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We report on the MILC Collaboration’s calculation offB, fBs , fD , fDs , and their ratios. Our central
values come from the quenched approximation, but the quenching error is estimated fromNF ­ 2
dynamical staggered lattices. We use Wilson light valence quarks and Wilson and static heavy quarks.
We find, for example,fB ­ 157 6 11125123

2920 MeV , fBs yfB ­ 1.11 6 0.0210.04
20.03 6 0.03, fDs ­ 210 6

9125117
2921 MeV , and fByfDs ­ 0.75 6 0.0310.0410.08

20.0220.00, where the errors are statistical, systematic (within
the quenched approximation), and systematic (of quenching), respectively. [S0031-9007(98)07819-3]

PACS numbers: 12.38.Gc, 13.20.Fc, 13.20.He
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The neutralB meson (Bd), a bound state of ad quark
and an anti-b quark, is known to mix with its antiparticle,
Bd . In the standard model,xd , the ratio of the mixing
oscillation to the decay rate, is proportional to the absolu
square of the fundamental quantityVtd. However, despite
the fact that thexd is well measured [1],Vtd remains
poorly determined because the proportionality consta
betweenxd and jVtdj2 depends on nonperturbative stron
interaction effects. These effects are parametrized
fB, the pseudoscalar decay constant of theBd meson,
and BB, the corresponding “bag parameter.” Accura
computations offB andBB therefore put tight constraints
on the standard model. Similarly, a measurement ofxs

for Bs mesons would determine a second fundamen
quantity, Vts, if fBs and BBs were known, orjVtdyVtsj,
if the ratiosfBs yfB andBBs yBB were known.

Lattice QCD offers a way to compute quantities likefB

andBB from first principles. Here, we present a compu
tation by the MILC Collaboration of the decay constan
fB, fBs , fD, fDs , and their ratios. Ref. [2] gives additiona
details; preliminary results were described in Refs. [3,4

Table I shows the lattice parameters used. See [3]
details of the lattice generation, gauge fixing, and determ
nation of the quark propagators. We compute “smeare
local” and “smeared-smeared” pseudoscalar mes
propagators in each of three cases: heavy-light, sta
light, and light-light (with degenerate masses only). Lig
Wilson quark propagators are computed by a minim
residual algorithm for three values of the hopping p
rameter, giving light quark masses (mq) in the range
0.7ms & mq & 2.0ms, where ms is the strange quark
mass. The light-light pseudoscalars are used to set
812 0031-9007y98y81(22)y4812(4)$15.00
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scale (throughfp ) and to find the physical values of
kud and ks, the hopping parameters of the up/down
and strange quarks. We determineks by adjusting the

degenerate pseudoscalar mass to
q

2m2
K 2 m2

p , the lowest
order chiral perturbation theory value. We also compute
smeared-local light-light vector meson propagators, whic
we use for alternative determinations of the scale (throug
mr) andks (throughmf).

Heavy quark propagators are computed by the hoppin
parameter expansion [5]. Because of practical limitation
to this approach [3], we sum the sink point of the smeared
smeared correlators only over a subset of points in a spati

TABLE 1. Lattice parameters. SetsF, G, and L–R use
variable-mass Wilson valence quarks and two flavors of fixed
mass staggered dynamical fermions; all other runs use quench
Wilson quarks.

Set b samqd Size No. cfgs.

A 5.7 83 3 48 200
B 5.7 163 3 48 100
E 5.85 123 3 48 100
C 6.0 163 3 48 100
D 6.3 243 3 80 100
H 6.52 323 3 100 60
L 5.445 (0.025) 163 3 48 100
N 5.5 (0.1) 243 3 64 101
O 5.5 (0.05) 243 3 64 100
M 5.5 (0.025) 203 3 64 199
P 5.5 (0.0125) 203 3 64 199
G 5.6 (0.01) 163 3 32 200
R 5.6 (0.01) 243 3 64 200
F 5.7 (0.01) 163 3 32 49
© 1998 The American Physical Society
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volume. This means that intermediate states of nonz
3-momenta can contribute. For the heavy-light meso
studied here, these higher momentum states are suppre
sufficiently at asymptotic Euclidean timet by their higher
energy, although in the largest volumes (setsN andO) this
can requiretminya as large as 25 (a is the lattice spacing).

The static-light mesons have no such suppressi
However, on our smallest volumes (setsA, C, D, F,
G, H) the contamination by higher momentum state
is small (ø0.7%, which we estimate using static-ligh
wave functions from Ref. [6]). On all other sets th
contamination is expected to be large. We therefore ha
performed a dedicated static-light computation on tho
lattices, with relative smearing functions taken from [7
and zero momentum intermediate states enforced by
complete fast Fourier transform (FFT) sum over spat
slices. In addition, the dedicated static light computatio
has been run on setA (because the plateaus from th
hopping method proved to be poor) and setG (as a
check of the hopping method). On the latter set, the tw
methods give consistent results.

For all pseudoscalars, we fit the smeared-local a
smeared-smeared correlators simultaneously and cov
antly to single exponential forms, with the same mass
both channels. We vary the fit range (int) in each chan-
nel over several choices that have reasonable confide
level (C.L.). Combining such choices for the light-light
heavy-light, and static-light cases, we have approximate
25 different versions of the analysis on each data set. O
central values are taken from the version which has t
best blend of high C.L. and small statistical errors. W
then find the standard deviation of the result over th
other versions and add it in quadrature with the raw jac
knife error of the central value. The resulting error wi
be called, henceforth, “the statistical error.”

We employ the EKM norm [8] throughout. In the
heavy-light case we also adjust the measured meson p
mass upward by the difference between the heavy qu
kinematic mass (m2) and the heavy quark pole mas
(m1) as calculated in the tadpole-improved tree approx
mation [8], fixing the mean link fromkc. We use the
one-loop tadpole-improved, mass-dependent perturba
renormalization of the axial current [9], with coupling
aV s3.4018yad defined in terms of the plaquette [10]. We
adjust the result of [9] for our matching point (m2 rather
than m1) and for our choice of the mean link. Ou
central values use “scale choice”: (i)qp

HL ­ 2.32ya for
the heavy-light corrections [11] andqp

SL ­ 2.18ya for the
static-light corrections [12]. The heavy-light scale wa
calculated in the massless limit; however, since it diffe
little from the static-light scale, it seems reasonable to u
it for all mass values. The effects of two other choices
scale [(ii)qp

HL ­ qp
SL ­ 1ya; (iii) qp

HL ­ 4.63ya, qp
SL ­

4.36ya] give an estimate of the perturbative errors.
In our chiral fits we useam2 as the independent variable

rather than the more standard1yk. Although the two are
formally equivalent at this order ina, m2 has the advantage
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that C.L. of linear fits toMQq and fQq are quite good.
(Here,Q is a generic—possibly static—heavy quark, and
q is a generic light quark.) Further, linear fits tofp

also have reasonable C.L. for quenchedb $ 6.0. For
m2

p , however, the C.L. of the linear fits is uniformly very
poor whether1yk or am2 is the independent variable. To
study this problem in more detail, we have examined th
pseudoscalar mesons for six light quark masses atb ­ 5.7
on additional lattices (set “5.7-large”) of size123 3 48
(403 configurations),163 3 48 (390 cfgs.),203 3 48 (200
cfgs.), and243 3 48 (184 cfgs.). The lightest two meson
masses in this set (ø385 andø515 MeV), are below those
used in the full computation. On set 5.7-large, linear fits
of m2

p vs either1yk or am2 are still poor, but quadratic
fits are good. Indeed, a quadratic fit ofm2

p vs am2 using
the five heaviest masses goes right through the lightestm2

p

in all but the123 volume. For our central values we thus
employ quadratic fits vsam2 for m2

p , and linear fits vsam2
for fp , MQq, andfQq. We call this “chiral fit I.” Three
other fit choices (II: all linear; III:m2

p andfp quadratic,
all others linear; IV:m2

p , fp andfQq quadratic, all others
linear) are used to assess the systematic error. One set,F,
undergoes very large (,50%) variation when the chiral fit
choice is changed, possibly because of finite size effect
SetF is therefore dropped from further analysis.

To find fB on a given data set, we divide out the pertur-
bative logarithms [9] fromfQq

p
MQq, fit to a polynomial in

1yMQq, interpolate tomB, and then replace the logarithms.
We do three versions of the polynomial fit: (1) a quadratic
fit to the mesons in the approximate mass range 2 to 4 Ge
(“heavier heavies”) (2) a quadratic fit to the mesons in th
approximate mass range 1.25 to 2 GeV (“lighter heavies”
(3) a cubic fit to the mesons in the approximate mass rang
1.25 to 4 GeV. We include the static-light point in all three
fits. We use range (1) in central values forfB and fBs ;
range (2), forfD andfDs . The alternative ranges go into
the systematic error estimates.

The final extrapolation is in lattice spacing. Since the
Wilson action’s leading errors areO sad, we attempt a
linear extrapolation ina for all our quenched results.
Figure 1 shows the extrapolation forfB, with the central
choices of the perturbative scale [choice (i)] and of the
chiral fits (fit I). An alternative possibility, with which
the data are also consistent, is that theO sad effects
are small enough for6yg2 $ 6.0 (a & 0.5 GeV21) that
one may extrapolate with a constant fit in this region
For the decay constants, both fits have acceptable C.L
but the constant fit is better. However, forfBs yfB and
fDs yfD, the linear fits (C.L. ø 0.6) are much better than
the constant fits (C.L. ø 0.1). (See Ref. [2] for plots
of the ratios and additional details.) Since it would be
inconsistent to treat the decay constants as independe
of a, yet fit the ratios linearly, and since we in any case
expect significantO sad errors for Wilson fermions, we
take the linear fits to the quenched results for our centr
values. The differences with the constant fits are include
in the systematic errors. At this point, the dynamica
4813
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FIG. 1. fB vs a for preferred choices: chiral fit I, perturbative
scale (i), and “heavier heavies” mass range. The scale is se
fp . The linear fit to all quenched points (solid line) gives th
central value.

NF ­ 2 data are not good enough to extrapolate to t
continuum, even for unphysically large dynamical qua
mass. We use the dynamical data only to assess the e
due to quenching.

The systematic errors are computed as follows:
(1) The three largest sources of error within th

quenched approximation are the continuum extrapolatio
the chiral extrapolation, and theO sa2

s d perturbative
corrections [as estimated from a change in scale in t
O sasd terms]. With our data, these errors cannot b
computed independently. For example, when the chi
extrapolations are changed to fitIV (see Fig. 2), the
difference between the linear and constant (not show
continuum extrapolations gets smaller (15 instead
23 MeV). Further, while the systematic error in the
final results would be very small if the only sourc

FIG. 2. Same as Fig. 1, but quenched results only, w
alternative analysis choices. Some points have been displa
slightly horizontally for clarity.
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of uncertainty were the next higher order perturbativ
correction [O sa2

s d], this is not the case once the interplay
between perturbative uncertainties and other continuu
extrapolation errors is included. Indeed, assume the
exist “perfect” data which are linear ina with slope
and intercept as in Fig. 1, and then add on anO sa2

s d
correction with a coefficient chosen to give the sam
change atb ­ 5.7 as would be produced by reducing
qp

HL and qp
SL to 1ya [choice (ii)]. Although this gives

a 17% change atb ­ 5.7, a linear extrapolation of the
changes toa ­ 0 results in a residual error of less
than 1%. With the real data, however, changingq?

to choice (ii) raises the linearly extrapolated value b
10% (see Fig. 2); while it reduces the constant fit by
3%. Choice (iii) reduces the linear value and raises th
constant value by,2%. We therefore estimate the errors
from the continuum extrapolation, chiral extrapolation
and perturbative corrections together. We compute ea
quantity 24 times (2 continuum extrapolations3 4 chiral
fits 3 3 scale choices), giving a central value and 2
alternatives. The alternatives are divided into two group
depending on whether the result is greater or less than t
central value, and the standard deviation of each gro
about the central value is then taken as the positive
negative combined error.

(2) The “magnetic mass”m3, which divides the chromo-
magnetic interaction in the effective nonrelativistic Hamil
tonian for Wilson fermions, is not equal to the kinetic
mass m2 [8]. This introduces an error at fixeda of
O sssscmag 2 1dLQCDyMQqddd, wherecmag ; m2ym3. The
error is not completely removed by the linear extrapola
tion to a ­ 0. Following [13], we estimate the residual
error by using the tree level expression forcmag (with our
values ofam2) and extrapolatingcmag linearly in a. With
our preferred choices for the mass range in thefQq

p
MQq

fit, this gives an error of,2% for fB and,3% for fD. The
error onfB can be reduced to less than1% by switching
to the “lighter heavies” (1 static) mass range: the static-
light point, for whichm3 fi m2 is not an issue, becomes
particularly important in this case. In practice, we asse
the errors due tom3 fi m2 as the larger of (a) the2% or
3% model estimate with our preferred mass ranges an
(b) the actual difference in the final result caused by switch
ing from heavier heavies to lighter heavies or vice versa

(3) Our preferred fits offQq
p

MQq vs 1yMQq are
truncated at quadratic order. A scale of,0.75 GeV for
1yMQq is expected in the omitted cubic term, since thi
is roughly the scale size found in the linear and quadrat
terms. We calculate that the existence of such a cub
term in the data would lead to an error, in the analysis th
uses only quadratic fits, of,1% in the decay constants.
In practice we estimate this error by changing to cubic fit
(using the entire mass range1.25 to 4 GeV); the errors
found are indeed&1%.

(4) The finite volume effects are estimated by com
paring results on setsA (spatial size ,1.2 fm) and
B(,2.5 fm) and applying the fractional difference to the
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final results. SetA is smaller than all other quenched
lattices;B, much larger. Therefore the difference shou
give a conservative bound on the finite volume error.
practice, we take the larger of (a) the difference when
quantities are computed individually on setsA andB and
(b) the difference when all light-light quantities are take
from set 5.7-large. Since there is some cancellation
error betweenfQq and fp , (b) is generally larger. We
find an error of,2%–3% on decay constants,,4% on
fByfDs , and,1%–2% on other ratios.

Errors (2)–(4) do not have definite signs and appear
be largely independent of each other and of error (1). W
thus take the error within the quenched approximation
be the sum, in quadrature, of errors (1) through (4). F
decay constants, error (1) always dominates; while for t
ratios, error (2) [and forfByfDs , (4)] is (are) comparable
to (1).

(5) The quenching error is estimated in three way
(a) We set the scale by usingmr instead offp . (b) For
quantities involving the strange quark, we fixks from mf

instead of the pseudoscalars. (c) We compare the res
from the weakest couplingNF ­ 2 lattices (setsG andR)
with the quenched results interpolated (via the linear fit)
the same value of the lattice spacing (a ø 0.45 GeV21 —
see Fig. 1). We average this difference over 12 analy
ld
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choices (4 chiral fits3 3 scale choices), plus (for strange
quark quantities) the preferred choices but withks fixed
from mf. For the decay constants, this difference ha
a definite sign over all 12 or 13 choices. We then tak
the signed error (c) to be just the average differenc
However, for some of the ratios, the standard deviatio
of the difference is larger than the average difference.
that case, the positive (negative) error (c) is taken to b
average difference plus (minus) the standard deviatio
Finally, the quenching error in the positive or negativ
direction is defined to be the largest of errors (a), (b), an
(c) in that direction. In almost all cases, (c) is largest.

Note that our quenching error estimate is still rathe
crude. Our NF ­ 2 simulations are not “full QCD”
because they are not extrapolated to the continuum or
the physical quark mass, and they do not have a dynami
strange quark. For these reasons we prefer to quote
central values as the quenched results and to treat
difference (c) as a signed error, not a correction. (See [
for further discussion.) Additional dynamical simulations
which we hope will allow us to improve this situation, are
in progress. Note, however, that the sign we find of th
difference is what is expected from intuitive argument
about the wave function at the origin [14].

We then have
fB ­ 157 6 11125123
2920 MeV, fBs ­ 171 6 10134127

2922 MeV ,

fD ­ 192 6 11116115
2820 MeV, fDs ­ 210 6 9125117

2921 MeV ,

fBs yfB ­ 1.11 6 0.0210.04
20.03 6 0.03, fDs yfD ­ 1.10 6 0.0210.0410.02

20.0220.03 ,

fByfDs ­ 0.75 6 0.0310.0410.08
20.0220.00, fBs yfDs ­ 0.85 6 0.0310.0510.05

20.0320.00 , (1)
c.

.
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where the errors are statistical, systematic (within th
quenched approximation), and systematic (of quenchin
respectively. The result forfDs is consistent with the
experimental value [15] of241 6 21 6 30 MeV . Our
quenched approximation values are consistent with rec
quenched results using improved actions [13,16].
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