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Approximating the Mapping between Systems Exhibiting Generalized Synchronization
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We present two methods for approximating the mapping between two systems exhibiting generalized
synchronization. If the equations of motion are known then an analytic approximation to the
mapping can be found. If time series data are used then a numerical approximation can be found.
[S0031-9007(98)07833-8]
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The subject of synchronization between identical sy
tems (denoted here by IS) has been of interest since
time of Huygens. Over the last decade it has becom
clear that even chaotic systems can be synchronized
One example is drive-response synchronization, where

dx
dt

­ Fsxd,
dy
dt

­ Fs yd 1 Esx, yd .

Here,Esx, yd denotes coupling between the drive syste
sxd and the response systems yd. If F is deterministic, and
if Esx, xd ­ 0, then the systems are synchronized whe
ystpd ­ xstpd. Because of determinism this condition
remains true fort . tp.

Recently, papers discussing a more general idea
synchronization have appeared in the literature. Driv
response dynamics for this type of synchronization
given by

dx
dt

­ Fsxd,
dy
dt

­ Gs y; xd , (1)

where G and F are permitted to be different functions
In principle, x [ Rd , y [ Rr , and the dynamics takes
place in Rd1r . Intuitively, generalized synchronization
(GS) occurs if the response state,y, is related to the drive
state,x, by a time independent function,y ­ fsxd. If GS
occurs then the dynamics takes place on ad dimensional
invariant manifold inRd1r .

Much of the work on GS has focused on three area
The first area focuses on defining GS. Various definitio
have been proposed [2–4]. Reference [4] suggests t
subtleties associated with unstable periodic orbits imp
that more than one definition may be required. The se
ond area focuses on mathematical properties off. Rigor-
ous results about the smoothness off, and the relationship
between smoothness and Lyapunov exponents exist [3
Also, numerical methods for determining the properties
f exist [6]. Since GS has been observed in experimen
systems [7] it is structurally stable. Mathematical litera
ture regarding the existence, stability, and smoothness
invariant manifolds is also relevant [8]. The last majo
area of research has focused on detecting GS from ti
series data [9,10]. The methods are indirect in the sen
that they either do not approximatef or the approxima-
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tions are local (often resulting in as many approximatio
as date points).

This manuscript opens a new research direction.
stead of seeking properties off, or indirect evidence of
its existence, we believe it is better to go after the fun
tion itself. Therefore, we present methods for analytical
and/or numerically constructing a single smooth functio
which globally approximatesf. If the equations of mo-
tion are known then an analytic approximation forf can
be obtained. (To our knowledge, this is the only tec
nique for analytically approximatingf.) The numerical
method uses time series from the two systems to cal
late a statistic which can be used to infer the existen
of stable GS. The numerical method also gives a glob
approximation for the function,y ­ fsxd. (We argue,
implicitly, that if f and/orf21 exist but are not well ap-
proximated by smooth functions then their usefulness
limited since their mathematical properties are probab
“so bad” they prohibit most applications of GS.)

An important application for GS comes from contro
theory. Typically, control schemes work better when th
complete state of the plant is known. The applicatio
uses measurements from the plantsFd as drive input to
an approximate model of the plantsGd. If GS occurs
then the state of the plant can be approximated from t
state of the model viax ­ f21s yd. This, and most other
applications, requires a stable GS manifold.

Recently, several criteria have appeared for design
coupling which results in a stable IS manifold [11,12
We report here that it is straightforward to show that
criteria for linearly stable GS is [13]

A ; kDyGffsxd; xgl ,

2RefL1g . kk P21fDyGffsxd; xg 2 kDyGlgP kl .

Here,k≤l denotes a time average over the driving traje
tory, RefL1g is the eigenvalue ofA with the largest real
part, andP is a matrix whose columns are the eigenve
tors of A. Also, DyG denotes the Jacobian ofG with
respect toy. This criteria implies that iff andf21 are
known then one can estimate the state of the plantsxd
from the state of the models yd by design coupling which
guarantees stable GS.
© 1998 The American Physical Society 4835
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The analytical method used to approximatef is based
on approximating center manifolds. Although the applic
tion to GS is new, complete discussions about approxim
ing center manifolds (with examples) can be found in ma
textbooks [14]. Therefore, our discussion will be brief.

Assume the drive and response systems are given
Eq. (1). Taking the total time derivative ofy ­ fsxd,
and using Eq. (1), implies that

Gffsxd; xg 2 fDxfsxdg ? Fsxd ­ 0 (2)

on the synchronization manifold. HereDxf is the
Jacobian off. Equation (2) is interpreted as a partia
differential equation for the unknown function,fsxd.
The same type of equation arises when estimating cen
manifolds [14].

Typically, Eq. (2) cannot be solved exactly. Therefor
approximate the solution by the seriesfsxd ­ A 1 B ?

x 1 x ? M ? x 1 · · · . Next, insert the series into Eq. (2
and rewrite the results as a polynomial in powers ofx.
The coefficients of this polynomial are functions of th
parameters ofF and G as well as the elements ofA, B,
M, etc. Also, this polynomial must hold for allx on the
driving trajectory. If this trajectory is not a fixed poin
then it is reasonable to assume that the polynomial c
hold only if the coefficient of each power ofx vanishes.
By equating each coefficient to zero we form a set
algebraic equations involving the parameters ofF, G, and
the elements ofA, B, M, etc. The approximation tofsxd
is obtained by solving these algebraic equations forA, B,
M, etc., in terms of the parameters ofF andG.

Although conceptually straightforward, performing thi
procedure on anything but the simplest examples is v
tedious, and soon grows beyond what can be done by ha
However, these calculations are not beyond the pow
of modern symbolic manipulation software. Indeed, th
results presented below were obtained usingMAPLE [15].
It was relatively straightforward to write aMAPLE program
which produced these answers. Once the program w
written the total run time was less than 10 min.

The approximation that one obtains for the GS manifo
should hold near the attractor for the drive dynamic
however, it is not likely to be globally well defined
Although the results will not be presented, we have us
a similar analysis to approximatex ­ f21s yd for all of
the examples discussed below.

If the GS manifold is stable then we can numerical
approximatef from time series data. The numerica
method used to approximatef is similar to one used
by several authors to make empirical global mode
from time series data. Begin by assuming one has t
data sets,xsnDtd [ Rd and ysnDtd [ Rr , with n ­
1, 2, . . . , N , which represent simultaneous measureme
of the drive and response systems at a sampling r
Dt. (If necessary, vector representations of the dynam
can be obtained from scaler time series via embedd
techniques [16].) A measure for the dynamics of the dri
system can be approximated by [16]
4836
a-
at-
ny

by

l

ter

e,

)

e

t
an

of

s
ery
nd.
er
e

as

ld
s;
.
ed

ly
l

ls
wo

nts
ate
ics
ing
ve

rszd ­ lim
N!`

1
N

NX
n­1

dfz 2 xsndg .

Since the exact functional form off is unknown, the
best one can hope for is a series expansion

fszd ­ lim
K!`

KX
I­0

psIdp sIdszd . (3)

Here, thepsId’s arer dimensional expansion coefficients,
which must be determined, and thep sIdszd’s represent
some set of basis functions. Several authors have demo
strated the advantage of using a basis set which is o
thonormal onrszd, and they show how to construct such a
basis from data using Gramm-Schmidt [17,18]. The sum
mation index,I is used to identify the individual basis
functions.

Once the basis set has been constructed, each expans
coefficient,psId, can be obtained by multiplying both sides
of Eq. (3) byp sIdszd rszd and integrating over all space.
Because of the orthonormality of the basis set we obtain

psId ­ lim
N!`

1
N

NX
n­1

ysndp sIdfxsndg , (4)

where we have usedysnd ­ ffxsndg on the GS manifold.
Thus, Eqs. (3) and (4) are used to approximatef from
time seriesxsnd andysnd.

The last task is to determine the order at which to
truncate the series in Eq. (3) so as to not overfit the dat
This is done by using the minimum description length
(MDL) criteria. These criteria are similar to the maximum
likelihood principle associated with least squares fitting
of data [18,19]. However, unlike maximum likelihood,
MDL is capable of determining the optimal order at with
to truncate Eq. (3). The MDL function we use is given by

x2
MDL ­

rN
2

flns2pŝ2d 1 1g

1 Np

∑
1
2

1 lnsgd
∏

2 lnshd 2

KX
I­0

rX
b­1

lnsdsId
b d .

(See Ref. [19] for a complete derivation of this function.)
Except for a positive constant (which we neglect), the firs
term is the usual prediction error from the maximum like
lihood principle. Indeed,̂s2 is the least squares prediction
error obtained when predicting theysnd’s from thexsnd’s.

The remaining terms are penalties which increase a
more terms in Eq. (3) are retained and the model becom
more complex. Np is the total number of nonzeropsId’s
retained in Eq. (3). In our implementation, a componen
of psId’s is set to zero if its statistical significance is
not distinguishable from zero [20].d

sId
b is the relative

accuracy of theb component ofpsId, h is the relative
accuracy ofŝ2, andg ­ 32.
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To illustrate the analytical and numerical techniques
applied them to examples using the Lorenz equations

dx1

dt
­ ssx2 2 x1d ,

dx2

dt
­ rx1 2 x1x3 2 x2 , (5)

dx3

dt
­ x1x2 2 bx3 ,

as the drive system.
The coupling between drive and response systems u

ally involves one of two cases. The first case arises w
the physical processes responsible for the coupling
known so one has an explicit equation for the couplin
For this case one solves Eq. (2) as discussed above. B
we consider the second case where the response syst
given byGs yd 1 Effsxd 2 yg. Here, the coupling obeys
Es0d ­ 0 and is used to ensure that the GS manifold
stable. The problem with this case is that we cannot eva
ate Effsxd 2 yg because we do not know,a priori, the
form of fsxd. For the examples discussed below this pro
lem is overcome by calculatingf in two stages.

In the first stage we calculatef using diagonal
coupling Efcsxd 2 yg ; efcsxd 2 yg where c is
an arbitrary function. Thef calculated in this first
stage clearly depends onc. In the second stage w
force csxd ­ fsxd. This second stage ensures th
Efcsxd 2 yg ­ 0 on the GS manifold.

Two trivial tests of the analytic method involve
defining y ­ fsxd ­ fx1 1 ax2 1 bx2

2 , x2, x3g for one
test, andy ­ fsxd ­ fx1 1 ax2

3 , bx2, x3 1 gx2
2g for the

other. For each test we obtain a response system,Ùy ­
Gs yd, by taking the time derivative ofy, using Eq. (5)
to resolve the vector field,Gs yd, and adding diagona
coupling. For this test, the response systems are
Lorenz system after a nonlinear change of coordina
and the analytic method easily recovered the GS ma
folds, y ­ fsxd.

A final test of the analytic procedure used the followin
response system:
TABLE I. Numerical approximations for the transformationf1 ­ x1 2 0.01x2
3 , f2 ­

0.95x2, and f3 ­ x3 1 0.03x2
2 . If the calculated value offj was of order1025 or less

then it was set to zero.

s ­ 0 s ­ 0.05
Factor f1 f2 f3 f1 f2 f3

Const 0.001 01 0.000 55 20.001 94 0.0822 0.002 15 0.004 75
x1 1.00 0 0 1.023 0 20.0390
x2 0 0.950 0 20.0107 0.954 0.0147
x3 0 0 1.00 20.0061 0 1.003

x1x1 0 0 0 0.000 982 0 0.000 166
x1x2 0 0 0 20.000 304 0 20.000 259
x1x3 0 0 0 20.000 233 0 0.000 381
x2

2 0 0 0.0300 0 0 0.0297
x2x3 0 0 0 0 0 0
x2

3 20.0100 0 0 20.009 94 0 0
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dy1

dt
­ ss1 1 dd s y2 2 y1d ,

dy2

dt
­ rs1 1 Ddy1 2 y1y3 2 y2 , (6)

dy3

dt
­ y1y2 2 bs1 1 hdy3 ,

with diagonal as discussed above.
For this example we could only approximatef. The

approximation contained three arbitrary constants, thu
is not unique. We selected values for two of them so t
f has a simple form. [For the trivial examples discuss
above this choice always led to the “correct” equat
for fsxd]. The third constant appears trivially inB33, is
of order sD, d, hd, and is denoted byK below. Finally,
the approximation is simplified by retaining terms that
second order inx, first order insd, D, hd, and in the limit
of large coupling strength,e. (Thus, we examine a cas
where the response system is close to the drive system

With these criteria in mind we found thatfsxd is given
by A ­ 0,

B ­ 1

1
1
G

24 2sr2D 2 s2dd 2ssr 1 1 2 sdd 0
2frss 2 1dD 2 s2dg sr2D 2 s2dd 0

0 0 K

35 ,

where1 is the identity matrix, and the three tensorM is
given byMs1d ­ Ms2d ­ 0, and

Ms3d ­
1
G

264 2
rss21dD2s2d

b22s 0 0

0 ssr112sdd
b22 0

0 0 0

375 .

In these equations,G ­ s2r2 1 3s2 2 2s 1 1d. Further-
more, it clear that this transformation satisfiesf ­ 1 in
the limit d, D, h ! 0.

To test the numerical method we first demonstrate
it can determine the correct form off for stable GS from
time series data. To accomplish this we used Eq.
(with s ­ 16, b ­ 4, and r ­ 46) as the drive system
4837
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FIG. 1. The sudden drop ate . 4 indicates the onset of stable
synchronization and stable generalized synchronization.

and a response system obtained fromy ­ fsxd ­ fx1 2

0.01x2
3 , 0.95x2, x3 1 0.03x2

2g. The systems were coupled
via they2 equation usingefs0.95x2 1 noised 2 y2g. The
noise was Gaussian white with zero mean and stand
deviation,15s. Here, 15 is approximately the standar
deviation of x2, and s ­ 0 or 0.05. e ­ 10 was used
because, withy2 coupling and a chaotic driving trajectory
IS is “stable” fore $ 4 [11].

The numerical procedure was givenN ­ 4000 simulta-
neously recorded values ofx andy at a sampling interval
of Dt ­ 0.02. The results (see Table I) indicate that th
numerical procedure found a good approximation tof,
even in the presence of small amounts of noise.

To further test the numerical method we used Eqs. (
and (6) (the same values fors, b, and r) and a drive
signal,ehff2sxd 1 noiseg 2 y2j, coupled to they2 equa-
tion. These tests used simultaneously recorded scalar t
series of the same length and sampling interval giv
above. Scalars were obtained using the arbitrarily ch
sen projections

sdsnd ­ x1snd 2 2.5x2snd 1 0.75x3snd ,

sr snd ­ 20.5y1snd 1 1.5y2snd 2 y3snd .

Each scalar time series was independently rescaled
mean zero and standard deviation one, and an attra
for each time series was reconstructed using a time de
embedding [16].

The results of our attempts to approximatef for d ­
D ­ h ­ 0 (IS) and d ­ 0.02, D ­ 0.04, h ­ 20.03
(GS) are shown in Fig. 1. The figure shows thatx

2
MDL

experiences a sharp drop ate . 4 when the drive/response
systems are identical and a less sharp drop for GS. T
drop implies that the numerical procedure has found
relatively accurate approximation fory ­ fsxd, so the
GS manifold is stable. Also, the figures show that th
procedure deteriorates gracefully in the presence of no
4838
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In conclusion, we have presented an analytical and
numerical method for approximating the mapping tha
defines the invariant manifold associated with generalize
synchronization.
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