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Coupled Microwave Billiards as a Model for Symmetry Breaking
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Two superconducting microwave billiards have been electromagnetically coupled in a variable way.
The spectrum of the entire system has been measured and the spectral statistics analyzed as a functio
of the coupling strength. It is shown that the results can be understood in terms of a random matrix
model of quantum mechanical symmetry breaking—as, e.g., the violation of parity or isospin in nuclear
physics. [S0031-9007(98)07757-6]
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Both classical and quantum mechanical chaos can
studied with the help of billiards; see, e.g., the rece
review [1]. Quantum mechanical billiards are readil
simulated by sufficiently flat microwave resonators [2
5] since the Schrödinger and the Helmholtz equations a
equivalent in two dimensions. Here, we present a stu
of a system consisting of two coupled resonators. Th
simulates the breaking of a symmetry; see below. T
resonators were made superconducting. This allowed
to study the transition from the uncoupled case into th
regime of weak coupling very precisely. The positions o
the resonances were determined with a precision of1027.

Symmetry breaking in chaotic systems has been i
tensely investigated. Impressive is the study of pari
violation in heavy nuclei [6]. Atomic and molecular sym
metries were studied in [7,8]. Another example from
nuclear physics is isospin mixing; see, e.g., [9,10]. I
[10], the complete spectrum of the nucleus26Al at low
excitation energy was established. The analysis of th
spectrum in terms of the so-called Gaussian orthogon
ensemble (GOE) of random matrices showed that the le
statistics was intermediate between a 2-GOE and a 1-G
behavior [11]. By this, we refer to the following model
Each level in the spectrum of26Al can be characterized
by isospin 0 or 1. In the absence of mixing, the spectru
of the states of each isospin (i.e., of each symmetry cla
has the statistical properties of the eigenvalues of mat
ces belonging to the GOE. The superposition of the tw
spectra displays a 2-GOE behavior. It is described by t
first term of the Hamiltonian

H ­

√
GOE 0

0 GOE

!
1 a

√
0 V

V 1 0

!
. (1)

This is a special case of the model of Ref. [7]. Th
off-diagonal matrix couples the classes. The rando
elements in the GOEs and inV , all have the same rms
valuey so thata ­ 1 makesH as a whole to be a GOE
matrix. The resulting spectrum displays 1-GOE behavio
For the observables studied below, the 1-GOE behav
is actually reached already ifayyD is ø1. Here, D
is the mean level distance ofH . For simplicity, we
set y ­ 1 in the sequel. This makesD dimensionless
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and the parameter governing the level statistics is th
ayD. In the example of26Al, this parameter was
determined from the level statistics; whence the me
square Coulomb matrix element that breaks isospin w
derived. The present experiment tests the model
with a large number of levels and very clean spec
in a situation, where the parameterayD controlling the
symmetry breaking can be varied. Alternative models
coupled chaotic systems are, e.g., given in [12,13].

In the present experiment each of the two symme
classes consists of the eigenstates of a (quarter o
stadium billiard; see Fig. 1. The radius of the quart
circle was in both casesr ­ 0.2 m. The ratiosg between
the length of the rectangular part andr were g1 ­ 1
and g2 ­ 1.8 for the two billiards, respectively. The
measurement was restricted to frequencies below 16 G
where both resonators are two dimensional and disp
608 and 883 resonances, respectively. For the varia
superconducting coupling, the two resonators were
on top of each other and holes, 4 mm in diamet
were drilled through the 2 mm thick walls of both reso
nators (see Fig. 2). A niobium washer ensured sufficie
electrical contact between the resonators. Coupling w
achieved through a niobium pin, 2 mm in diameter, whi
could be moved perpendicularly to the plane of t
billiards from outside the helium cryostat by a drive. Th
coupling strength is determined by the depthsx1 and x2
by which the niobium pin penetrates into theg1 and
g2 stadium, respectively. For the strongest coupling
second niobium pin, penetrating all the way through bo
resonators, was added. Stronger coupling could have b
obtained by using even more coupling pins. This wa

FIG. 1. Shapes and locations of the antennas of the t
coupled Bunimovich stadium billiards.
© 1998 The American Physical Society 4847
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FIG. 2. The adjustable superconducting coupling.

however, not realized since it was the particular empha
of the present experiment to study the transition from t
uncoupled case into the weakly coupled regime.

For each of the couplings we have measured t
complete spectrum in steps of 10 kHz. In doing s
half of the microwave power was fed into each of th
resonators. The states of theg1 stadium were not always
visible through an antenna connected to theg2 stadium,
and vice versa. Therefore the spectrum of the ent
system was constructed by adding the spectra obtain
through the seven antennas, four on theg1 stadium and
three on theg2 stadium; see Fig. 1.

A small frequency range of spectra at various co
plings is shown in Fig. 3. One recognizes that the res
nances are shifted by statistically varying amounts. T
observed frequency shifts result from the coupling of th
two cavities and from the perturbation of the electroma
netic field by the pin. The latter effect was investigate
separately by inserting (or not) the pin into theg2 sta-
dium only. Under that condition when only the field i
perturbed but no coupling is achieved all measured sp
tra (see, e.g., top of Fig. 4) displayed a clean 2-GOE b
havior. The mean level spacing isD ­ 10.7 MHz. The
resonance widths are of the order of 1 to 100 kHz. T
high Q of 105 106 together with the very good signal-to-
noise ratio of up to 50 dB of the superconducting setu
was obviously necessary to detect the partly small shif
and thus the dependence of the level statistics on
coupling.

We now turn to the analysis of the spectra. Fro
the ansatz (1), the nearest-neighbor spacing distribut
(NND), the S2 statistic and theD3 statistic can be ob-
tained numerically; see [11,14] and results below. A
though the coupling parameterayD can be determined by
comparing numerical simulations with the data, it is co
venient to have analytical expressions ofS2, etc., as func-
tions of ayD. Frenchet al. [14] and Leitneret al. [15]
have derived them for small coupling parameters usi
perturbation theory.
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FIG. 3. A small frequency range of three spectra with diffe
ent coupling. The arrows are intended to help to recognize
shifts of a few resonances.

The analysis of the present data has been based on
S2 statistic or number variance

zsLd ­ kfnsLd 2 Lg2l . (2)

Here,nsLd is the number of eigenvalues in an interval o
lengthL. To obtainzsLd, we divided the entire unfolded
spectrum of lengthND into NL ­ NyL adjacent inter-
vals of lengthL and took the averagek l over these. By
looking at the correlation betweenzsLd andzsL 1 ´d, we
convinced ourselves thatzsLd and zsL 1 ´d were statis-
tically independent fore $ 0.025—at least in the range

FIG. 4. The S2 statistic for three different couplings. The
dotted line gives the 1-GOE and the dashed line the 2-G
behavior. The solid lines result from the estimation ofayD
described in the text and correspond to the first, the third, a
the last entry of Table I.
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1 # L # 5. CalculatingzsLd in that range in steps of
´ ­ 0.025 has providedM ­ 161 experimental numbers
zsLkd, k ­ 1 . . . M, that were statistically independent a
is needed for the fit procedure described below. The u
per limit L # 5 is defined by the saturation of theS2

statistic [16]: Random matrix theory is known to describ
spectral fluctuations of chaotic systems up to a maximu
Lmax which is related to the length of the shortest per
odic orbit. This setsL # 5 here. To check the influence
of the saturation, we restricted the extraction ofayD to
L # 3. The slight change of the results was well within
the errors. The lower limit of1 # L is explained in the
sequel.

The expectation valuezsLd is called S2sL, Ld, where
L ­ sayDd2. According to Ref. [15], this function is

S2sL, Ld ­ S2sL, `d 1
1

p2 ln

µ
1 1

p2L2

4st 1 p2Ld2

∂
.

(3)

Here, S2sL, `d is the limiting function for the 1-GOE
system. The parametert is related to the ratio of
dimensions in the GOE blocks of Eq. (1). One find
t ­ 0.74 in the present case.

In order to estimateayD, one has to know the
probability distribution wkfzsLkd j Lg, k ­ 1 . . . M, of
every data point. By applying the “bootstrap method
[17] to the set ofNLk intervals from whichzsLkd was
calculated, we foundwk to be a x2 distribution with
average value as given by (3) and with roughlyNLk

degrees of freedom—which is reasonable. However, th
was true only forLk $ 1. For Lk , 1, no analytical
representation of the distribution ofzsLkd was found. At
the same time, the information onL is lost: for smallL,
the relative change ofS2 with L is of the order ofL
while the relative rms deviation ofz is of the order of
L1y2. Therefore, the analysis was restricted toLk $ 1.

The joint distributionWsz j Ld ­
Q

k wkfzsLkd j Lg of
all the zsLkd was converted into the distributionWsL j zd
of L with the help of Bayes’ theorem

WsL j zd ­
Wsz j LdmsLdR

dLWsz j LdmsLd
. (4)

Thea priori distribution ofL was defined as

msLd ­

Ç Z
dMzWsz j Ld

≠2

≠L2 ln Wsz j Ld
Ç1y2

(5)

since this expression ensures that—at least for sufficien
largeM —the entropy

H ­ 2
Z

dMzWsz j Ld ln

µ
Wsz j LdR

dLW sz j LdmsLd

∂
(6)

of Wsz j Ld is independent ofL, whenceL cannot be
estimated by a maximum entropy argument without an
experiment.

The center and the rms deviation of the distribution (4
were determined if it was Gaussian. This defines the b
estimate and the error ofL as well asa given in Table I.
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For three cases (part of) the data and the fit function (3
that results from the best estimate are given in Fig. 4. I
the case of zero coupling,PsL j zd was not a Gaussian and
the result given in Table I is an upper limit for the confi-
dence of 68%.

A x2 test—generalized to the case of non-Gaussia
distributionswk —has shown that for the fits reported in
Table I, the analytical model (3) of [15] is compatible
with the data. To check that the perturbation result (3
does apply to our case, we also performed numeric
simulations of the full model (1) using the procedure
described in [11]. Thereby we obtained values forayD
which cannot be affected by limitations of the perturbative
calculation of [15]. However, reassuringly, the results o
both analyses are consistent within the errors.

From the coupling parameter and the mean leve
spacingD ­ 10.7 MHz, one obtains the rms coupling
matrix elementa of the model (1). It corresponds to the

rms Coulomb matrix element
q

kH2
Cl that is responsible

for isospin mixing [11]. Figure 4 shows that starting
from 2-GOE behavior in the uncoupled casesayD #

0.024d one moves through the weakly coupled cas
sayD ­ 0.13d towards 1-GOE behavior. The stronges
coupling sayD ­ 0.20d realized here causes, however
still a relatively weak symmetry breaking of about the
same size as the isospin symmetry breaking in26Al. The
spreading widthG#yD ­ 2psayDd2 which is a measure
of how much the states of the two symmetry classes a
mixed into each other, is also given in Table I. In the
case of the strongest coupling, e.g., one sees that a st
of class 1 carries about 25% admixture of class 2 and vic
versa. This is the reason for the shifts observed in Fig.

The fact that the level statistics depend ona proves that
the coupling blockV in the Hamiltonian (1) is essentially
filled with statistically independent elements—as we hav
assumed. If—on the contrary—V were a separable
interaction coupling only one specific configuration of the
first symmetry class to one in the second class, then t
level statistics would not change as a function ofa.

We finally note that there is an experiment simi-
lar to the present one performed with elastomechanic
resonances in quartz blocks [18]. Both experiments i

TABLE I. Mixing parameters for six different coupling
strengths resulting from the Bayesian analysis described in t
text. The penetration depths of the coupling pin into the res
onators is given bysx1, x2d in mm. The results of the bottom
row were obtained using a second coupling pin.

Physical
coupling ayD a (MHz) G#yD

(0,8) #0.029 #0.31 #0.0054
(5,3) 0.105 6 0.008 1.12 6 0.08 0.07 6 0.01
(4,4) 0.130 6 0.007 1.39 6 0.07 0.11 6 0.01
(5,8) 0.173 6 0.006 1.85 6 0.06 0.19 6 0.01
(6,8) 0.180 6 0.006 1.93 6 0.06 0.20 6 0.01
(6,8) 0.200 6 0.006 2.14 6 0.06 0.25 6 0.01
4849
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FIG. 5. Fourier transforms of the spectra of the uncoupled a
a coupled system. The lengths of the periodic orbitsa, b, g
(shown in the insets) are indicated by the arrows. The leng
of the whispering gallery orbits are located within the hatch
area. Orbitg touches the coupling pin which is marked b
circles in the insets.

principle allow semiclassical interpretations. The period
orbits for [18] are, however, very complicated. For th
present relatively simple system, we have tried to det
periodic orbits that run back and forth through both of t
coupled billiards. Systematic variations of the integrat
level density—including those caused by the bounc
ball orbits—have been removed as described in [5]. T
Fourier transform%̃ flucsxd of the remaining fluctuating
part is expected to display the lengthsx of the periodic
classical orbits of the system [19]. Iñ% flucsxd obtained
from the coupled stadia we have not been able to iden
a peak introduced by the coupling and correspond
to an orbit running through both stadia. A very sma
part of the results is given in Fig. 5. In the range ofx
which is displayed, there are periodic orbits only in theg1
stadium. The shortest orbit of theg2 stadium is at 1.19 m.
Introduction of the coupling changes̃% flucsxd at every
x —whether or not the orbits of lengthøx came close
to the coupling pin. This is expected becausej%̃ flucsxdj2
obeys a sum rule: The total intensity

R
dxj%̃ flucsxdj2 is

given by the number of states. It is, however, interest
to see that a rather drastic change occurs in the vicinity
orbit g. The peak atx ø 1.03 m (uncoupled case) splits
4850
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into two (coupled case) and the interference minimum
occurs atg, i.e., the orbitg touches the coupling pin.

In summary, the dependence of the spectral statistic
on the coupling between levels belonging to differen
symmetry classes has been demonstrated for a syste
that simulates quantum chaos. Even subtle changes
the level statistics induced by small coupling parameter
could be observed. The present experiment models mix
ing between any two symmetry classes.
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