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Knots as Stable Soliton Solutions in a Three-Dimensional Classical Field Theory
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We examine in detail recent claims that knotlike structures exist in a simple classical field theory
which are stabilized by the Hopf charge. We present minimum energy configurations for charges one
to eight generated numerically. It is found that the solutions exhibit a spectacular variety of behavior
including closed loops, linked loops, and, most interestingly, knots. [S0031-9007(98)07755-2]

PACS numbers: 11.27.+d, 11.10.Lm

It has been suggested recently that knots might existver R,
as stable soliton solutions in a simple three-dimensional 1
classical field theory [1], opening up a wide range of 0=—-— d*xF ANA. (2
possible applications in physics and beyond. We have am
reexamined and extended this work in some detail using H can also be interpreted heuristically as the linking num-
combination of analytic approximations and sophisticateder between field lines, in contrast to other topological
numerical algorithms. Although most of the assertionscharacteristics, such as baryon number in the Skyrme
made in the earlier work of Faddeev and Niemi [1] asmodel, which are generally winding numbers. Since the
to the structure of solitonic solutions are incorrect, thepreimage of a point on the targst is a closed loop
basic idea that complex soliton configurations exist inin IR?, the preimages of any two distinct points will be
this model is sound. For charges between one and eigHinked exactlyQ times. Just as in the case of other soli-
we find solutions which exhibit a rich and spectaculartonic models, there exists a bound on the enefgpf
variety of phenomena, including stable toroidal solitonsa configuration with charge [5]. However, the de-
with twists, linked loops, and also knots. The physicalpendence is not linear but rathér= c|Ql¥* and ¢ =
process which allows for this variety is the reconnectionl6723%/8 ~ 238.
of stringlike segments. Clearly, the equations of motion for this model are not
The specific model under consideration is af3)0 analytically tractable, and hence a numerical approach
variant of the Skyrme model [2] with Lagrangian densityis required. We have used a code originally designed
in (3 + 1) dimensions given by [3] to investigate Skyrmions in th&®(4) version of the
model [6—8] in three spatial dimensions on a discretized
Cartesian grid, which can be trivially modified for the
situation under consideration here. It was run on a Silicon
(1)  Graphics Origin 2000 parallel supercomputer which now
has 44 fast R10000 processors and 20 Gb of memory.
where the fieldn = (ny, ny, n3) takes values on the We used spatial discretizations with0? points and for
2-sphere, thatim?> = 1. The two parts to the Lagrangian the lower charges convergence was achieved in around
are known as the sigma model and Skyrme terms50 CPU hours, but the higher charge configurations took
respectively, the latter being included to stabilize thevery much longer.
solitons against radial scaling as in Derrick’s theorem [4]. The basic minimization procedure is to create suitably
In order for a solution to have finite energy, the fieldrandom initial conditions with a specific Hopf charge,
must be fixed at spatial infinity, say.. = (0, 0, 1), and  which are then evolved under the full equations of mo-
hence the domain is compactified frdR® to S3, so that tion. The originally static initial conditions turn potential
at any fixed time we have a map S* — S2. Therefore, energy into kinetic energy as they evolve, and this kinetic
each field configuration is characterized by a topologicaknergy is periodically removed when the potential energy
chargeQ, sincem;(S?) = Z, which is known as the Hopf begins to increase. A more detailed exposition of this
invariant. This can be defined formally in terms of themethod for locating minima in these models is given in
pullback of the area two-formw on the targetS?. If Ref. [8]. The only technically difficult aspect is to pro-
F = n"w is the pullback unden onto the domain, then duce initial conditions with a given Hopf charge which
it must be exactF = dA, since the second cohomology are devoid of any symmetries and are, hence, suitably ran-
group of the 3-sphere is trivial. One can then constructlom. This can be done in analogy to an approach used to
the Hopf charge by integrating the Chern-Simons terntonstruct Skyrme configurations.

1
L =9,n-i*n — 5(6Mn X 9,mn) - (0*n X 9"n),
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If U(x) is a smooth SI2) field with winding numbeiB (o) ) »)
between two 3-spheres, which correspond to the compact-
ified IR® and the group manifold of S@), then writing 1a) 1(b) 1(0)
the components ot/ in terms of complex numberg,

andZ; as @) <»

U= (é’ _Zf‘ ) (3) 2(a) 2(b) 2()

where|Zy|*> + |Z,|*> = 1, one can construct an(®) field SO
fromn = Zt7Z, wherer; are the Pauli matrices and the
column vector isZ = (Zy, Z;)". It is easy to see that 3() 3(b)
the vector defined above has unit length and satisfies the
boundary conditiom(«) = n.. if the original SU2) field
is the identity at spatial infinity. Furthermore, it can be
shown thatQ = B [9], and so the problem is reduced to 1)
finding some appropriate Skyrme field configurations.

One can construct suitable Skyrme fields using the ra-
tional map approach [10]. In spherical polar coordinates
(r, 8, ¢), this involves specifying the angular distribution 5(2)
of the field using a rational functioR(z) with degreeB
of the complex variable; = ¢% tan(/2), and a radial
profile function f(r), which satisfies the boundary con-
ditions £(0) = 7 and f(x) = 0. A patrticularly simple &ia)

& @)
example isR(z) = z5, which for B = 1 corresponds to a e

3(c)

¢

/’w

4(b) 4(c)

5(b) 5(c)

i

6(b) 6(c)

v
spherically symmetric hedgehog Skyrmion, andBor 1 \\@
describes an axially symmetric toroidal field. Using the
arguments above this allows us to construct 48)@eld 7(a) 7(©)
with Hopf chargeQ = B which has only axial symmetry,
since the Hopf projection breaks any spherical symmetry. 3 >
Of course this is not particularly helpful from the point of 7 A -
view of the minimization procedure, but a simple modi- 8(a) 8(b) 8(¢)
fication to include nonsymmetric wiggles can remove allpig, 1. For charge® = 1 to 0 = 8 we display the follow-
the symmetries and hence provide suitably random initiaing quantities for the relaxed soliton solutions: (a) The position

7(b)

P28 R ¢o»

conditions. The precise map that we use for this is of the soliton; (b) the linking number of the field lines; (c) an
me? energy density isosurface.
R(z) = zQ[l + acos(—2 )} (4)
o

which corresponds to a torus with € Z nonsymmetric metric configurations which are well described by ap-
wiggles of amplitude: € [0, 1). propriate radial profile functions and the rational maps
We have relaxed the solutions for = 1to 8, and we R(z) = z andR(z) = z> for Q = 1 andQ = 2, respec-
have displayed our results by plotting several interestingively. In both cases the position of the soliton is a circle,
guantities in Fig. 1. The first is the preimage of the vectorbut for 9 = 1 the energy density is an axially symmetric
(0, 0, —1), which defines the position of the soliton. lump which is localized at the origin, while fap = 2 it
In reality it is difficult to compute the locus of this is localized on a torus just inside the locus of the posi-
preimage in the discretized domain, and hence we wiltion. Upon examination of the linking structure, one can
plot isosurfaces of the vect@d, 0, —1 + €), wheree =  confirm the Hopf charge; th@ = 1 solution being linked
0.2 is small. This allows us to easily visualize the solitonsonce and the = 2 linked twice.
position as the core of a tube rather than a single line. We These two cases had previously been studied in
will also explicitly display the linking number, thereby Refs. [1,12] using an axially symmetric approach which
verifying the Hopf charge, by plotting in a similar way to reduces the problem effectively to two dimensions. We
the position the loci of two independent poiriés —1, 0)  agree with both groups as to the structure of ¢ghe= 2
and (0, 0, —1). Finally, we also plot the isosurfaces solution, but in the case ad = 1, where they disagree,
of energy density. A more detailed discussion of thewe find agreement with Ref. [12]. Since our approach is
structure of each of the solitons is given in Ref. [11]. completely general, using random initial conditions on a
For bothQ = 1 and 2 we see that the nonsymmetric three-dimensional Cartesian grid with no symmetries, it is
initial conditions relax quickly back to the axially sym- difficult to believe that our results could be misleading.

4799



VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NVEMBER 1998

Therefore, this suggests that the numerical approach usedveals that this configuration resembles two linked=
in Ref. [1] is flawed. 2 solitons. The Hopf charge is not simply additive in
We have also computed the total energy inside the disthe case of a link since when a field line passes through
cretized grid. Although there are some small systematithe intersection it should be counted twice. Note that the
errors in making an absolute measurement of the total erenergy density isosurface does not have the form of two
ergy of the soliton since the grid is finite (see Ref. [11]linked loops but is concentrated in the region inside the
for a detailed discussion), the relative values for differentposition loops. FoQ = 7 andQ = 8 even more exotic
charges should yield important qualitative information. Insolutions are produced. It appears that the position of the
particular, we find that our values for the energy of theQ = 7 soliton has the topology of a trefoil knot, while
Q = 1 andQ = 2 solitons, tabulated in Table I, are con- at 9 = 8 the solution comprises of tw@ = 2 solitons
sistent with those of Ref. [12]. doubly linked. It should be emphasized that the solutions
For O = 3, 4, and 5 we find that the solutions are not are relaxed from initial conditions which are perturbed
axially symmetric and hence could not have been foundori, and hence the crossing—or reconnection—of field
using the methods employed in Refs. [1,12]. In eacHines is a requisite. In Ref. [11] we discuss this process
case the locus of the position sweeps out a closed loojm detail and we present snapshots of the position during
which is twisted, the twists not being related to thosethe relaxation process.
in the initial conditions. The energy density isosurfaces We should note that in any numerical relaxation proce-
are now not toroidal, being more reminiscent of pretzelsdure one can never be totally sure that the global mini-
with two, three, and four holes, respectively, but eachmum has been found, although as much as is possible has
one is also twisted to fit inside the locus of the position.been done—random initial conditions and a fully three-
Once again the Hopf charge can be verified by referencdimensional algorithm. One way to increase confidence
to the linking structure. We have also investigatedin numerical results is to establish rules dictating the struc-
toroidal configurations for these values ¢f. As one ture of the solutions, which can in the end become predic-
might expect, if we use symmetric initial conditions thetive. In the case of &) Skyrmions, we suggested [7,8]
symmetry is preserved by the relaxation process, anthe existence of a pattern in the solutions, which we called
hence we can make an estimate of the energies of thegeometric energy minimization. Inthat case we had a very
configurations. As shown in Table |, we find that energiesprecise description of the structure of the solutions because
of these symmetric saddle point solutions are larger thathey had point symmetries. Here, we have a more quali-
those for the minima which have twists. We should notetative description of the solutions, but we can speculate on
that we found no evidence for the existence of a stablsome general features of an energy minimization principle.
trefoil configuration forQ = 3, as suggested in Ref. [1].  For linelike solitons reducing the length of the soliton
We will discuss later why we believe that it is unlikely will naively reduce the energy, but this must be balanced
that such a configuration will exist. by an increase in gradient energy required to impose
Above Q = 5 there appears to be a dramatic changehe correct linking of field lines in a reduced volume.
in the structure of the soliton solutions. &2 = 6 we  For low charges it seems reasonable that the solutions
see that the position of the soliton is no longer a singlébe toroidal, with the twists distributed uniformly, but
connected loop but consists of two linked disjoint loops.as the charge increases it appears that it is possible
The fact that the position itself has linking number oneto reduce the length of string without a great cost in
makes the counting of the Hopf charge more subtle. gradient energy by twisting the loop so that the links
In fact, a careful examination of the linking structure can be packed closer together. What happens for the
higher charges is less well defined, but it is clear that
having extra links in the position itself can reduce the
TABLE |. Energy of the relaxed soliton and torus solutions number of links in each of the components, and hence
for charges one to eight. Note that the difference in energieg|so the length of string required. This is illustrated by the

of the soliton and torus solutions for the first two charges is aQ — 6 and Q = 8 solitons, which are composed of two
reflection of the accuracy of our numerical computation of the '

energy. Q=2 soIitons_ singly f?md doubly .Iinked, respectively.
The clear special case @ = 7, the first structure where

0 Soliton energy Torus energy the position is actually knotted. We believe that the

1 504 505 reason for this is symmetry; it would be impossible to

2 835 836 distribute the links symmetrically into two components.

3 1157 1181 This suggests that as the charge increases the number

4 1486 1542 of linked possibilities will increase rapidly, with string

5 1808 1974 reconnection being the mechanism by which one linked

673 %g% gggé structure can metgmorphose into another. Clearly, more

8 2447 3050 work will be required to construct a more quantitative

energy minimization principle.
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