VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NVEMBER 1998

Zeta Functions, Renormalization Group Equations, and the Effective Action

David Hochberd, Carmen Molina-Pasi> Juan Pérez-Mercadémnd Matt Visset
'Laboratorio de AstrdBica Espacial y Rica Fundamental, Apartado 50727, 28080 Madrid, Spain
>Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
3Physics Department, Washington University, Saint Louis, Missouri 63130-4899
(Received 17 July 1998

We demonstrate how to extract all the one-loop renormalization group equationsbidrary
quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally
solving the renormalization group equations to one loop, we renormalization gnpupvethe classical
action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum
field theories. [S0031-9007(98)07781-3]
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It is well known thatany quantum field theory (QFT) so that there is no running of the coupling constants at
can be renormalized to one loop via the magic of zetane-loop order. For even-dimensional spacetimes, with
function techniques [1-7]. These techniques are so powan appropriate set of conventions, all beta functions can
erful that they hide all of the divergence structure inbe written as homogeneous multinomials of ordg®.
the woodwork, which has caused the community to miss By formally solving the RG equations, we can one-loop
a very important point: The one-loop renormalizationimprovethe classical action, which allows us to extract
group equations (RGE’s) farbitrary QFT's can be ex- information about the one-loop effective action without
tracted from knowledge of an appropriate Seeley-DeWitever resorting to explicit Feynman diagram calculations.
coefficient. Assuming only that the kinetic energy termsin particular, the form of the leading-logarithmic contri-
are quadratic in derivatives, and that spacetime #as butions to the effective action is completely specified in
dimensions, the appropriate Seeley-DeWitt coefficient iserms of thea,/, Seeley-DeWitt coefficient. These coef-
aq/2, which governs the conformal anomaly [1,6,7]. Forficients are tabulated in many places, and computation is
our purposes the central observation is tgbt also gov- now essentially automated [8].
erns the one-loop logarithmic divergences and so controls Effective action and RGE at one loep.Consider an
the running of the coupling constants at one-loop orderarbitrary quantum fieldp (x, ) governed by a classical
By expanding the classical action and Seeley-DeWitt coaction S[¢,A;]. The field ¢ may be scalar, spinor,
efficients in terms of primitive symmetry invariants, the or (with suitable caveats) even a gauge field. The set
one-loop RGE'’s can easily (if formally) be written down {A;} denotes the complete set of (generalized) coupling
for arbitrary QFT’s. It is then easy to see that one-  constants in the theory. It is a standard result that (in
loop beta functions vanish in odd-dimensional spacetiqeﬂerms of bare quantities) the one-loop effective action is
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Here Str denotes a “supertrace,” a sum over all B(Bsenoresz is second order because in this Letter we are in-
and Fermi fields in the theory with & sign for Bose terested in QFT's; for the considerably more complicated
fields and a— for Fermi fields. Spin degeneracy fac- nonquantum field theories associated with stochastic dif-
tors are subsumed into the determinash[¢ | denotes ferential equations [11] this particular assumption must be
52S[¢1/6¢(x)6¢(y), which is a second-order differen- modified [12]. Finally ¢, is some suitable background
tial operator that governs the Gaussian fluctuations. (Fdiield (a classical solution of the equations of motion for
a unified notation, fermion determinants can always beero source), typically a minimum of the bare potential, a
converted to second order by squaring before taking theero gauge field strength, Minkowski spacetime, or even
determinant. Also, for gauge fields one should be carefubchwarzschild spacetime. The above is, of course, a di-
to include terms due to gauge breaking, and the unitarityergent quantity which has to be regularized and renor-
preserving ghosts [9,10].) The arbitrary parametenas malized. Invoking completely standard machinery, to be
been introduced for purely dimensional reasons (to keefound in many QFT textbooks [11,13,14], we do so with
the argument of the logarithm dimensionless). Furth|erthe result that (now in terms of renormalized quantities)
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The coupling constants now in general “run” with the ndetSZ[d)’)”(’u)] ' detSz[sﬁ,)w(,u)] L]
renormalization scalg.. (The only slightly nonstandard u? wh (47r)d/2
thing we have done here is to avoid using the wave func-

tion renormalizationZ(u) to rescale the quantum field:; X fddx aqppld, Ai(u)] In<ﬂ>.
instead we find it more convenient to view wave func- Ko
tion renormalization as just another coupling constant.) (4)

The exactrenormalization group equations are simply theTo be even more explicit, this entails
statement that the effective action does not depend on the

renormalization scale, i.e., In detsz{db’—w = In det52[¢’)‘2i(:“0)] + 1d/2
pdlld; dol _ 3) ® Mo (4)
ey . d ) e
Now from zeta function technology (or with a little more X f d'x aapld, Ai(p)] In(M())

work from any other regularization and renormalization + 0(h) (5)
scheme) and assuming for simplicity the lack of infrared ’
divergences, we have thexactmathematical result that So, inserting this into the exact RGE we obtain to one-

[1-7] | loop order,

,udS[j,u)t,-(M)] B MdS[d;OIL;M(M)] _ _2(45)‘1/2 fddx Staq/ld, Ai(w)] — aapldo, (W] + O(R*).  (6)
Equivalently
(Bt Bloo b} mebli) _ R [t Sthaslo Aw] = auslda (0]} + OGR).

(7)

Extracting beta functions from this is now completeiy this fails, since there are terms in the integrated Seeley-
straightforward: We pick off terms of the same functionalDeWitt coefficient that do not appear in the classical
form from both sides of the above [15-17]. Results mayaction. (The Seeley-DeWitt coefficient will often contain
be simplified drastically by choosing an appropriate setotal derivatives, such ag2¢, which could be added to

of conventions. Letd; be a basis of elementary terms the classical Lagrangian without affecting the classical
in the classical action constrained only by symmetry.action and so can be omitted altogether since we are only
For instance, for a scalar theory we would typically really interested in spacetime integrals.) With all these
have &, = %(ad,)Z and @, = %(ﬁn, for fermions we conventions in place, ouslightly nonstandaryl one-loop
would take®y = y[y*(d, — Ay, 2 = myy, and beta functions are

for gauge theories®, = F> and®, = FF. For mixed def mdA;() A
theories we just have to rearrange the indices, and withoupi (A1) = du 204w k(A () + O(R?).
loss of generality we can adopt the convention that (20)

the action is linear in this basis and in the generalizedy,, immediate consequence is that of our beta func-
coupling constants: tions vanish to one loop in odd-dimensional spacetimes,

' — ' d. &, simply because the Seeley-DeWitt coefficient vanishes

Sl Ai(w] ZA,(M)[ d'x P;. (8) in odd-dimensional spacetimes [7]. (This is intimately

This is only a convention; it is not a restriction on the "€latéd to the vanishing of the conformal anomaly in
class of theories considered. Given this choice of basi@dd-dimensional spacetimes [18].) This statement is not

we can also expand the Seeley-DeWitt coefficient as limited to flat space and continues to hold true even for
QFT’s defined on curved spacetimes. It will however fall
Str(aapld, Ai(w)]) = Z ki(Aj () ®; . 9) in general for manifolds with boundary where the classi-

cal action must contain both bulk and surface contribu-
That the same set of elementary terms can be used tmns. While the coupling constants associated with the
expand both the classical actiandthe integrated Seeley- bulk action do not run at one loop, those coupling con-
DeWitt coefficient is a consequence of renormalizability.stants appearing in the surface action will generally run at
Specifically, for renormalizable and superrenormalizableone loop. We araot asserting that all odd-dimensional
theories the counterterms are by definition equal tdspacetime) theories are one-loop finite, but the much
or fewer than the elementary terms in the classicamore modest claim that all odd-dimensional (spacetime)
action, which implies that the Seeley-DeWitt coefficienttheories are one-loop nonrunning.
is expandable using the elementary terms occurring in the Explicit calculation quickly verifies that all one-loop
classical action as a basis. For nonrenormalizable theoridmta functions vanish for model theories such as @ED
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andA(¢*)s. In contrast, in the-expansion, one-loop beta displacement operator, and the square brackets indicate
functions for QER-. and A(¢*)4—. do not vanish, but the coincidence limitc’ — x.] This implies thatfa,m
these beta functions should not be trustedefee 1. is a multinomial in(A;/A¢) of the order ofd/2 (i.e.,

The attentive reader might profitably wonder wherecontaining terms up taf 2)_ More specifically, for two,
we have hidden all of the anomalous dimensions? Alfour, and six dimensions, the beta functions (using our
anomalous dimensions have been converted into befbnventions) must always be of the form
functions via the schema

: Eo A
det udInZ(w) def mdZ(w) Nied =2) = — 1 2L 4+ O(K> 16
vz = T = B = T =Zyz. (11) Bz( js ) S Ki Xo (), ( )
Is there anything more we can say about #€A;) o i A Ak )
without resorting to explicit calculations? Start by ob- Bi(Ajid = 4) = 302 i’ Ao Ao + o), (A7
serving that the Jacobi field operator is by definition linear N
in the couplings, Bi(Aid = 6) = — i . k2L Ae A + 0(R?).
52(1)_ 1287 )\0 )\0 /\()
Sale, Ai(u)] = Z_M(M) YA (12) (18)

Sp(x)dp(y) lo”
and note that thed/2)th Seeley-DeWitt coefficient is with the obvious pattern holding for higher dimensions.

homogeneous in the Jacobi field operator, This can be checked against explicit computations for
standard theories (see, e.g., Collins [14] or [17]) which
aqpp(aSs) = aap(S?). (13)  show that thex’s are simple rational numbers. For

A(¢p*), these constraints can be used to completely fix the
form of the one-loop beta functions. This structure can
Also be justified via rather general Feynman diagram con-
siderations: the beta functions at one loop are a reflection
Bilad;) = Bi(A)). (14)  of the logarithmic divergences; id dimensions we get
one-loop logarithmic divergences only from a polygonal
This property is often enough to completely pin downloop with d/2 propagators (and sd/2 vertices). With
the form (if not the coefficients) of the one-loop betaour conventions each one of these vertices must contain
functions. For instance, for pure gauge theories (n@xactly oner; and each propagator & Ay, which com-
matter fields), our conventions imply that we must writepletes the proof.
S(¢,A) = F?/g%. Since there is only one coupling RG improvement and consistency cheelSuppose
constant present in the theofy, = 1/g?) homogeneity now we have extracted the RGE’s and have integrated

This can be derived from the definition af;/» in terms
of the short-time expansion of the heat kernel and implie
that forall QFT’s at one loop,

implies them up to obtaint;(u) = fi(A;j(o), m/mo). The im-
wd(1/g?) proved action is defined by inserting these running parame-
e = hk + O(K?). (15) ters into the classical action,

Here k is now some constant independent @f That Simproved (¢, Ai (1)) def S(p, Ai = Ai(w)). (19)

is: Gauge symmetry plus the analysis of this Letter is
enough to specify théorm of the one-loop beta function The RGE’s [cf. Eq. (7)] have been carefully arranged so
completely.

Scalar field theory provides another useful example:

In this case the coupling constant attached to the  Simproved(®, Ai(1£)) = Simproved (¢, Ai(mo)) + ﬁ
kinetic energy term(®,) plays a special role, and the (477)
homogeneity relation can always be used to scale it out
of the aq/, coefficient. Furthermore, there are well- X fddx Stragpld, Ai(u)]
known recursion relations for calculating the Seeley-
DeWitt coefficients in terms of the Jacobi field operator. P
The key point is thata,/, contains terms of the type X In(—) + 0(h?). (20)
[(S2)%2I(x,x")], plus lower powers of,, plus derivative Ko
terms that integrate to zero. [Heréx,x’) is the parallel | Therefore to one-loop order

L6 0] = 5T 0] = STo. 4] + 2 Stfincec™ 12N e 2000k, oy oy
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This verifies, as it should, that physics is independent of the choice of renormalizatioruscale
Leading logarithms—The general solution of the RGE is

i
Ilp: o] = Sle. Ai(w)] — Slbo, Ai(w)] + 2d(4m)i2

aqpld, Ai(p)] aq/aléo, Ai(w)]
d wd

X fddx{5t7<ad/2[¢,)\i(l«€)]|n — aqpldo, Ai(p)]In > + X[M(M),‘Di]}
+ 0(h?). (23)

We use the fact that the RGE [Eq. (3) or equivalen{lytheories in the constant field limit (i.e., the effective
Eq. (7)] is a quasilinear first-order partial differential potential) thee; are known to be constants [17] and so
equation [19] and adjust integration constants in a consimply correspond to finite renormalization ambiguities.
venient way. (Some special cases are discussed in [17]Thus Eq. (23) in this case provides tlegact one-loop
The integration constarX is constrained by the facts that effective potential. This also holds for fermion plus scalar
(1) it cannotdepend explicitly onw, and (2) by dimen- systems with Yukawa interactions, but once background
sional analysis and renormalizability, to be of the form gauge fields are switched on there are too many dimension
full operators present to usefully constraiha;, ®;] [17].
X[Ai(w), @1 =D &(A(w), PN ()P . (24) More generally we can appeal to a variant of the
i decoupling theorem [14], by noting that;, behaves
Here thee;(A;(n), ®;) are dimensionless functions of like a mass term for the Gaussian fluctuations. Thus an
the indicated variables. This is sometimes sufficient teexpansion in strong fields is equivalently an expansion in
specify thee; completely. For instance, for scalar fielri large masses and so the decoupling theorem justifies

h
[lg: 0] = SLb Ai(w)] = Sloo Mw)) + 57w

aqpld, Ai(p)] N O(ad/2[¢o, Ai(w)] > :|
ud aqppld, Ai(u)]
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