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Knots as Stable Soliton Solutions in a Three-Dimensional Classical Field Theory
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We examine in detail recent claims that knotlike structures exist in a simple classical field theory
which are stabilized by the Hopf charge. We present minimum energy configurations for charges on
to eight generated numerically. It is found that the solutions exhibit a spectacular variety of behavio
including closed loops, linked loops, and, most interestingly, knots. [S0031-9007(98)07755-2]

PACS numbers: 11.27.+d, 11.10.Lm
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It has been suggested recently that knots might ex
as stable soliton solutions in a simple three-dimension
classical field theory [1], opening up a wide range o
possible applications in physics and beyond. We ha
reexamined and extended this work in some detail using
combination of analytic approximations and sophisticate
numerical algorithms. Although most of the assertion
made in the earlier work of Faddeev and Niemi [1] a
to the structure of solitonic solutions are incorrect, th
basic idea that complex soliton configurations exist
this model is sound. For charges between one and eig
we find solutions which exhibit a rich and spectacula
variety of phenomena, including stable toroidal soliton
with twists, linked loops, and also knots. The physica
process which allows for this variety is the reconnectio
of stringlike segments.

The specific model under consideration is an Os3d
variant of the Skyrme model [2] with Lagrangian densit
in s3 1 1d dimensions given by [3]

LLL ­ ≠mn ? ≠mn 2
1
2

s≠mn 3 ≠nnd ? s≠mn 3 ≠nnd ,

(1)

where the fieldn ­ sn1, n2, n3d takes values on the
2-sphere, that is,n2 ­ 1. The two parts to the Lagrangian
are known as the sigma model and Skyrme term
respectively, the latter being included to stabilize th
solitons against radial scaling as in Derrick’s theorem [4

In order for a solution to have finite energy, the fiel
must be fixed at spatial infinity, sayn` ­ s0, 0, 1d, and
hence the domain is compactified from43 to S3, so that
at any fixed time we have a mapn: S3 ! S2. Therefore,
each field configuration is characterized by a topologic
chargeQ, sincep3sS2d ­ Z, which is known as the Hopf
invariant. This can be defined formally in terms of th
pullback of the area two-formv on the targetS2. If
F ­ npv is the pullback undern onto the domain, then
it must be exact,F ­ dA, since the second cohomology
group of the 3-sphere is trivial. One can then constru
the Hopf charge by integrating the Chern-Simons ter
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over43,

Q ­
1

4p2

Z
d3xF ^ A . (2)

It can also be interpreted heuristically as the linking num
ber between field lines, in contrast to other topologic
characteristics, such as baryon number in the Skyr
model, which are generally winding numbers. Since t
preimage of a point on the targetS2 is a closed loop
in 43, the preimages of any two distinct points will b
linked exactlyQ times. Just as in the case of other so
tonic models, there exists a bound on the energyE of
a configuration with chargeQ [5]. However, the de-
pendence is not linear but ratherE $ cjQj3y4 and c ­
16p233y8 ø 238.

Clearly, the equations of motion for this model are n
analytically tractable, and hence a numerical approa
is required. We have used a code originally design
to investigate Skyrmions in theOs4d version of the
model [6–8] in three spatial dimensions on a discretiz
Cartesian grid, which can be trivially modified for th
situation under consideration here. It was run on a Silic
Graphics Origin 2000 parallel supercomputer which no
has 44 fast R10000 processors and 20 Gb of memo
We used spatial discretizations with1003 points and for
the lower charges convergence was achieved in aro
50 CPU hours, but the higher charge configurations to
very much longer.

The basic minimization procedure is to create suitab
random initial conditions with a specific Hopf charge
which are then evolved under the full equations of m
tion. The originally static initial conditions turn potentia
energy into kinetic energy as they evolve, and this kine
energy is periodically removed when the potential ener
begins to increase. A more detailed exposition of th
method for locating minima in these models is given
Ref. [8]. The only technically difficult aspect is to pro
duce initial conditions with a given Hopf charge whic
are devoid of any symmetries and are, hence, suitably r
dom. This can be done in analogy to an approach used
construct Skyrme configurations.
© 1998 The American Physical Society
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If Usxd is a smooth SUs2d field with winding numberB
between two 3-spheres, which correspond to the comp
ified 43 and the group manifold of SUs2d, then writing
the components ofU in terms of complex numbersZ0
andZ1 as

U ­

√
Z0 2Z̄1
Z1 Z̄0

!
, (3)

wherejZ0j
2 1 jZ1j

2 ­ 1, one can construct an Os3d field
from n ­ ZytZ, wheretj are the Pauli matrices and th
column vector isZ ­ sZ0, Z1dT . It is easy to see tha
the vector defined above has unit length and satisfies
boundary conditionns`d ­ n` if the original SUs2d field
is the identity at spatial infinity. Furthermore, it can b
shown thatQ ­ B [9], and so the problem is reduced t
finding some appropriate Skyrme field configurations.

One can construct suitable Skyrme fields using the
tional map approach [10]. In spherical polar coordina
sr , u, fd, this involves specifying the angular distributio
of the field using a rational functionRszd with degreeB
of the complex variablez ­ eif tansuy2d, and a radial
profile function fsrd, which satisfies the boundary con
ditions fs0d ­ p and fs`d ­ 0. A particularly simple
example isRszd ­ zB, which for B ­ 1 corresponds to a
spherically symmetric hedgehog Skyrmion, and forB . 1
describes an axially symmetric toroidal field. Using t
arguments above this allows us to construct an Os3d field
with Hopf chargeQ ­ B which has only axial symmetry
since the Hopf projection breaks any spherical symme
Of course this is not particularly helpful from the point o
view of the minimization procedure, but a simple mod
fication to include nonsymmetric wiggles can remove
the symmetries and hence provide suitably random ini
conditions. The precise map that we use for this is

Rszd ­ zQ

"
1 1 a cos

√
mf2

2p

!#
, (4)

which corresponds to a torus withm [ Z nonsymmetric
wiggles of amplitudea [ f0, 1d.

We have relaxed the solutions forQ ­ 1 to 8, and we
have displayed our results by plotting several interest
quantities in Fig. 1. The first is the preimage of the vec
s0, 0, 21d, which defines the position of the soliton
In reality it is difficult to compute the locus of this
preimage in the discretized domain, and hence we w
plot isosurfaces of the vectors0, 0, 21 1 ed, wheree ø
0.2 is small. This allows us to easily visualize the solito
position as the core of a tube rather than a single line.
will also explicitly display the linking number, thereb
verifying the Hopf charge, by plotting in a similar way t
the position the loci of two independent pointss0, 21, 0d
and s0, 0, 21d. Finally, we also plot the isosurface
of energy density. A more detailed discussion of t
structure of each of the solitons is given in Ref. [11].

For bothQ ­ 1 and 2 we see that the nonsymmetr
initial conditions relax quickly back to the axially sym
act-
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FIG. 1. For chargesQ ­ 1 to Q ­ 8 we display the follow-
ing quantities for the relaxed soliton solutions: (a) The positio
of the soliton; (b) the linking number of the field lines; (c) an
energy density isosurface.

metric configurations which are well described by ap
propriate radial profile functions and the rational map
Rszd ­ z andRszd ­ z2 for Q ­ 1 andQ ­ 2, respec-
tively. In both cases the position of the soliton is a circle
but for Q ­ 1 the energy density is an axially symmetric
lump which is localized at the origin, while forQ ­ 2 it
is localized on a torus just inside the locus of the pos
tion. Upon examination of the linking structure, one ca
confirm the Hopf charge; theQ ­ 1 solution being linked
once and theQ ­ 2 linked twice.

These two cases had previously been studied
Refs. [1,12] using an axially symmetric approach whic
reduces the problem effectively to two dimensions. W
agree with both groups as to the structure of theQ ­ 2
solution, but in the case ofQ ­ 1, where they disagree,
we find agreement with Ref. [12]. Since our approach
completely general, using random initial conditions on
three-dimensional Cartesian grid with no symmetries, it
difficult to believe that our results could be misleading
4799
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Therefore, this suggests that the numerical approach us
in Ref. [1] is flawed.

We have also computed the total energy inside the d
cretized grid. Although there are some small systema
errors in making an absolute measurement of the total e
ergy of the soliton since the grid is finite (see Ref. [11
for a detailed discussion), the relative values for differen
charges should yield important qualitative information. I
particular, we find that our values for the energy of th
Q ­ 1 andQ ­ 2 solitons, tabulated in Table I, are con-
sistent with those of Ref. [12].

For Q ­ 3, 4, and 5 we find that the solutions are no
axially symmetric and hence could not have been foun
using the methods employed in Refs. [1,12]. In eac
case the locus of the position sweeps out a closed lo
which is twisted, the twists not being related to thos
in the initial conditions. The energy density isosurface
are now not toroidal, being more reminiscent of pretze
with two, three, and four holes, respectively, but eac
one is also twisted to fit inside the locus of the position
Once again the Hopf charge can be verified by referen
to the linking structure. We have also investigate
toroidal configurations for these values ofQ. As one
might expect, if we use symmetric initial conditions the
symmetry is preserved by the relaxation process, a
hence we can make an estimate of the energies of th
configurations. As shown in Table I, we find that energie
of these symmetric saddle point solutions are larger th
those for the minima which have twists. We should not
that we found no evidence for the existence of a stab
trefoil configuration forQ ­ 3, as suggested in Ref. [1].
We will discuss later why we believe that it is unlikely
that such a configuration will exist.

Above Q ­ 5 there appears to be a dramatic chang
in the structure of the soliton solutions. AtQ ­ 6 we
see that the position of the soliton is no longer a sing
connected loop but consists of two linked disjoint loops
The fact that the position itself has linking number on
makes the counting of the Hopf chargeQ more subtle.
In fact, a careful examination of the linking structure

TABLE I. Energy of the relaxed soliton and torus solutions
for charges one to eight. Note that the difference in energi
of the soliton and torus solutions for the first two charges is
reflection of the accuracy of our numerical computation of th
energy.

Q Soliton energy Torus energy

1 504 505
2 835 836
3 1157 1181
4 1486 1542
5 1808 1974
6 1981 2361
7 2210 2600
8 2447 3050
4800
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reveals that this configuration resembles two linkedQ ­
2 solitons. The Hopf charge is not simply additive i
the case of a link since when a field line passes throu
the intersection it should be counted twice. Note that t
energy density isosurface does not have the form of t
linked loops but is concentrated in the region inside th
position loops. ForQ ­ 7 andQ ­ 8 even more exotic
solutions are produced. It appears that the position of
Q ­ 7 soliton has the topology of a trefoil knot, while
at Q ­ 8 the solution comprises of twoQ ­ 2 solitons
doubly linked. It should be emphasized that the solutio
are relaxed from initial conditions which are perturbe
tori, and hence the crossing—or reconnection—of fie
lines is a requisite. In Ref. [11] we discuss this proce
in detail and we present snapshots of the position dur
the relaxation process.

We should note that in any numerical relaxation proc
dure one can never be totally sure that the global mi
mum has been found, although as much as is possible
been done—random initial conditions and a fully thre
dimensional algorithm. One way to increase confiden
in numerical results is to establish rules dictating the stru
ture of the solutions, which can in the end become pred
tive. In the case of Os4d Skyrmions, we suggested [7,8
the existence of a pattern in the solutions, which we call
geometric energy minimization. In that case we had a ve
precise description of the structure of the solutions beca
they had point symmetries. Here, we have a more qua
tative description of the solutions, but we can speculate
some general features of an energy minimization princip

For linelike solitons reducing the length of the solito
will naively reduce the energy, but this must be balanc
by an increase in gradient energy required to impo
the correct linking of field lines in a reduced volume
For low charges it seems reasonable that the solutio
be toroidal, with the twists distributed uniformly, bu
as the charge increases it appears that it is poss
to reduce the length of string without a great cost
gradient energy by twisting the loop so that the link
can be packed closer together. What happens for
higher charges is less well defined, but it is clear th
having extra links in the position itself can reduce th
number of links in each of the components, and hen
also the length of string required. This is illustrated by th
Q ­ 6 and Q ­ 8 solitons, which are composed of two
Q ­ 2 solitons singly and doubly linked, respectively
The clear special case isQ ­ 7, the first structure where
the position is actually knotted. We believe that th
reason for this is symmetry; it would be impossible t
distribute the links symmetrically into two components
This suggests that as the charge increases the num
of linked possibilities will increase rapidly, with string
reconnection being the mechanism by which one link
structure can metamorphose into another. Clearly, mo
work will be required to construct a more quantitativ
energy minimization principle.
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It was suggested in Ref. [1] that theQ ­ 3 soliton
had the topology of a trefoil knot, but our results clearl
suggest that this is not the case. One could create suc
configuration since it has the correct linking structure, b
the energy minimization principle that we have discusse
above explains why this is not likely to be the minimum
energy configuration—the length of string required t
have a knotted solution withQ ­ 3 is too long.

In conclusion, we have demonstrated numerically th
a rich variety of fascinating closed, linked, and knotte
configurations are generic in this model. It is possib
to explain the nature of these solutions heuristically v
a qualitative energy minimization principle based on th
length of the string. The results we have present
are very much in keeping with the spirit of Ref. [1].
However, the details are very different, in particula
the structure of theQ ­ 1 and Q ­ 3 solitons. This
investigation will hopefully act as the basis for work on
physical systems where this model may be applicable,
particular condensed matter [13] and particle physics [14
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