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Phase Transition in a Model Gravitating System
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We present recent developments in the study of an interacting gravitational system of concentric,
spherical, mass shells. The existence of two distinct phases is demonstrated. The nature of the transition
in the microcanonical, canonical, and grand canonical ensembles is studied both theoretically in terms
of mean field theory and via dynamical simulation. Striking differences are found in each environment,
especially the last. [S0031-9007(98)07737-0]

PACS numbers: 95.30.Sf

One-dimensional models have provided a testing ground phase transition in a particular modgavitating system
for astrophysical theories of gravitational evolution forin which all of the particles are restricted to lie on the same
several decades. The systems studied fall into two classespherical surface [10]. More recently, Keissling has rigor-
parallel mass sheets of infinite spatial extent and concerously proven that (1) a truly isothermal, three-dimensional,
tric, spherical mass shells. It has been conjectured th&ewtonian, gravitating system will condense to a droplet
these idealized systems can be identified with processes zero size and that (2) a phase transition is possible in the
occurring in nature: The parallel sheet system with thehree-dimensional gravitating gas of fixed energy restricted
motion of stars perpendicular to the plane of a highly flatto a spherical box with eegularizedtwo body interaction
tened galaxy [1], and the shell system with the dynamypotential [11]. However, regardless of all of these pre-
ics of a spherical globular cluster [2]. However straineddictions, until now the occurrence of a gravitational phase
these connections may appear, the central motivation fdransition has not been demonstrated either experimen-
studying these systems is the ease and accuracy with whically (granted this would be a challenge) or by dynamical
their dynamical evolution may be simulated with the com-simulation.
puter. In contrast with the evolution of three-dimensional Here we consider a model system of uniform, concen-
point masses, for these systems numerical integration dafic, mass shells. The shells undergo radial motion, i.e.,
the orbits can be replaced by the direct computation of sudhey expand and contract, under the influence of their
cessive sheet (or shell) crossings, permitting accurate omutual gravitational forces. Other investigators have used
bit computations over many dynamical time scales. Sinceoncentric mass shells to model the evolution of globular
these are the simpleat body gravitational systems avail- clusters [2,12,13]. In contrast with these studies, our shells
able, they are worthy of consideration in their own right. have no angular momentum or rotational energy and, in

Thermodynamics of systems of particles interacting viaaddition, are confined between two reflecting barriers with
gravitational forces differs strongly from typical “chemi- inner and outer radi{a, »). In contrast with the system
cal” systems, where the interactions have finite range andf planar sheets, our shells appear to have strong ergodic
are repulsive at short distances [3]. Antonov originallyproperties and spread out rapidly in their(position,
noted that, due to the singularity in the two body interac-velocity) space [14,15]. We have studied the system both
tion potential, in the mean field (Vlasov) approximation atheoretically and via dynamical simulation under three
confined spherical system of gravitating point masses lackdifferent conditions: microcanonical (constant energy),
a global, and for sufficiently low energy a local, entropy canonical (constant temperature), and grand canonical
maximum [4]. Thusitis not subject to the usual thermody-(constant temperature and chemical potential). Below
namic analysis and may undergo a spontaneous collapsge show that mean field theory predicts the existence
presently referred to as the gravothermal catastrophe fobf two possible phases when the inner barrier radius is
lowing Lynden-Bell and Wood who also conjectured that,less than a critical values.. Each phase has a smooth
if the singularity is screened by a hard sphere interactiondensity profile in(a, ), but one of them has a higher
the collapse may be replaced by a phase transition to a mooentral concentration of mass. For each< ¢, mean
centrally condensed state [5]. (Such a system was first irfield theory predicts that the more concentrated phase is
vestigated theoretically by Aronsen and Hansen [6] andfavored thermodynamically for sufficiently low energy
more recently, by both Stahl and Kiessling [7] and Pod<{temperature) in the constant energy (temperature) en-
manabhan [8] by introducing a local pressure due to theemble. Dynamical simulations support the predictions
short range repulsion.) Later Hertel and Thirring showedf mean field theory in all cases. As far as we are aware,
that the thermodynamics of a model system interacting vighis is the first reported dynamical demonstration of a
purely attractive forces of finite range and potential depttphase transition in a gravitational system.
could undergo a phase transition to a more condensed state(l) Mean field theory—Consider a system a¥ con-
[9]. Lyndem-Bell may be the first to have demonstratedcentric, uniform, irrotational, Newtonian, shells of mass
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m (= M/N). Each shell has a single coordinate, its radius (II) Dynamical simulations—Numerical simulation of
r, and acceleratior- G[M(r) + m/2]/r* whereG is the  the shell dynamics is facilitated by the fact that, between
gravitational constant ant(r) is the mass of the interior events (shell crossings, turning points, and barrier colli-
shells. To both prevent escape and shield the singularitgions), the equations of motion can be integrated analyti-
at the system center, the shells are confined to move beally to yield the time as a function of position. In two
tween two likewise spherical reflecting barriers located akarlier studies we showed that the shell system has stronger
r = (a,b). Without loss of generality, we define units of ergodic properties than the parallel sheets [14] and relaxes
distance, time, and mass for whibh= G = M = 1. on a much shorter time scale [15]. This can be clearly
In the Vlasov limit, i.e., lettingv — o while both the seen in the following example of a system of 3200 shells
total mass and energy are held constant, the system is reprepared by uniformly distributing them in position and
resented by a fluid in thg(r, v) space with mass density alternately assigning velocities of equal size and opposite
f(r,v,1). Intuitively, it seems natural to assume that oursign. After about only fourteen characteristic infall times,
system obeys the identical Vlasov (collisionless Boltzmanmwe see that the system is well mixed in thespace (see
equation, or CBE) forf(r, v, t) as for a spherically sym- Fig. 1).
metric three-dimensional system [3,16]. However, since (a) Microcanonical ensemble: The system is isolated
here the dynamical system is one dimensional, this is nand the energy is conserved. The thermodynamic state is
the case. The stationary, maximum entropy, solution of theletermined by the total energy/, and inner barrier radius,
CBE is still of the formf(r,v) = MC exd—B(w?/2 + a. Equilibrium states are states of maximum entropy
¢ (r)] whereC is a normalization constant ardr) isthe S = S(E,a). To explore the system properties in the
gravitational potential [3], but here is the radial velocity context of mean field theory we need to determine the
of a shell, and the system densify(r), is the mass per solution of (1) corresponding to a givéf, a) which, in
unit length. Thus(r), the normalizedlinear, mass den- turn, requires finding8d = B(E,a). Whena < a, and

sity, obeys B € ApB(a), multiple phases are possible; the stable phase
J J corresponds to the branch with maximum entropy. From
— 2= In g(r) = BMGg(r) Fig. 2 we see that, correspondingo€ ApB(a), there is
dr dr an energy interval in which both phases can exist, but one

. d b is more stable. As usual, the third solution tying the stable
subject to- - g(r)l,=. = 0 and /a g(r)dr =1. phases together is thermodynamically unstable [17]. As
1) the energy is lowered, there is a sharp transition to the more
centrally concentrated phase.

The solutions of Eq. (1) depend on the single parameter At the transition point (the intersection in Fig. 2) each
BMG (= B inourunits). By direct numerical integration phase is equally stable. Thus we can construct a “coex-
we find that for sufficiently larga < b = 1 there is only istence” curve in thdE, a) plane along which the tran-
one solution of (1). However, as the valuedois reduced sition occurs. Here, however, we must use the term
we reach a critical value, say,, such that fom < a., it  coexistence guardedly. In contrast with chemical systems,
is possible to construct three distinct solutions of (1) forour phases are associated with a particular density profile in
B € AB(a), a particular interval of0,). Outside this (a, ») and cannot simultaneously exist in the same volume.
interval the solution is unique. The solutions for lage
i.e., to the right ofA B8(a), are more centrally concentrated
than those to the left.

It is possible to construct a complete formulation of
the equilibrium thermodynamics of this system in the
mean field (Vlasov) limit. All macroscopic quantities
of interest can be expressed in terms of the solutions ¢
(1). Itis natural to regard, the inner barrier radius, as
the generalized thermodynamic coordinate of the syster: 2
and 6 = 1/B as the generalized temperature [17]. In 3 3 T Iy
order to track the phase transitions which occur in the &
microcanonical and canonical ensemble, it is convenient ti
choose the virial ratio, i.e., the ratio of kinetic to potential
energy, as the system order parameter. With a little
work it can be shown that the energy, entropy, Helmholtz  -1.
free energy, and grand potential depend explicitly on

ty

1

g(r). Thus they are single valued functions @fexcept 0.1 0.3 0.5 0.7 0.9
whena < a. and 8 € AB(a), where they can take on 3 position

multiple values. This is the parameter region where phasg|G. 1. Final condition inu space for 3200 shell system after
transitions can occur. 14 infall times.
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FIG. 3. Virial ratio vs energy fov = 16, 32, and 64 shells.

FIG. 2. Entropy vs energy for isolated system in two phase
region. Dynamical simulation of the canonical ensemble was
accomplished by converting the reflecting barrier at
Note the sharp temperature decrease as the system becorheinto an isothermal wall for every hundredth colli-
less concentrated. This occurs because above the transien. In such an event, detailed balance is respected by
tion (a > a.) the isolated gravitational system can supportreturning the shell to the system with kinetic energy deter-
a negative heat capacity [7]. mined by randomly sampling the exponential distribution
In earlier work we compared dynamical simulations ofwith meané. Again good agreement was found between
systems withV = 16, 32, and 64 shells with the Vlasov the time averaged density profile and that predicted by
equilibrium predictions fou > a. [15]. We found good mean field theory away from the transition temperature.
agreement with increasirg. Atthe largestvalue, thetime Near the transition the results were again consistent with
averaged density profile agreed within a few percent witHinite size scaling, but with shifting and rounding expo-
the mean field predictions obtained from the numericahents of 1.1 and 1.4.
solution of (1) over the complete interval, »). Here we An interesting feature of the simulations was the robust-
have extended the simulations into the transition regionness of the concentrated phesgovethe transition tem-
For given inner barrier radius, away from the transitionperature, where it is thermodynamically less stable than
energy we also find close agreement with the mean fielthe more uniform phase. Fof > 16, if the system was
density profile. However, as the transition is approachedprepared in the former, we were never able to observe a
differences occur. This is expected: Finite size scalinglynamical phase transition to the more stable phase during
theory [18] predicts that the transition is sharp only in thethe typical run times of the numerical experiments. An-
limit N — . For finite N the transition energy is shifted other interesting feature was the lack of critical slowing
asN~* and broadened a8 ~”. By comparing the time down. The point on the coexistence curve where a.
averaged virial ratio from simulations with the predictedis a thermodynamic critical point of the system. In our dy-
mean field values, we found that the results accuratelpamical simulations, measurements of both temporal and
conformed to the scaling predictions with shifting andpositional correlation functions were carried out for the
rounding exponents of 0.97 and 0.74 (see Fig. 3). thermostated system. While differences were found in
(b) Canonical ensemble: The system is no longer isoeach phase, no hint of divergence of the relaxation time
lated and may now exchange energy with a reservoir abr length was indicated near the critical point. However,
constant temperaturé = 1/8. For a given population strong positional correlation occurred across the entire sys-
the thermodynamic state is determineddgndéd. Equi- tem whena = a, i.e., in the “fluid” phase.
librium states are states of minimum Helmholtz free en- (c) Grand canonical ensemble: The system can now ex-
ergy [17]. In common with the entropy, far < a., ittoo  change both energy and particles (shells) with a reservoir.
is a multivalued function of for 1/6 € AB(a). As be- An equilibrium thermodynamic state is defined #yand
fore, mean field theory predicts a sharp transition where, the temperature and chemical potential of the reservaoir,
the free energies of the two phases intersect. Howeveas well as the inner barrier radius For the sake of com-
here there is a jump in the value &f while 8 remains parison, for eacla andé the value ofu was fixed by re-
constant, showing that the thermodynamic behavior of auiring that the average system mass is unity, i.e., the same
gravitational system depends on the specific ensemble. ks for each of the ensembles described above. In equilib-
the canonical ensemble negative heat capacities cannot bam, the grand potential has a global minimum for the
supported in equilibrium [7]. The coexistence curve nowstable state [17]. Plots @b vs # do not exhibit the kink
bisects a portion of th&:, 6) plane. structure found for the other thermodynamic potentials,
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even fora < a.. Incontradistinction with both the micro- of structures. Is there a connection between the observed
canonical and canonical ensembles, here mean field theocpre-halo structures and the centrally concentrated phase
predicts that the more uniform phase is more stable ovedescribed in the preceding pages? Both globular clusters
the completéda, 6) plane. Thus a transition to a more cen- and galactic nuclei may be closest in essence to a grand
trally concentrated density profile is not predicted. canonical ensemble since each can exchange both energy

Dynamical simulation of the open system (grand canoniand mass with its surroundings. We have shown that
cal ensemble) was accomplished by randomly introducinghe thermodynamic properties of the open system are
new shells at the outer barrier with a carefully choservery different from the constant temperature and constant
mean creation rate. This was selected by imitating thenergy ensembles and, for our simple model, a transition to
effect of a reservoir surrounding the system with thea condensed state will not take place. Inthe earliest paper
desired temperature and chemical potential. To weakewhich considers a mean field approach to a gravitating
the interaction between the system and reservoir, theystem, Aronson and Hansen raise the question of whether
boundary was assumed to be only “semipermeable” [17]the introduction of a semipermeable membrane will alter
The creation rate was chosen to be only one hundredth dlie structural stability of a gravitating system [6]. Here
the virtual external particle flux striking the outer barrier. we have provided an answer for this specific model.
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the same thermostat described above for the canonical
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