-scale
velocity, and magnetic field fluctuations by the magnet
field of the large-scale eddies. For normal diffusion n
bottleneck is discernable in the energy spectra [12,14
To investigate this point more closely, we choose aga
a high-order dissipation operator in order to amplify th
bottleneck effect, which may be hidden in the noise lev
for n ­ 1. Three simulation runs have been performe
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FIG. 2. Compensated energy spectraEk for 3D EMHD
turbulence simulations withn ­ 3, 8, 20. Normalization is such
that the horizontal parts of the spectra coincide.
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FIG. 3. Compensated energy spectra for three 2D EMH
turbulence simulations withn ­ 8, h8 ­ 10232, 10236, 10240.

for decaying MHD turbulence using the same numeric
scheme as in the EMHD simulations described abo
and similar initial conditions (called B-type in [12]).
Figure 4 gives the time-averaged MHD energy spec
Ek ­ kEksyAed21y2lt plotted in compensated form for
h8 ­ n8 ­ 10236, 10240, 10245 with resolutions N2 ­
10242, 20482, 40962, respectively. Comparing with the
corresponding 2D EMHD cases given in Fig. 3, Fig.
shows a similar qualitative trend, a nonlocal influence
the dissipation range on the inertial range. The differen
is probably due to the choicede ­ 0.3 in the EMHD runs
in Fig. 3. Since a pure scaling behavior exists only f
kde . 1, the effective scaling range is shorter by a fact
of 3–4 for the same resolution, such that amplitude of t
bottleneck pileup in the highest resolution EMHD cas
40962 in Fig. 3 corresponds to the lowest-resolution MH
case10242 in Fig. 4.

There is a nearly linear increase of the compensa
spectrum in the log-linear plot, which suggests th
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FIG. 4. Compensated 2D MHD energy spectrak3y2Ek for
h8 ­ n8 ­ 10236, 10240, 10245.
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for sufficiently largek . k , 20 the inertial range is
modified by a logarithmic factor

Ek , k23y2 lnskykd , (6)
where the magnitude of the effect is expected to depe
on n, such that forn ­ 1 it becomes invisibly small at the
achievable spatial resolution. The possibility of a loga
rithmic factor has been discussed in [6] for 3D turbulence
though only as a subdominant effect in the spectr
correction term. The wave numberk is connected with
some structure of the macrostate of the system. The fa
that k is lower in the MHD runs than observed in the
EMHD runs is due to the choicede ­ 0.3 in the latter.

These results show that the bottleneck effect in th
2D turbulence systems considered, though very wea
for normal diffusionn ­ 1, exhibits a nonlocal behavior
when enhanced by choosing highn. The mechanism for
this property must be connected with a stronger dire
interaction of small- and large-scale modes in 2D tha
in 3D, which is also reflected in configuration space b
the large-scale intermittency typical for 2D turbulence
The observed behavior is probably not due to the Alfvé
effect, since the latter is not present in EMHD [15].

We would like to discuss briefly also a third type
of turbulence, 2D thermal convection in the Boussines
approximation described by the equations

≠tT 1 v ? =T 1 ≠yf ­ 2xns2=2dnT , (7)

≠tv 1 v ? =v 1 ≠yT ­ 2nns2=2dnv , (8)
again written in nondimensional form; see [19], whereT
is the temperature fluctuation andv ­ ez 3 =f the fluid
velocity. Contrary to MHD or EMHD, where stationary
turbulence can be achieved only by an external stirrin
force, this system is linearly unstable over a broadk
range with growth rateg ~ kyyk, which generates a
stationary level of turbulence. This is caused by th
frozen-in mean temperature gradientT 0

0, yxT 0
0 ­ ≠yf in

the nondimensional form (7). Hence there is no idea
energy invariant; instead, one has

d
dt

Z 1
2

sT2 1 y2d d2x ­ 2
Z

yxT d2x 2 e , (9)

where e is the energy dissipation rate. Equations (7
and (8) have recently been studied numerically on
periodic box using a similar scheme as in the EMHD
simulations. In spite of the anisotropic linear drive the
spectraET

k ­ jTkj2 andEV
k ­ jykj2 are highly isotropic,

which demonstrates the strong influence of the nonline
terms. The energy dissipation ratee ­ e

V
L 1 e

T
L 1

eV
s 1 eT

s in (9) consists of the dissipation on the velocity
and the temperature fluctuations both at large (L) and
small (s) wave numbers. The kinetic energyy2 has
an inverse cascade and is primarily dissipated at sm
wave numbers, where the modes are artificially damped
prevent condensation and suppression of turbulence [1
e

V
L , eV

s , while the thermal fluctuation energyT2 has a
direct cascade,eT

L . eT
s .
4857
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FIG. 5. 2D thermal convection. Compensated temperat
fluctuation spectrumk1.4ET

k for n ­ 8.

The results of [19] seem to indicate spectral lawsET
k ,

k21.2 and EV
k , k22.3, which differ somewhat from the

expected Bolgiano scaling [20]k21.4 and k22.2, respec-
tively. No convincing physical argument for these de
viations could be given in [19] except the fact that th
temperature fluctuations are found to be highly interm
tent, which limits the relevance of the (nonintermitten
Bolgiano scalingsdlT , l0.2, dly , l0.6. Here we sug-
gest an alternative interpretation of the simulation resu
in [19], namely that the deviations are caused by non
cal effects, which should make the spectrum of the kine
energy with an inverse cascade slightly steeper (cf.
2D Euler case), while the spectrum of the temperatu
fluctuations, which have a direct cascade, should be fl
ter than the Bolgiano spectrum. For direct comparis
with the EMHD and MHD simulations presented abov
we have performed a similar run for thermal convectio
with n ­ 8, x8 ­ n8 ­ 10242, N2 ­ 20482, from which
Fig. 5 shows the temperature fluctuation spectrum co
pensated with the Bolgiano law. The behavior is inde
very similar to the MHD spectrum in Fig. 4.

In conclusion, we have investigated the spectral bott
neck pileup in 2D turbulence. While it is known that ther
is no such effect in the enstrophy cascade for 2D Eu
turbulence, we have shown the existence of the effect
2D systems exhibiting a direct energy cascade, in parti
lar in MHD, EMHD, and thermal convection. The ampli
tude of the pileup is found to be significantly smaller tha
in corresponding 3D cases even for high-order hyperd
fusion, which enforces the tendency of spectral pileup
making the transition between inertial range and dissip
tive range more abrupt. But contrary to the local behav
in 3D the bottleneck effect in 2D turbulence has a nonl
cal character, such that the major part of the inertial ran
is affected for sufficiently small dissipation coefficients
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The simulation results suggest a logarithmic modificatio
of the spectrum. This behavior reflects a strong direct in
teraction of disparate scales, which also manifests itse
in the large-scale intermittency typically seen in configu
ration space plots of 2D turbulence. Also the deviation
in the spectral laws from Bolgiano scaling in 2D therma
convection reported previously could be attributed to th
nonlocal bottleneck effect. As a consequence the pop
lar use of high-order diffusion operators in 2D turbulenc
simulations becomes rather doubtful.

Though the results presented in this Letter refer on
to high-order diffusion, we believe that this behavior is
generic for 2D turbulent systems with a direct energ
cascade. In fact, recent very high-resolution studies of 2
MHD turbulence [21] using Newtonian dissipationn ­ 1
reveal a similar tendency, though bottleneck amplitude
are of course much smaller.
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