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Coupled Microwave Billiards as a Model for Symmetry Breaking
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Two superconducting microwave billiards have been electromagnetically coupled in a variable way.
The spectrum of the entire system has been measured and the spectral statistics analyzed as a function
of the coupling strength. It is shown that the results can be understood in terms of a random matrix
model of quantum mechanical symmetry breaking—as, e.g., the violation of parity or isospin in nuclear
physics. [S0031-9007(98)07757-6]

PACS numbers: 05.45.+b, 11.30.Er, 24.60.Lz

Both classical and quantum mechanical chaos can bend the parameter governing the level statistics is then
studied with the help of billiards; see, e.g., the recenta/D. In the example of?°Al, this parameter was
review [1]. Quantum mechanical billiards are readily determined from the level statistics; whence the mean
simulated by sufficiently flat microwave resonators [2—square Coulomb matrix element that breaks isospin was
5] since the Schrodinger and the Helmholtz equations arderived. The present experiment tests the model (1)
equivalent in two dimensions. Here, we present a studyith a large number of levels and very clean spectra
of a system consisting of two coupled resonators. Thisn a situation, where the parameteyD controlling the
simulates the breaking of a symmetry; see below. Theymmetry breaking can be varied. Alternative models for
resonators were made superconducting. This allowed usoupled chaotic systems are, e.g., given in [12,13].
to study the transition from the uncoupled case into the In the present experiment each of the two symmetry
regime of weak coupling very precisely. The positions ofclasses consists of the eigenstates of a (quarter of a)
the resonances were determined with a precisior0of . stadium billiard; see Fig. 1. The radius of the quarter

Symmetry breaking in chaotic systems has been ineircle was in both cases= 0.2 m. The ratiosy between
tensely investigated. Impressive is the study of paritythe length of the rectangular part andwere vy, = 1
violation in heavy nuclei [6]. Atomic and molecular sym- and y, = 1.8 for the two billiards, respectively. The
metries were studied in [7,8]. Another example frommeasurement was restricted to frequencies below 16 GHz
nuclear physics is isospin mixing; see, e.g., [9,10]. Inwhere both resonators are two dimensional and display
[10], the complete spectrum of the nuclet?d\l at low 608 and 883 resonances, respectively. For the variable
excitation energy was established. The analysis of thisuperconducting coupling, the two resonators were put
spectrum in terms of the so-called Gaussian orthogonain top of each other and holes, 4 mm in diameter,
ensemble (GOE) of random matrices showed that the levelere drilled through the 2 mm thick walls of both reso-
statistics was intermediate between a 2-GOE and a 1-GO#Rators (see Fig. 2). A niobium washer ensured sufficient
behavior [11]. By this, we refer to the following model. electrical contact between the resonators. Coupling was
Each level in the spectrum 8FAl can be characterized achieved through a niobium pin, 2 mm in diameter, which
by isospin 0 or 1. In the absence of mixing, the spectruntould be moved perpendicularly to the plane of the
of the states of each isospin (i.e., of each symmetry clasdjilliards from outside the helium cryostat by a drive. The
has the statistical properties of the eigenvalues of matricoupling strength is determined by the depihsand x;
ces belonging to the GOE. The superposition of the twdy which the niobium pin penetrates into thg and
spectra displays a 2-GOE behavior. It is described by the, stadium, respectively. For the strongest coupling, a
first term of the Hamiltonian second niobium pin, penetrating all the way through both

resonators, was added. Stronger coupling could have been

0 1% : ; ; . ;
H = (- ) + a( @ (0] ) (1) obtained by using even more coupling pins. This was,

0
This is a special case of the model of Ref. [7]. The
off-diagonal matrix couples the classes. The random 7:i=1 7.=1.8
elements in the GOEs and W, all have the same rms .
valuev so thata = 1 makes# as awhole to be a GOE £ ® O [ $ BE
matrix. The resulting spectrum displays 1-GOE behavior. & (5 ﬁ B
For the observables studied below, the 1-GOE behavior S — — —
is actually reached already kv/D is =1. Here, D 400mm 560mm

is the mean level distance dH . For simplicity, we FIG. 1. Shapes and locations of the antennas of the two
setv = 1 in the sequel. This makeB® dimensionless coupled Bunimovich stadium billiards.
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FIG. 2. The adjustable superconducting coupling. o
FIG. 3. A small frequency range of three spectra with differ-

however, not realized since it was the particular emphasignt coupling. The arrows are intended to help to recognize the
of the present experiment to study the transition from thé&hifts of a few resonances.
uncoupled case into the weakly coupled regime.

For each of the couplings we have measured the The analysis of the present data has been based on the
complete spectrum in steps of 10 kHz. In doing so,2” statistic or number variance
half of the microwave power was fed into each of the L) = {n(L) — LP). )
resonators. The states of the stadium were not always
visible through an antenna connected to thestadium, Here,n(L) is the number of eigenvalues in an interval of
and vice versa. Therefore the spectrum of the entiréengthL. To obtainz(L), we divided the entire unfolded
system was constructed by adding the spectra obtainegpectrum of lengthVD into N = N/L adjacent inter-
through the seven antennas, four on thestadium and Vvals of lengthL and took the average) over these. By
three on they, stadium; see Fig. 1. looking at the correlation betweeiL) andz(L + &), we

A small frequency range of spectra at various cou-convinced ourselves tha(L) andz(L + ¢) were statis-
plings is shown in Fig. 3. One recognizes that the resotically independent foe = 0.025—at least in the range
nances are shifted by statistically varying amounts. The
observed frequency shifts result from the coupling of the 15 o
two cavities and from the perturbation of the electromag-
netic field by the pin. The latter effect was investigated
separately by inserting (or not) the pin into the sta-
dium only. Under that condition when only the field is
perturbed but no coupling is achieved all measured spec- ;5
tra (see, e.g., top of Fig. 4) displayed a clean 2-GOE be-
havior. The mean level spacing s = 10.7 MHz. The
resonance widths are of the order of 1 to 100 kHz. The 3 00 |
high Q of 10°-10° together with the very good signal-to- &7 "
noise ratio of up to 50 dB of the superconducting setup 0.5
was obviously necessary to detect the partly small shifts, _ ;
and thus the dependence of the level statistics on the ;";ﬁ}ﬁéﬁf ¢ f O T
coupling. I -5 *

We now turn to the analysis of the spectra. From
the ansatz (1), the nearest-neighbor spacing distribution
(NND), the 3? statistic and theA; statistic can be ob-
tained numerically; see [11,14] and results below. Al- o0 Zrv v Lo Lo Lo L
though the coupling parametay D can be determined by 0 ! € 3 4
comparing numerical simulations with the data, it is con- o ) _
venient to have analytical expressions?‘&f, etc., as func- FIG. 4. TheX? statistic for three different couplings. The

. . dotted line gives the 1-GOE and the dashed line the 2-GOE
tions of a/D. Frenchet al.[14] and Leitneret al. [15]  penavior. The solid lines result from the estimationaofD

have derived them for small coupling parameters usingescribed in the text and correspond to the first, the third, and
perturbation theory. the last entry of Table I.
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1 = L =5. Calculatingz(L) in that range in steps of For three cases (part of) the data and the fit function (3)
e = 0.025 has provided” = 161 experimental numbers that results from the best estimate are given in Fig. 4. In
z(Ly), k = 1...M, that were statistically independent as the case of zero coupling,(A | z) was not a Gaussian and
is needed for the fit procedure described below. The upthe result given in Table | is an upper limit for the confi-
per limit L = 5 is defined by the saturation of thB>  dence of 68%.

statistic [16]: Random matrix theory is known to describe A y? test—generalized to the case of non-Gaussian
spectral fluctuations of chaotic systems up to a maximundistributionsw;—has shown that for the fits reported in
Liax Which is related to the length of the shortest peri-Table I, the analytical model (3) of [15] is compatible
odic orbit. This setd = 5 here. To check the influence with the data. To check that the perturbation result (3)
of the saturation, we restricted the extractionagfD to  does apply to our case, we also performed numerical
L = 3. The slight change of the results was well within simulations of the full model (1) using the procedure
the errors. The lower limit ol = L is explained in the described in [11]. Thereby we obtained values dgtD

sequel. L which cannot be affected by limitations of the perturbative
The expectation value(L) is called 3*(L, A), where calculation of [15]. However, reassuringly, the results of
= (a/D)?. According to Ref. [15], this function is both analyses are consistent within the errors.
2> From the coupling parameter and the mean level
SAL,A) = 3*(L,»®) + — In<1 + m) spacingD = 10.7 MHz, one obtains the rms coupling

3) matrix elementx of the model (1). It corresponds to the

rms Coulomb matrix eIemen{/(Hé) that is responsible
for isospin mixing [11]. Figure 4 shows that starting
from 2-GOE behavior in the uncoupled ca&e/D =
0.024) one moves through the weakly coupled case
(a/D = 0.13) towards 1-GOE behavior. The strongest
coupling (/D = 0.20) realized here causes, however,
»Still a relatively weak symmetry breaking of about the
same size as the isospin symmetry breakingAl. The
spreading widthl'!/D = 27 (a/D)? which is a measure
of how much the states of the two symmetry classes are
mixed into each other, is also given in Table I. In the
Rase of the strongest coupling, e.g., one sees that a state
of class 1 carries about 25% admixture of class 2 and vice
versa. This is the reason for the shifts observed in Fig. 3.
The fact that the level statistics dependw@iproves that
the coupling blockV in the Hamiltonian (1) is essentially
filled with statistically independent elements—as we have
assumed. If—on the contrary¥~ were a separable
interaction coupling only one specific configuration of the
first symmetry class to one in the second class, then the
level statistics would not change as a functiormof

Here, 3%(L, ) is the limiting function for the 1-GOE
system. The parameter is related to the ratio of
dimensions in the GOE blocks of Eq. (1). One finds
7 = 0.74 in the present case.

In order to estimatea/D, one has to know the
probability distribution wi[z(Ly)|A]l, k= 1...M, of
every data point. By applying the “bootstrap method
[17] to the set ofN,, intervals from whichz(Ly) was
calculated, we foundv; to be a y? distribution with
average value as given by (3) and with rougtiy,
degrees of freedom—which is reasonable. However, thig
was true only forL; = 1. For L; < 1, no analytical
representation of the distribution ofL,) was found. At
the same time, the information ok is lost: for smallL,
the relative change oE? with A is of the order ofL
while the relative rms deviation aof is of the order of
L'/2. Therefore, the analysis was restricted.to= 1.

The joint distributionW (z | A) = [1; wilz(Li) | A] of
all the z(L;) was converted into the distributiofif (A | z)
of A with the help of Bayes’ theorem

WA |2) = Wz | Au(A) (@) We finally note that there is an experiment simi-
JdAW(Z | A)u(A) lar to the present one performed with elastomechanical
Thea priori distribution of A was defined as resonances in quartz blocks [18]. Both experiments in
1/2 - . .
M TABLE I. Mixing parameters for six different coupling
p(A) = [ d" W (z|A) A InW(z[A) () strengths resulting from the Bayesian analysis described in the
thi that t least f ffi tItext The penetration depths of the coupling pin into the res-
since this expression ensures that—at least for sufficien ¥nators is given byx;,x,) in mm. The results of the bottom
large M —the entropy row were obtained using a second coupling pin.
Wzl A) ) Physical
H=—| d"zwWi|A |n< 6 ysica
f Wizl A) [dAW(z| A)u(A) () coupling a/D a (MHz) r‘/p
of W(z|A) is independent ofA, whenceA cannot be (0,8) =0.029 =0.31 =0.0054
estimated by a maximum entropy argument without any (5,3) 0.105 % 0.008 1.12 £ 0.08  0.07 = 0.01
experiment. (4,4) 0.130 = 0.007  1.39 = 0.07  0.11 = 0.01

The center and the rms deviation of the distribution (4) (2 S) 8};(3) f 8'882 i'gg f 8'82 8'5(9) f 8'8}
were determined if it was Gaussian. This defines the best §6 8; 0200 + 0.006 214 + 006 025 + 001
estimate and the error ¢&f as well ase given in Table |. ’ — — ————
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into two (coupled case) and the interference minimum
occurs aty, i.e., the orbity touches the coupling pin.

In summary, the dependence of the spectral statistics
on the coupling between levels belonging to different
symmetry classes has been demonstrated for a system
that simulates quantum chaos. Even subtle changes of
the level statistics induced by small coupling parameters
could be observed. The present experiment models mix-
ing between any two symmetry classes.
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