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Approximating the Mapping between Systems Exhibiting Generalized Synchronization
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We present two methods for approximating the mapping between two systems exhibiting generalized
synchronization. If the equations of motion are known then an analytic approximation to the
mapping can be found. If time series data are used then a numerical approximation can be found.
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PACS numbers: 05.45.+b

The subject of synchronization between identical systions are local (often resulting in as many approximations
tems (denoted here by IS) has been of interest since thes date points).
time of Huygens. Over the last decade it has become This manuscript opens a new research direction. In-
clear that even chaotic systems can be synchronized [1$tead of seeking properties ¢f, or indirect evidence of
One example is drive-response synchronization, where its existence, we believe it is better to go after the func-
dx dy tion itself. Therefore, we present methods for analytically
— = F(x), — = F(y) + E(x,y). and/or numerically constructing a single smooth function
dt dt which globally approximategy. If the equations of mo-
Here,E(x,y) denotes coupling between the drive systemtion are known then an analytic approximation grcan
(x) and the response systédly). If F is deterministic, and be obtained. (To our knowledge, this is the only tech-
if E(x,x) = 0, then the systems are synchronized wheraiique for analytically approximatingp.) The numerical
y(z.) = x(t.). Because of determinism this condition method uses time series from the two systems to calcu-
remains true for > f.. late a statistic which can be used to infer the existence
Recently, papers discussing a more general idea daif stable GS. The numerical method also gives a global
synchronization have appeared in the literature. Driveapproximation for the functiony = ¢(x). (We argue,
response dynamics for this type of synchronization igmplicitly, that if ¢ and/or¢p~! exist but are not well ap-

given by proximated by smooth functions then their usefulness is
dx dy limited since their mathematical properties are probably
— = F(x), — = G(y;x), (1) “so bad” they prohibit most applications of GS.)
dt dt An important application for GS comes from control

whereG and F are permitted to be different functions. theory. Typically, control schemes work better when the
In principle, x € R?, y € R’, and the dynamics takes complete state of the plant is known. The application
place inR?*". Intuitively, generalized synchronization uses measurements from the pléR) as drive input to
(GS) occurs if the response stage s related to the drive an approximate model of the plaf&). If GS occurs
state x, by a time independent functiop,= ¢(x). If GS  then the state of the plant can be approximated from the
occurs then the dynamics takes place af dimensional state of the model via = ¢~ '(y). This, and most other
invariant manifold inR¢*". applications, requires a stable GS manifold.

Much of the work on GS has focused on three areas. Recently, several criteria have appeared for designing
The first area focuses on defining GS. Various definitiongoupling which results in a stable IS manifold [11,12].
have been proposed [2—-4]. Reference [4] suggests th&¥e report here that it is straightforward to show that a
subtleties associated with unstable periodic orbits imphcriteria for linearly stable GS is [13]
that more than one definition may be required. The sec-
ond area focuses on mathematical propertiap ofRigor- A = (DyG[o(x);x]),
ous results about the smoothnesgofnd the relationship —RdA] > (I P7DyG[(x);x] — (DyGHIPl).
between smoothness and Lyapunov exponents exist [3,5].

Also, numerical methods for determining the properties oHere,(e) denotes a time average over the driving trajec-
¢ exist [6]. Since GS has been observed in experimentabry, RdA,] is the eigenvalue oA with the largest real
systems [7] it is structurally stable. Mathematical litera-part, andP is a matrix whose columns are the eigenvec-
ture regarding the existence, stability, and smoothness abrs of A. Also, DyG denotes the Jacobian @ with
invariant manifolds is also relevant [8]. The last majorrespect toy. This criteria implies that iip and¢ ! are
area of research has focused on detecting GS from timkenown then one can estimate the state of the plant
series data [9,10]. The methods are indirect in the sendeom the state of the modély) by design coupling which
that they either do not approximaif or the approxima- guarantees stable GS.
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The analytical method used to approximégids based R
on approximating center manifolds. Although the applica- p(z) = }\l,'ﬂﬂw N Z 8[z — x(n)].
tion to GS is new, complete discussions about approximat- n=l
ing center manifolds (with examples) can be found in many Since the exact functional form @b is unknown, the
textbooks [14]. Therefore, our discussion will be brief. best one can hope for is a series expansion

Assume the drive and response systems are given by K
Eqg. (1). Taking the total time derivative of = ¢ (x), é(z) = lim Z pP7D(z). (3)
and using Eq. (1), implies that K=*1=0

Gl (x);x] — [Dxp(x)] - F(x) =0 (2)  Here, thepV’s arer dimensional expansion coefficients,
on the synchronization manifold. HerB,¢ is the Which must be determined, and the!! (z)'s represent
Jacobian ofp. Equation (2) is interpreted as a partial some set of basis functions. Several authors have demon-
differential equation for the unknown functiomp(x). strated the advantage of using a basis set which is or-

The same type of equation arises when estimating centéfonormal orp(z), and they show how to construct such a
manifolds [14]. asis from data using Gramm-Schmidt [17,18]. The sum-

mation index,I is used to identify the individual basis
‘functions.

Once the basis set has been constructed, each expansion
coefficient,pV, can be obtained by multiplying both sides
of Eq. (3) by7(M(z) p(z) and integrating over all space.
Because of the orthonormality of the basis set we obtain

Typically, Eq. (2) cannot be solved exactly. Therefore
approximate the solution by the serig€x) = A + B -
x +x-M-x + ---.Next, insert the series into Eq. (2)
and rewrite the results as a polynomial in powersxof
The coefficients of this polynomial are functions of the
parameters oF andG as well as the elements df, B,

M, etc. Also, this polynomial must hold for atl on the ® . 1 & ®
driving trajectory. If this trajectory is not a fixed point p = lim N > ym)mVx(n)], (4)
then it is reasonable to assume that the polynomial can n=1

hold only if the coefficient of each power af vanishes. where we have usegn) = ¢[x(n)] on the GS manifold.
By equating each coefficient to zero we form a set ofThus, Egs. (3) and (4) are used to approximétdrom
algebraic equations involving the parameter®&p6, and  time seriesx(n) andy(n).

the elements oA, B, M, etc. The approximation t¢(x) The last task is to determine the order at which to
is obtained by solving these algebraic equations'pB,  truncate the series in Eq. (3) so as to not overfit the data.
M, etc., in terms of the parametersbfandG. This is done by using the minimum description length

Although conceptually straightforward, performing this (MDL) criteria. These criteria are similar to the maximum
procedure on anything but the simplest examples is verjikelihood principle associated with least squares fitting
tedious, and soon grows beyond what can be done by hangf data [18,19]. However, unlike maximum likelihood,
However, these calculations are not beyond the poweyDL is capable of determining the optimal order at with
of modern symbolic manipulation software. Indeed, theto truncate Eq. (3). The MDL function we use is given by
results presented below were obtained usiagLE [15].

It was relatively straightforward to writeraapLE program Yol = N [IN27é2) + 1]
which produced these answers. Once the program was 2

written the total run time was less than 10 min. 1
The approximation that one obtains for the GS manifold + Np|:5 + |n(7)}
should hold near the attractor for the drive dynamics; K -
however, it is not likely to be globally well defined. _ _ oy
Although the results will not be presented, we have used InCn) 1;) BZI (%)
a similar analysis to approximate= ¢ !(y) for all of o ) ]
the examples discussed below. (See Ref. [19] for a complete derivation of this function.)

If the GS manifold is stable then we can numericaIIyExcePt for a positive constant (which we negle(_:t), the.first
approximate¢ from time series data. The numerical {&rmis the gsual predlctlon_ error from the maximum I!ke—
method used to approximai$ is similar to one used lihood prln_C|pIe. Indeedfr.2 is the least squares prediction
by several authors to make empirical global modelsS'Tor obtained when predicting tlyen)'s from thex(n)’s.
from time series data. Begin by assuming one has two The remaining terms are penaltles which increase as
data sets,x(nA7) € RY and y(nAr) € R", with n = more terms in Eq. (_3) are retained and the model becomes
1,2,...,N, which represent simultaneous measurementg'ore complex. N, is the total number of nonzem'"’s
of the drive and response systems at a sampling raf@tainéd in Eq. (3). In our implementation, a component
Az, (If necessary, vector representations of the dynamic8f p"'s is set to zero if its stat|st|(cl:)a| significance is
can be obtained from scaler time series via embeddingot distinguishable from zero [20].65" is the relative
techniques [16].) A measure for the dynamics of the driveaccuracy of the8 component ofpV), % is the relative
system can be approximated by [16] accuracy ofg2, andy = 32.
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To illustrate the analytical and numerical techniques we dyv _ s(1 + 8)(y2 — y1)

applied them to examples using the Lorenz equations dt ’
dxi _ _ dy»
o S ), T Ay = yys — 2, (6)
d)CQ d
gy T v o, (5) % = yiy2 — b(l + n)ys,
dxs _ with diagonal as discussed above.
dr 2T 04, For this example we could only approximage The

as the drive system. approximation contained three arbitrary constants, thus it

The coupling between drive and response systems usif N0t unique. We selected values for two of them so that
ally involves one of two cases. The first case arises whefp as a simple form. [For the trivial examples discussed
the physical processes responsible for the coupling argP0ove this choice always led to the “correct” equation
known so one has an explicit equation for the couplingfor ¢(x)]. The third constant appears trivially Bs3, is
For this case one solves Eq. (2) as discussed above. Bel®f 0rder (4,4, 7), and is denoted bk below. Finally,
we consider the second case where the response systenifl§ approximation is simplified by retaining terms that are
given byG(y) + E[¢(x) — y]. Here, the coupling obeys second order i, first order in(8, A, n), and m_the limit
E(0) = 0 and is used to ensure that the GS manifoid is2f large coupling strengthe. (Thus, we examine a case
stable. The problem with this case is that we cannot evaluNere the response system is close to the drive system.)

ate E[¢(x) — y] because we do not knova, priori, the With these criteria in mind we found thédi(x) is given
form of ¢ (x). Forthe examples discussed below this prob-byA =0,
lem is overcome by calculatingy in two stages. -1

In the first stage we calculatgp using diagonal
coupling E[¢(x) — y] = e[¢(x) — y] where ¢ is 1 —(r*A — 5?5) —s(r+1—-5)8 0

. . . - 2 2 2

an arbitrary function. Theg calculated in this first + — | —[r(s — DA —s°6] (A —5°5) 0 |,
stage clearly depends o#. In the second stage we 0 0 K

force ¥ (x) = ¢p(x). This second stage ensures that herel is the identit tri d the th ten< i
E[4(x) — y] = 0 on the GS manifold. wnere” 18 <1>e_| en(zl)y_ma rix, and the fhree tenseris
L9 . . given byM'"W = M'¥ = 0, and
Two trivial tests of the analytic method involved

definingy = ¢(x) = [x; + ax; + Bx3,x2,x3] for one - rs=Da-s2 0 0
test, andy = ¢(X) = [x1 + ax%,ﬁxz,x3 + ’yx%] for the M(3) = — 0 s(r+1-s5)8 0
other. For each test we obtain a response sysiem, r 0 b(—)Z 0

G(y), by taking the time derivative of, using Eq. (5)

to resolve the vector fieldG(y), and adding diagonal Inthese equationd;, = (2r> + 3s> — 2s + 1). Further-
coupling. For this test, the response systems are thmore, it clear that this transformation satisfigs= 1 in
Lorenz system after a nonlinear change of coordinateghe limit §,A, n — 0.

and the analytic method easily recovered the GS mani- To test the numerical method we first demonstrate that

folds,y = ¢(x). it can determine the correct form ¢ for stable GS from
A final test of the analytic procedure used the followingtime series data. To accomplish this we used Eq. (5)
response system: (with s = 16, b = 4, and r = 46) as the drive system
TABLE I. Numerical approximations for the transformatioh; = x; — 0.01x3, ¢, =

0.95x,, and ¢p3 = x5 + 0.03x§. If the calculated value oip; was of order107> or less
then it was set to zero.

o=0 o = 0.05

Factor o] B b3 b P b3
Const 0.00101 0.000 55 —0.00194 0.0822 0.002 15 0.00475

X1 1.00 0 0 1.023 0 —0.0390

X2 0 0.950 0 —0.0107 0.954 0.0147

X3 0 0 1.00 —0.0061 0 1.003
X1X] 0 0 0 0.000982 0 0.000 166
X1 X2 0 0 0 —0.000304 0 —0.000259
X1X3 0 0 0 —0.000233 0 0.000 381

x% 0 0 0.0300 0 0 0.0297
XX3 0 0 0 0 0 0

2 0.0100 0 0 —0.009 94 0 0

X3 -
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20000 In conclusion, we have presented an analytical and a
numerical method for approximating the mapping that
defines the invariant manifold associated with generalized
synchronization.
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