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We demonstrate how to extract all the one-loop renormalization group equations forarbitrary
quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By forma
solving the renormalization group equations to one loop, we renormalization groupimprovethe classical
action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quan
field theories. [S0031-9007(98)07781-3]
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It is well known thatany quantum field theory (QFT)
can be renormalized to one loop via the magic of ze
function techniques [1–7]. These techniques are so po
erful that they hide all of the divergence structure i
the woodwork, which has caused the community to mi
a very important point: The one-loop renormalizatio
group equations (RGE’s) forarbitrary QFT’s can be ex-
tracted from knowledge of an appropriate Seeley-DeW
coefficient. Assuming only that the kinetic energy term
are quadratic in derivatives, and that spacetime hasd
dimensions, the appropriate Seeley-DeWitt coefficient
ady2, which governs the conformal anomaly [1,6,7]. Fo
our purposes the central observation is thatady2 also gov-
erns the one-loop logarithmic divergences and so contr
the running of the coupling constants at one-loop orde
By expanding the classical action and Seeley-DeWitt c
efficients in terms of primitive symmetry invariants, the
one-loop RGE’s can easily (if formally) be written down
for arbitrary QFT’s. It is then easy to see thatall one-
loop beta functions vanish in odd-dimensional spacetime
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so that there is no running of the coupling constants
one-loop order. For even-dimensional spacetimes, w
an appropriate set of conventions, all beta functions c
be written as homogeneous multinomials of orderdy2.

By formally solving the RG equations, we can one-loo
improve the classical action, which allows us to extra
information about the one-loop effective action withou
ever resorting to explicit Feynman diagram calculation
In particular, the form of the leading-logarithmic contri
butions to the effective action is completely specified
terms of theady2 Seeley-DeWitt coefficient. These coef
ficients are tabulated in many places, and computation
now essentially automated [8].

Effective action and RGE at one loop.—Consider an
arbitrary quantum fieldfs$x, td governed by a classica
action Sff, lig. The field f may be scalar, spinor,
or (with suitable caveats) even a gauge field. The
hlij denotes the complete set of (generalized) coupli
constants in the theory. It is a standard result that
terms of bare quantities) the one-loop effective action is
Gff; f0g ­ Sff, lig 2 Sff0, lig 1
h̄
2

Str

Ω
ln det

S2ff, lig
m2 2 ln det

S2ff0, lig
m2

æ
1 Osh̄2d . (1)
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Here Str denotes a “supertrace,” a sum over all Bo
and Fermi fields in the theory with a1 sign for Bose
fields and a2 for Fermi fields. Spin degeneracy fac
tors are subsumed into the determinant.S2ffg denotes
d2Sffgydfsxddfsyd, which is a second-order differen-
tial operator that governs the Gaussian fluctuations. (F
a unified notation, fermion determinants can always
converted to second order by squaring before taking t
determinant. Also, for gauge fields one should be care
to include terms due to gauge breaking, and the unitar
preserving ghosts [9,10].) The arbitrary parameterm has
been introduced for purely dimensional reasons (to ke
the argument of the logarithm dimensionless). Furthe
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moreS2 is second order because in this Letter we are i
terested in QFT’s; for the considerably more complicate
nonquantum field theories associated with stochastic d
ferential equations [11] this particular assumption must
modified [12]. Finallyf0 is some suitable background
field (a classical solution of the equations of motion fo
zero source), typically a minimum of the bare potential,
zero gauge field strength, Minkowski spacetime, or ev
Schwarzschild spacetime. The above is, of course, a
vergent quantity which has to be regularized and reno
malized. Invoking completely standard machinery, to b
found in many QFT textbooks [11,13,14], we do so wit
the result that (now in terms of renormalized quantities)
Gff; f0g ­ Sff, lismdg 2 Sff0, lismdg 1
h̄
2

Str

Ω
ln det

S2ff, lismdg
m2 2 ln det

S2ff0, lismdg
m2

æ
1 Osh̄2d . (2)
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The coupling constants now in general “run” with th
renormalization scalem. (The only slightly nonstandard
thing we have done here is to avoid using the wave fun
tion renormalizationZsmd to rescale the quantum field;
instead we find it more convenient to view wave func
tion renormalization as just another coupling constan
Theexactrenormalization group equations are simply th
statement that the effective action does not depend on
renormalization scale, i.e.,

mdGff; f0g
dm

­ 0 . (3)

Now from zeta function technology (or with a little more
work from any other regularization and renormalizatio
scheme) and assuming for simplicity the lack of infrare
divergences, we have theexactmathematical result that
[1–7]
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ln det
S2ff, lismdg

m2 ­ ln det
S2ff, lismdg

m
2
0

1
1

s4pddy2

3
Z

ddx ady2ff, lismdg ln

µ
m

m0

∂
.

(4)

To be even more explicit, this entails

ln det
S2ff, lismdg

m2 ­ ln det
S2ff, lism0dg

m
2
0

1
1

s4pddy2

3
Z

ddx ady2ff, lismdg ln

µ
m

m0

∂
1 Osh̄d . (5)

So, inserting this into the exact RGE we obtain to on
loop order,
mdSff, lismdg
dm

2
mdSff0, lismdg

dm
­ 2

h̄
2s4pddy2

Z
ddx Strhady2ff, lismdg 2 ady2ff0, lismdgj 1 Osh̄2d . (6)

EquivalentlyΩ
dSff, lismdg

dlismd
2

dSff0, lismdg
dlismd

æ
mdlismd

dm
­ 2

h̄
2s4pddy2

Z
ddx Strhady2ff, lismdg 2 ady2ff0, lismdgj 1 Osh̄2d .

(7)
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Extracting beta functions from this is now completely
straightforward: We pick off terms of the same functiona
form from both sides of the above [15–17]. Results ma
be simplified drastically by choosing an appropriate s
of conventions. LetFi be a basis of elementary terms
in the classical action constrained only by symmetry
For instance, for a scalar theory we would typically
have F0 ­ 1

2 s≠fd2 and Fn ­
1
n! f

n, for fermions we
would takeF0 ­ cfgms≠m 2 Amdgc, F2 ­ mcc, and
for gauge theoriesF0 ­ F2 and F1 ­ FF̃. For mixed
theories we just have to rearrange the indices, and witho
loss of generality we can adopt the convention th
the action is linear in this basis and in the generalize
coupling constants:

Sff, lismdg ­
X

i

lismd
Z

ddx Fi . (8)

This is only a convention; it is not a restriction on the
class of theories considered. Given this choice of bas
we can also expand the Seeley-DeWitt coefficient as

Strsady2ff, lismdgd ­
X

i

kisssljsmddddFi . (9)

That the same set of elementary terms can be used
expand both the classical actionandthe integrated Seeley-
DeWitt coefficient is a consequence of renormalizability
Specifically, for renormalizable and superrenormalizab
theories the counterterms are by definition equal
or fewer than the elementary terms in the classic
action, which implies that the Seeley-DeWitt coefficien
is expandable using the elementary terms occurring in t
classical action as a basis. For nonrenormalizable theor
l
y
et

.

ut
at
d

is

to

.
le
to
al
t
he
ies

this fails, since there are terms in the integrated Seel
DeWitt coefficient that do not appear in the classic
action. (The Seeley-DeWitt coefficient will often contai
total derivatives, such as=2f, which could be added to
the classical Lagrangian without affecting the classic
action and so can be omitted altogether since we are o
really interested in spacetime integrals.) With all the
conventions in place, our (slightly nonstandard) one-loop
beta functions are

bisljd def
­

mdlismd
dm

­ 2
h̄

2s4pddy2 kisssljsmdddd 1 Osh̄2d .

(10)

An immediate consequence is thatall of our beta func-
tions vanish to one loop in odd-dimensional spacetim
simply because the Seeley-DeWitt coefficient vanish
in odd-dimensional spacetimes [7]. (This is intimate
related to the vanishing of the conformal anomaly
odd-dimensional spacetimes [18].) This statement is
limited to flat space and continues to hold true even
QFT’s defined on curved spacetimes. It will however fa
in general for manifolds with boundary where the clas
cal action must contain both bulk and surface contrib
tions. While the coupling constants associated with t
bulk action do not run at one loop, those coupling co
stants appearing in the surface action will generally run
one loop. We arenot asserting that all odd-dimensiona
(spacetime) theories are one-loop finite, but the mu
more modest claim that all odd-dimensional (spacetim
theories are one-loop nonrunning.

Explicit calculation quickly verifies that all one-loop
beta functions vanish for model theories such as QE3
4803
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andlsf4d3. In contrast, in thee-expansion, one-loop bet
functions for QED42e and lsf4d42e do not vanish, but
these beta functions should not be trusted fore ­ 1.

The attentive reader might profitably wonder whe
we have hidden all of the anomalous dimensions?
anomalous dimensions have been converted into b
functions via the schema

gZ
def
­

md ln Zsmd
dm

) bZ
def
­

mdZsmd
dm

­ ZgZ . (11)

Is there anything more we can say about thekisljd
without resorting to explicit calculations? Start by o
serving that the Jacobi field operator is by definition line
in the couplings,

S2ff, lismdg ­
X

i

lismd
d2Fi

dfsxddfsyd

Ç
f

, (12)

and note that thesdy2dth Seeley-DeWitt coefficient is
homogeneous in the Jacobi field operator,

ady2saS2d ­ ady2sS2d . (13)

This can be derived from the definition ofady2 in terms
of the short-time expansion of the heat kernel and impl
that forall QFT’s at one loop,

bisaljd ­ bisljd . (14)

This property is often enough to completely pin dow
the form (if not the coefficients) of the one-loop be
functions. For instance, for pure gauge theories (
matter fields), our conventions imply that we must wr
Ssf, ld ­ F2yg2. Since there is only one couplin
constant present in the theorysl0 ­ 1yg2d homogeneity
implies

mds1yg2d
dm

­ h̄k 1 Osh̄2d . (15)

Here k is now some constant independent ofg. That
is: Gauge symmetry plus the analysis of this Letter
enough to specify theform of the one-loop beta function
completely.

Scalar field theory provides another useful examp
In this case the coupling constantl0 attached to the
kinetic energy termsF0d plays a special role, and th
homogeneity relation can always be used to scale it
of the ady2 coefficient. Furthermore, there are wel
known recursion relations for calculating the Seele
DeWitt coefficients in terms of the Jacobi field operato
The key point is thatady2 contains terms of the type
fsS2ddy2Isx, x0dg, plus lower powers ofS2, plus derivative
terms that integrate to zero. [HereIsx, x0d is the parallel
4804
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displacement operator, and the square brackets indic
the coincidence limitx0 ! x.] This implies that

R
ady2

is a multinomial in sliyl0d of the order ofdy2 (i.e.,
containing terms up tol

dy2
i ). More specifically, for two,

four, and six dimensions, the beta functions (using o
conventions) must always be of the form

bislj; d ­ 2d ­ 2
h̄

8p
ki

j lj

l0
1 Osh̄2d , (16)

bislj; d ­ 4d ­ 2
h̄

32p2 ki
jk lj

l0

lk

l0
1 Osh̄2d , (17)

bislj; d ­ 6d ­ 2
h̄

128p3 ki
jkl lj

l0

lk

l0

ll

l0
1 Osh̄2d ,

(18)

with the obvious pattern holding for higher dimensions
This can be checked against explicit computations f
standard theories (see, e.g., Collins [14] or [17]) whic
show that thek’s are simple rational numbers. For
lsf4d4 these constraints can be used to completely fix th
form of the one-loop beta functions. This structure ca
also be justified via rather general Feynman diagram co
siderations: the beta functions at one loop are a reflecti
of the logarithmic divergences; ind dimensions we get
one-loop logarithmic divergences only from a polygona
loop with dy2 propagators (and sody2 vertices). With
our conventions each one of these vertices must cont
exactly oneli and each propagator a1yl0, which com-
pletes the proof.

RG improvement and consistency check.—Suppose
now we have extracted the RGE’s and have integrat
them up to obtainlismd ­ fisssljsm0d, mym0ddd. The im-
proved action is defined by inserting these running param
ters into the classical action,

Simprovedsssf, lismdddd def
­ Ssssf, li ! lismdddd . (19)

The RGE’s [cf. Eq. (7)] have been carefully arranged so

Simprovedsssf, lismdddd ­ Simprovedsssf, lism0dddd 1
h̄

2s4pddy2

3
Z

ddx Strady2ff, lismdg

3 ln

µ
m

m0

∂
1 Osh̄2d . (20)

Therefore to one-loop order
Gff; f0g ­ Sff, lismdg 2 Sff0, lismdg 1
h̄
2

Str

Ω
ln det

S2ff, lismdg
m2 2 ln det

S2ff0, lismdg
m2

æ
1 Osh̄2d , (21)

­ Sff, lism0dg 2 Sff0, lism0dg 1
h̄
2

Str

Ω
ln det

S2ff, lism0dg
m

2
0

2 ln det
S2ff0, lism0dg

m
2
0

æ
1 Osh̄2d . (22)
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This verifies, as it should, that physics is independent of the choice of renormalization scalem.
Leading logarithms.—The general solution of the RGE is

Gff; f0g ­ Sff, lismdg 2 Sff0, lismdg 1
h̄

2ds4pddy2

3
Z

ddx

Ω
Str

µ
ady2ff, lismdg ln

ady2ff, lismdg
md

2 ady2ff0, lismdg ln
ady2ff0, lismdg

md

∂
1 Xflismd, Fig

æ
1 Osh̄2d . (23)
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We use the fact that the RGE [Eq. (3) or equivalentl
Eq. (7)] is a quasilinear first-order partial differentia
equation [19] and adjust integration constants in a co
venient way. (Some special cases are discussed in [17
The integration constantX is constrained by the facts that
(1) it cannotdepend explicitly onm, and (2) by dimen-
sional analysis and renormalizability, to be of the form

Xflismd, Fig ­
X

i

eisssljsmd, FjdddlismdFi . (24)

Here the eisssljsmd, Fjddd are dimensionless functions of
the indicated variables. This is sometimes sufficient
specify theei completely. For instance, for scalar field
y
l
n-
].)

to

theories in the constant field limit (i.e., the effectiv
potential) theei are known to be constants [17] and s
simply correspond to finite renormalization ambiguitie
Thus Eq. (23) in this case provides theexact one-loop
effective potential. This also holds for fermion plus scal
systems with Yukawa interactions, but once backgrou
gauge fields are switched on there are too many dimens
full operators present to usefully constrainXfli , Fig [17].

More generally we can appeal to a variant of th
decoupling theorem [14], by noting thatady2 behaves
like a mass term for the Gaussian fluctuations. Thus
expansion in strong fields is equivalently an expansion
large masses and so the decoupling theorem justifies
Gff; f0g ­ Sff, lismdg 2 Sff0, lismdg 1
h̄

2ds4pddy2

3
Z

ddx Str

(
ady2ff, lismdg

"
ln

ady2ff, lismdg
md

1 O

√
ady2ff0, lismdg
ady2ff, lismdg

!#)
1 Osh̄2d . (25)
l

,

l.

,

In this Letter we have shown that essentially all of one
loop physics for all QFT’s (i.e., systems with fluctuation
governed by a second-order differential operator) can
extracted from the appropriate Seeley-DeWitt coefficien
ady2. The analysis also puts very strong constraints on t
form of the one-loop beta functions without ever havin
to resort to a specific Feynman diagram calculation.

[1] J. S. Dowker and R. Critchley, Phys. Rev. D13, 3224
(1976);15, 1484 (1977); J. S. Dowker, J. Phys. A11, 347
(1977).

[2] S. Hawking, Commun. Math. Phys.56, 133 (1977).
[3] G. Gibbons, in Ref. [6].
[4] B. S. DeWitt, in Ref. [6].
[5] S. W. Hawking, in Ref. [6].
[6] General Relativity: an Einstein Centenary Survey,edited

by S. W. Hawking and W. Israel (Cambridge University
Press, Cambridge, England, 1979).

[7] S. K. Blau, M. Visser, and A. Wipf, Nucl. Phys.B310,
163 (1988).

[8] I. G. Avramidi and R. Schimming, inQuantum Field The-
ory under the Influence of External Conditions,edited
by M. Bordag (Tuebner, Leipzig, 1996); hep-th/9510206
M. J. Booth,HeatK: A Mathematica Program for Comput-
ing Heat Kernel Coefficients,hep-th/9803113.
-
s
be
t,

he
g

;

[9] G. K. Savvidy, Phys. Lett.71B, 133 (1977).
[10] I. G. Avramidi, J. Math. Phys. (N.Y.)36, 1557 (1995);

Phys. Lett. B305, 27 (1993); see also I. G. Avramidi,
in Quantum Field Theory under the Influence of Externa
Conditions(Ref. [8]).

[11] J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena(Oxford University Press, Oxford, England,
1996).

[12] D. Hochberg, C. Molina-Parı´s, J. Pérez-Mercader, and
M. Visser (to be published).

[13] S. Weinberg,The Quantum Theory of Fields I & II
(Cambridge University Press, Cambridge, England
1996).

[14] J. Collins,Renormalization(Cambridge University Press,
Cambridge, England, 1984).

[15] Y. Fujimoto, L. O’Raifeartaigh, and G. Parravicini, Nucl.
Phys.B212, 268 (1983).

[16] B. Gato, L. León, J. Pérez-Mercader, and M. Quirós, Nuc
Phys.B253, 285 (1985).

[17] D. Hochberg, C. Molina-Parı´s, J. Pérez-Mercader, and
M. Visser, hep-th/9809198.

[18] N. D. Birrell and P. C. W. Davies,Quantum Fields in
Curved Space(Cambridge University Press, Cambridge
England, 1982).

[19] R. Courant and D. Hilbert,Methods of Mathematical
Physics(John Wiley, New York, 1989), Vol. II; see also
Sect. 18.2 in Vol. II of Ref. [13].
4805


