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Lattice Determination of Heavy-Light Decay Constants
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We report on the MILC Collaboration’s calculation 6§, fs., fp, fp,, and their ratios. Our central
values come from the quenched approximation, but the quenching error is estimatedVfrem
dynamical staggered lattices. We use Wilson light valence quarks and Wilson and static heavy quarks.
We find, for examplefs = 157 + 11750 MeV, fp /fp = 1.11 = 0.027°003 + 0.03, fp, = 210 *+
934" MeV, and f/fp, = 0.75 = 0.0300370:00, where the errors are statistical, systematic (within
the quenched approximation), and systematic (of quenching), respectively. [S0031-9007(98)07819-3]

PACS numbers: 12.38.Gc, 13.20.Fc, 13.20.He

The neutralB meson B,), a bound state of & quark  scale (throughf,) and to find the physical values of
and an antb quark, is known to mix with its antiparticle, «,; and «,, the hopping parameters of the up/down
B,. In the standard modek,, the ratio of the mixing and strange quarks. We determirg by adjusting the

oscillation to the decay rate, is proportional to the abSOIUt%Iegenerate pseudoscalar masg2e:: — m2, the lowest
. 7T’

square of the fundamental quantity,. However, despite  orqer chiral perturbation theory value. We also compute
the fact that thex, is well measured [1]Viq remains  gmeared-local light-light vector meson propagators, which
poorly determined zbecause the proportionality constanje yse for alternative determinations of the scale (through
betweenx, and|V,,|* depends on nonperturbative strong m,) andx, (throughm,).

interaction effects. These effects are parametrized by Heavy quark propagators are computed by the hopping
/5, the pseudoscalar decay constant of Bie meson,  parameter expansion [5]. Because of practical limitations
and Bj, the corresponding “bag parameter.” Accuratey this approach [3], we sum the sink point of the smeared-

computations of'p and B therefore put tight constraints gmeared correlators only over a subset of points in a spatial
on the standard model. Similarly, a measurementof

for B, mesons would determine a second fundamentaJrABl_E 1

quantity, Vi, if f5, and B, were known, or|Via/Visl,  variable-mass Wilson valence quarks and two flavors of fixed-

if the ratiosfs /fp andBp, /B were known. mass staggered dynamical fermions; all other runs use quenched
Lattice QCD offers a way to compute quantities likg ~ Wilson quarks.

and B from first principles. Here, we present a compu-gg,

Lattice parameters. Set8, G, and L—R use

tation by the MILC Collaboration of the decay constants B tam,) Size No. cfgs.
f5: f5., fp: fp,, and their ratios. Ref. [2] gives additional 4 5.7 87 x 48 200
details; preliminary results were described in Refs. [3,4]. 5.7 16; X 48 100
Table | shows the lattice parameters used. See [3] forlé 2'35 ié; i jg 188
det_ails of the lattice generation, gauge fixing, and determi-, 6.3 243 X 80 100
nation of the quark propagators. We compute “smearedy 6.52 323 X 100 60
local” and “smeared-smeared” pseudoscalar mesory, 5.445 (0.025) 163 X 48 100
propagators in each of three cases: heavy-light, staticy 5.5 (0.1) 243 X 64 101
light, and light-light (with degenerate masses only). Light O 5.5 (0.05) 243 X 64 100
Wilson quark propagators are computed by a minimal™ 5.5 (0.025) 20° X 64 199
residual algorithm for three values of the hopping pa-* 5.5 (0.0125) 20‘2 X 64 199
rameter, giving light quark masses.f) in the range g'g 58'83 égé § 2421 388
0.7my = m, < 2.0m,;, where m, is the strange quark 5.7 (0.01) 16* % 32 49

mass. The light-light pseudoscalars are used to set the
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volume. This means that intermediate states of nonzerthat C.L. of linear fits toMy, and fy, are quite good.
3-momenta can contribute. For the heavy-light mesongHere,Q is a generic—possibly static—heavy quark, and
studied here, these higher momentum states are suppresseds a generic light quark.) Further, linear fits y.
sufficiently at asymptotic Euclidean timeby their higher also have reasonable C.L. for quenched= 6.0. For
energy, although in the largest volumes (gétandO) this ~ m2, however, the C.L. of the linear fits is uniformly very
can requiremin/a as large as 2xq(is the lattice spacing). poor whethen /« or am, is the independent variable. To

The static-light mesons have no such suppressiorstudy this problem in more detail, we have examined the
However, on our smallest volumes (sets C, D, F, pseudoscalar mesons for six light quark massgsat 5.7
G, H) the contamination by higher momentum stateson additional lattices (set “5.7-large”) of siZ@® X 48
is small 0.7%, which we estimate using static-light (403 configurations),6> X 48 (390 cfgs.)20° X 48 (200
wave functions from Ref. [6]). On all other sets the cfgs.), and24® X 48 (184 cfgs.). The lightest two meson
contamination is expected to be large. We therefore havmasses in this set(385 and=515 MeV), are below those
performed a dedicated static-light computation on thoseised in the full computation. On set 5.7-large, linear fits
lattices, with relative smearing functions taken from [7] of m2 vs either1/« or am, are still poor, but quadratic
and zero momentum intermediate states enforced by fits are good. Indeed, a quadratic fit®f vs am, using
complete fast Fourier transform (FFT) sum over spatiathe five heaviest masses goes right through the lightgst
slices. In addition, the dedicated static light computatiorin all but the12? volume. For our central values we thus
has been run on set (because the plateaus from the employ quadratic fits vem, for m2, and linear fits vsim,
hopping method proved to be poor) and set(as a for f,, My,, andfp,. We call this “chiral fit 1.” Three
check of the hopping method). On the latter set, the twather fit choices (II: all linear; lllm2 and f,, quadratic,
methods give consistent results. all others linear; IV:im2,, f, andfo, quadratic, all others

For all pseudoscalars, we fit the smeared-local andlnear) are used to assess the systematic error. OnE set,
smeared-smeared correlators simultaneously and covarindergoes very large{50%) variation when the chiral fit
antly to single exponential forms, with the same mass irchoice is changed, possibly because of finite size effects.
both channels. We vary the fit range ¢nin each chan- SetF is therefore dropped from further analysis.
nel over several choices that have reasonable confidenceTo find f on a given data set, we divide out the pertur-
level (C.L.). Combining such choices for the light-light, bative logarithms [9] frony /Mg, fit to a polynomial in
heavy-light, and static-light cases, we have approximatelyt /M, , interpolate tong, and then replace the logarithms.
25 different versions of the analysis on each data set. OulVe do three versions of the polynomial fit: (1) a quadratic
central values are taken from the version which has thét to the mesons in the approximate mass range 2 to 4 GeV
best blend of high C.L. and small statistical errors. We(“heavier heavies”) (2) a quadratic fit to the mesons in the
then find the standard deviation of the result over theapproximate mass range 1.25 to 2 GeV (“lighter heavies”)
other versions and add it in quadrature with the raw jack{3) a cubic fit to the mesons in the approximate mass range
knife error of the central value. The resulting error will 1.25to 4 GeV. We include the static-light point in all three
be called, henceforth, “the statistical error.” fits. We use range (1) in central values fty and 15 ;

We employ the EKM norm [8] throughout. In the range (2), forfp andfp,. The alternative ranges go into
heavy-light case we also adjust the measured meson padlee systematic error estimates.
mass upward by the difference between the heavy quark The final extrapolation is in lattice spacing. Since the
kinematic mass ;) and the heavy quark pole mass Wilson action’s leading errors ar®(a), we attempt a
(m;) as calculated in the tadpole-improved tree approxilinear extrapolation ina for all our quenched results.
mation [8], fixing the mean link fromx.. We use the Figure 1 shows the extrapolation f@g, with the central
one-loop tadpole-improved, mass-dependent perturbativehoices of the perturbative scale [choice (i)] and of the
renormalization of the axial current [9], with coupling chiral fits (fit 7). An alternative possibility, with which
ay(3.4018/a) defined in terms of the plaquette [10]. We the data are also consistent, is that tBda) effects
adjust the result of [9] for our matching poink{ rather  are small enough fo6/g> = 6.0 (a < 0.5 GeV~!) that
than m;) and for our choice of the mean link. Our one may extrapolate with a constant fit in this region.
central values use “scale choice™ ¢f;; = 2.32/a for  For the decay constants, both fits have acceptable C.L.,
the heavy-light corrections [11] and; = 2.18/a forthe  but the constant fit is better. However, fgg /fz and
static-light corrections [12]. The heavy-light scale wasfp /fp, the linear fits C.L. = 0.6) are much better than
calculated in the massless limit; however, since it differghe constant fits@.L. = 0.1). (See Ref. [2] for plots
little from the static-light scale, it seems reasonable to usef the ratios and additional details.) Since it would be
it for all mass values. The effects of two other choices ofinconsistent to treat the decay constants as independent
scale [(i)gurL = gs. = 1/a; (iii) gL = 4.63/a, g51, = of a, yet fit the ratios linearly, and since we in any case
4.36/a] give an estimate of the perturbative errors. expect significant® (a) errors for Wilson fermions, we

In our chiral fits we usem, as the independent variable take the linear fits to the quenched results for our central
rather than the more standardx. Although the two are values. The differences with the constant fits are included
formally equivalent at this order im, m, has the advantage in the systematic errors. At this point, the dynamical
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AN DAL B I B of uncertainty were the next higher order perturbative
-2 ﬁuggched 1 correction [0 («2)], this is not the case once the interplay

250 — Zfit to o; CL=0.56 - between perturbative uncertainties and other continuum
P fit to ¢ a<0.5; CL=0~90% y extrapolation errors is included. Indeed, assume there

exist “perfect” data which are linear im with slope
and intercept as in Fig. 1, and then add on @Ka?)
correction with a coefficient chosen to give the same
change atB = 5.7 as would be produced by reducing
gt and g$ to 1/a [choice (ii)]. Although this gives
a 17% change atB = 5.7, a linear extrapolation of the
J 1 changes toa = 0 results in a residual error of less
150 — T — than 1%. With the real data, however, changiny
I A N PR B to choice (ii) raises the linearly extrapolated value by
0.0 0.2 0.4 0.6 0.8 10% (see_ Fig_.__2); while it reduces the constant fit by
a (Gev)™! 3%. Choice (iii) reduces the linear vaIu_e and raises the
constant value by-2%. We therefore estimate the errors
FIG. 1. fp vsa for preferred choices: chiral fit I, perturbative from the continuum extrapolation, chiral extrapolation
scale (i), and “heavier heavies” mass range. The scale is set bynq perturbative corrections together. We compute each
S o Tlhe Illnear fit to all quenched points (solid line) gives thequantity 24 times (2 continuum extrapolations4 chiral
central value. fits X 3 scale choices), giving a central value and 23
alternatives. The alternatives are divided into two groups
Ny = 2 data are not good enough to extrapolate to thejepending on whether the result is greater or less than the
continuum, even for unphysically large dynamical quarkcentral value, and the standard deviation of each group
mass. We use the dynamical data only to assess the errghout the central value is then taken as the positive or
due to quenching. negative combined error.
The systematic errors are computed as follows: (2) The “magnetic mass#s, which divides the chromo-
(1) The three largest sources of error within themagnetic interaction in the effective nonrelativistic Hamil-
quenched approximation are the continuum extrapolationonian for Wilson fermions, is not equal to the kinetic
the chiral extrapolation, and th@(a;) perturbative massm, [8]. This introduces an error at fixed of
corrections [as estimated from a change in scale in th@((cmag — 1)Agcp/Mg,), Where cpe = my/ms. The
O(a;) terms]. With our data, these errors cannot beerror is not completely removed by the linear extrapola-
computed independently. For example, when the chirafion to « = 0. Following [13], we estimate the residual
extrapolations are changed to ¥ (see Fig. 2), the error by using the tree level expression &qy,, (with our
difference between the linear and constant (not shown)alues ofam,) and extrapolating, linearly ina. With
continuum eXtrapOlationS gets smaller (15 instead Obur preferred choices for the mass range |n]fb§ /MQq
23 MGV) Further, while the SyStematiC error in the fit, this gives an error of2% forfB and~3% forfD_ The
final results would be very small if the only source error onfy can be reduced to less thaf by switching
to the “lighter heavies” { static) mass range: the static-
light point, for whichms; # m; is not an issue, becomes

250 |~ x chiral fit IV; CL=0.99 - particularly important in this case. In practice, we assess
| 0 q* choice ii; 0L=0.50 | the errors due tan; # m, as the larger of (a) th2% or
| 0 m, scale; CL=0.97 ] 3% model estimate with our preferred mass ranges and

(b) the actual difference in the final result caused by switch-
ing from heavier heavies to lighter heavies or vice versa.
(3) Our preferred fits offp, /Mo, VS 1/My, are
truncated at quadratic order. A scale-60.75 GeV for
1/My, is expected in the omitted cubic term, since this
is roughly the scale size found in the linear and quadratic
terms. We calculate that the existence of such a cubic
term in the data would lead to an error, in the analysis that

150 |~ | | | | ] uses only quadratic fits, of 1% in the decay constants.
e In practice we estimate this error by changing to cubic fits
00 02 04 B 06 08 (using the entire mass rande25 to 4 GeV); the errors
a (GeV) found are indeeck1%.

FIG. 2. Same as Fig. 1, but quenched results only, with (4) The finite volume effects are estimated by com-

alternative analysis choices. Some points have been displac®®ing results on setst (spatial size ~1.2 fm) and
slightly horizontally for clarity. B(~2.5 fm) and applying the fractional difference to the
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final results. SetA is smaller than all other quenched choices (4 chiral fits< 3 scale choices), plus (for strange
lattices; B, much larger. Therefore the difference shouldquark quantities) the preferred choices but withfixed
give a conservative bound on the finite volume error. Infrom my4. For the decay constants, this difference has
practice, we take the larger of (a) the difference when alb definite sign over all 12 or 13 choices. We then take
guantities are computed individually on set@ndB and  the signed error (c) to be just the average difference.
(b) the difference when all light-light quantities are takenHowever, for some of the ratios, the standard deviation
from set 5.7-large. Since there is some cancellation obf the difference is larger than the average difference. In
error betweenfy, and f, (b) is generally larger. We that case, the positive (negative) error (c) is taken to be
find an error of~2%-3% on decay constantsy4% on  average difference plus (minus) the standard deviation.
fB/fp,, and~1%-2% on other ratios. Finally, the quenching error in the positive or negative
Errors (2)—(4) do not have definite signs and appear tdlirection is defined to be the largest of errors (a), (b), and
be largely independent of each other and of error (1). Wéc) in that direction. In almost all cases, (c) is largest.
thus take the error within the quenched approximation to Note that our quenching error estimate is still rather
be the sum, in quadrature, of errors (1) through (4). Focrude. Our Ng = 2 simulations are not “full QCD”
decay constants, error (1) always dominates; while for thé@ecause they are not extrapolated to the continuum or to
ratios, error (2) [and fors/fp,, (4)] is (are) comparable the physical quark mass, and they do not have a dynamical
to (1). strange quark. For these reasons we prefer to quote the
(5) The quenching error is estimated in three wayscentral values as the quenched results and to treat the
(a) We set the scale by using, instead off,. (b) For difference (c) as a signed error, not a correction. (See [2]
quantities involving the strange quark, we kxfromm,  for further discussion.) Additional dynamical simulations,
instead of the pseudoscalars. (c) We compare the resulighich we hope will allow us to improve this situation, are
from the weakest couplinyr = 2 lattices (set$; andR)  in progress. Note, however, that the sign we find of the
with the quenched results interpolated (via the linear fit) tadifference is what is expected from intuitive arguments
the same value of the lattice spacing® 0.45 GeV~!—  about the wave function at the origin [14].
see Fig. 1). We average this difference over 12 analyfsis We then have

fp =157 = 117345 MeV,  fp = 171 = 105345 MeV,
fo =192 = 1155015 Mev,  fp, =210 = 973417 MeV,
fe./fs =111 +002%3% + 003,  fp /fp =110 + 0.02759375:02
f8/fp, =075 £ 0.0350070%,  fs./fp, = 0.85 * 0.03750370, 1)
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