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Calculation of Proton-Deuteron Elastic Scattering at 10 MeV with a Realistic Potential
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We present the first results of a calculation of the differential cross section and of polarization
observables for proton-deuteron elastic scattering at 10 MeV proton laboratory energy, for the Paris
potential. The method used is the “screening and renormalization approach” which allows one to
correctly take into account the Coulomb repulsion between the two protons. Comparison is made
with the precise experimental data of Sagaraet al. [Phys. Rev. C50, 576 (1994)] and of Sperison
et al. [Nucl. Phys.A422, 81 (1984)]. [S0031-9007(98)07756-4]

PACS numbers: 25.10.+s, 03.65.Nk, 24.10.– i, 25.40.Cm
ng
,
For
ion
ed
ly
g-

ing
ut
ion
to
ble

-

b
c-

ns
1

e

e
sed.
-

-
t

During the past decade, the theoretical calculation
neutron-deuteronsndd scattering observables has becom
feasible using the most up-to-date models of the nucleo
nucleonsNNd interaction including three-nucleon force
[1]. The goal behind this endeavor is to get a bett
understanding of interesting physical phenomena su
as three-nucleon forces and off-shell behavior of th
nuclear interaction; but also signatures of the qua
substructure may be obtainable. Furthermore, extract
of NN on-shell information which is difficult to deduce
from NN scattering experiments could be possible. Su
expectations are, however, to be confronted with t
experimental situation which for neutrons as projectiles
rather unsatisfactory: despite great efforts, the availa
data are sparse and of an accuracy which as yet does
allow one to meaningfully differentiate between all of th
various theoretical assumptions entering the calculation

For the proton-induced reactionspdd, on the other hand,
a rich body of accurate data is available and is still bein
continuously expanded. There, however, the theoreti
situation has been unsatisfactory until now. Either, wh
being of similar sophistication as in thend case, reliable
calculations had to be confined to energies below t
deuteron breakup threshold [2,3] or, when performed
positive energies, had to resort to a simple ansatz
the nuclear interaction [4]. But the few cases whe
experiments have been performed for thend and thepd
reaction, for the same observable, at the same ene
clearly show that the presence of the Coulomb for
in the latter case, in general, modifies the observab
appreciably. Hence, the standard procedure of compar
“realistic” nd calculations withpd data must be considered
unsatisfactory in that the expected (smaller) effects of t
above-mentioned interesting topics might be more or le
veiled by the neglected Coulomb effects.

Thus, in order to make adequate use of the high pre
sion pd data it is of foremost importance to reliably esti
mate the influence of the Coulomb repulsion between t
two protons, for all energies, with realistic nuclear force
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In this paper, we present the first results obtained alo
these lines for variouspd elastic scattering observables
at an energy above the deuteron breakup threshold.
our calculations we use the screening and renormalizat
approach [5,6] (for a recent review, see [7]) as formulat
for momentum space integral equations. Here, we on
sketch the basic idea. It consists of separating the lon
range from the shorter-range Coulomb effects and treat
the former separately. The (technically convenient, b
not mandatory) starting point is a separable representat
of the nuclear interaction for each partial wave taken in
account. For this purpose any of the well-tested separa
expansion methods can be used. Then theT matrices de-
scribing scattering in thenp subsystem are purely sepa
rable while the ones for thepp subsystem contain the
additional nonseparable Coulomb amplitudeTR , as calcu-
lated from a screened Coulomb potential.R denotes the
screening radius. Clearly, by switching off the Coulom
interaction, the amplitudes for the neutron-induced rea
tion are recovered.

We enumerate the identical particles [the two proto
(neutrons) in the proton-(neutron-)induced reaction] by
and 2, and the odd particle by 3. Thus thea-subsystem
T matrix is assumed to be given as

T sRd
a ­

X
m,n

jx̃ sRd
amlDsRd

a,mnkx̃ sRd
an j 1 da3TR , a ­ 1, 2, 3 .

(1)

The elementD
sRd
a,dd, for a ­ 1, 2, is to contain the

deuteron pole which is guaranteed if at the pole th
deuteron “form factor”jx̃

sRd
ad l is related to the deuteron

bound state wave functionjcdl in the standard manner
(note that only thepp-subsystem form factorsjx̃

sRd
3n l con-

tain Coulomb distortions). Here and in the following, th
energy dependence of the various operators is suppres
Since for finiteR all potentials are of short range, conven
tional three-body scattering theory is applicable.

We use the effective-two-body formulation of the three
body theory proposed in [8] in which the two-fragmen
© 1998 The American Physical Society
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amplitudesT
sRd

bn,am are obtained as solutions of multi-
channel Lippmann-Schwinger-type equations which
operator matrix form read as

T sRd ­ V sRd 1 V sRdG
sRd
0 T sRd. (2)

Denoting the incoming and the outgoing center-of-ma
(c.m.) momenta byqa and q0

b and the corresponding
bound state quantum numbers bym and n, respectively,
the physical transition amplitudes from channelsamd
to channel sbnd are then given asT

sRd
bn,amsq0

b , qad ­

kq0
bjT

sRd
bn,amjqal. Here,

V
sRd

bn,am ­ kx̃ sRd
bn j fdbaG0 1 db3da3G0TRG0g jx̃ sRd

aml
(3)

is the effective potential andG
sRd
0;bn,am ­ dbaD

sRd
a,nm is the

effective free Green function.G0 is the free resolvent and
dba ­ 1 2 dba. For more details, see [5,7]. Note that
for the case considered here, Eqs. (2) and (3) are exac

The important point is that the diagonal partV
sRd

am,am

contains, fora fi 3 and with thea subsystem being in
the deuteron state, as its longest-ranged part (in the lim
R ! `), the so-called c.m. Coulomb potentialyR

a . It
describes the Coulomb scattering of protona (­ 1 or
2) off the total charge of the deuteron concentrated
its center of mass and is the only part which require
application of the renormalization procedure. As show
in [5,6], multiplication of the on-shell solution of (2)
by appropriate, explicitly known renormalization factor
Za,Rsqad andZb,Rsq0

bd guarantees the existence of

lim
R!`

Z
21y2
b,R sq0

bdT sRd
bn,amsq0

b , qa; E1dZ21y2
a,R sqad

­ dbadnmtC
a sq0

a , qad 1 kq0s2d
b,C jT SC

bn,amsE1d jq
s1d
a,Cl , (4)

where E1 ­ E 1 i0. Here, tC
a is the amplitude, and

jq
s6d
a,Cl is the scattering wave function (for an asymptoti

momentumqa and energy3q2
ay4M, M being the nucleon

mass) belonging to the unscreened Coulomb potent
yC

a :­ limR!` yR
a . Note that the definition (4) of the

charged-composite particle amplitude coincides with th
one following from time-dependent scattering theory [7,9

We recall two of the main advantages of this approac
(i) In Eq. (2) only the amplitudes for allbinary processes
are coupled, and (ii) in Eq. (3) thepp Coulomb amplitude
is taken into account in three-dimensional form. Thu
no problems arise from lack of convergence of Coulom
partial wave series. In contrast, for methods based
(integro-)differential equations for wave functions in coor
dinate space two (of several) as yet unresolved difficulti
originate in this context (cf. the discussion in [10]).

When solving Eq. (2) we have made only the so-calle
Coulomb-Born approximation (CBA) which consists o
replacing everywhere the CoulombT operator by the
potential. In the Coulomb parts of the effective potentia
(3) this has been shown (forR ! `) in [11,12] to be
accurate to better than 10%; and, since the latter a
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known to be of the order of at most 10% of the pure
nuclear parts, this approximation is estimated to lead
inaccuracies in thepd amplitudes of less than 1%. In
fact, the sole reason for using the CBA is that even th
the required CPU time increases by approximately a fac
of 25 over a calculation without the Coulomb interaction

We have used the Paris potential, in fact a sepa
ble representation (PEST1-6) thereof which is known
provide an excellent approximation to the original loca
potential [13]. This choice was motivated by the avai
ability of numerical below-thresholdpd phase parameters
[2] against which we could check our code. The inte
action is taken into account in the states3S1 2 3D1, 1S0,
and in allP waves. Isospin is not introduced. To reac
the unscreening limit for cross sections, a valueR ­
100 fm of the screening radius was found to be sufficien
For polarization observables, however, for c.m. scatteri
angles larger than 70± the same goal was achieved onl
with amplitudes calculated withR * 300 fm, while for
smaller angles even screening radii larger thanR ­
625 fm would be needed; such calculations were presen
not attempted because of expected excessive increas
necessary computer time. We finally mention that co
vergence with respect to the number of total angular m
menta was reached forJmax ­ 19y2.

In Figs. 1–6, we present a set of scattering observab
calculated for a proton laboratory energy of 10 MeV
Shown are the results using the solution of Eq. (2) wi
the Coulomb interaction switched on and off; in the latte
case, we arrive at the corresponding observables for
nd reaction. For illustrative purposes, we also includ
the observables obtained by the standard procedure
approximately taking into account Coulomb effects whic

FIG. 1. Differential cross section at 10 MeV proton labo
ratory energy vs c.m. scattering angle. Experimentsjd:
Ref. [14]. Solid line: Full calculation; dashed line: only
“external” Coulomb corrections; dotted line:nd cross section.
4821
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FIG. 2. Proton analyzing power. Notation as in Fig. 1.pd
datasjd from Ref. [14];nd ssd data from Ref. [16].

consists of keeping only the “external,” and neglec
ing all “internal,” Coulomb corrections. Explicitly, the
partial-wave amplitudes for thend reaction are multi-
plied by the c.m. Coulomb partial-waveS matrices to ac-
count for the asymptotic distortion, before summing the
up to the three-dimensional amplitudes to which then t
c.m. Rutherford amplitude is added.

Inspection of Fig. 1 shows that the differential cros
section data of [14] are well reproduced. However, th
calculated proton analyzing powerAy , displayed in Fig. 2,
lies well below experiment [14]. For thend reaction
this underestimation of the region around the maximum
known as the “Ay puzzle” the resolution of which appears
not to be attainable with standard nuclear potential mod

FIG. 3. Deuteron vector polarizationiT11. Notation as in
Fig. 1. Datasjd from Ref. [17].
4822
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FIG. 4. Deuteron tensor polarizationT20. Notation as in
Fig. 1. Datasjd from Ref. [17].

(including standard three-nucleon forces) but seems
require readjustment of some inputNN phase parameters
[15]. It clearly shows up also when comparing ournd
result with thend data of [16]. Not surprisingly, this
underestimation problem continues to persist when goin
over to thepd reaction. A similar “puzzle” exists foriT11
as can be inferred from Fig. 3. For energies below th
deuteron breakup threshold these facts have already be
pointed out in [3]. However, the experimental difference
Aysndd 2 Ayspdd seems to be rather well reproduced
by our calculation. For the various deuteron tenso
polarizations shown in Figs. 4–6, we achieve a reasonab
reproduction of the data of [17]. It will be important to

FIG. 5. Deuteron tensor polarizationT21. Notation as in
Fig. 1. Datasjd from Ref. [17].
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FIG. 6. Deuteron tensor polarizationT22. Notation as in
Fig. 1. Datasjd from Ref. [17].

investigate the energy dependence of the Coulomb effe
in the various observables.

From this the following conclusions can be drawn
(i) Coulomb effects play a minor role for the differen
tial cross section (with the exception of the small-ang
region) but lead to sizable corrections in several polariz
tion observables, in the maximum, minimum, and sma
angle regions. This feature has already been observed
energies below the breakup threshold in [2,3]. (ii) Th
above-mentioned standard approximation for taking in
account Coulomb effects, while being of acceptable acc
racy for the differential cross section, fails for the mor
sensitive polarization observables.

Clearly, the numerical results presented here are s
lacking the full sophistication achieved for thend reac-
tion. Indeed there exist several possibilities for improv
ment. Most important is the use of more modernNN
potentials for which we need low-rank separable expa
sions of high quality. This should considerably improv
the agreement with thend data, and, hence, also lead t
more realisticpd results. Moreover, as is known fromnd
calculations, still higherNN partial waves are expected to
contribute even at this relatively low energy. Finally, in
creasing the screening radius even further while mainta
ing an acceptable numerical accuracy of our results w
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quite generally improve on the polarizations in the sma
angle region and, in particular forAy , will reduce spurious
oscillations.
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