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Charge Fluctuations and Shear Stress of Thin Films
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We consider the effects of lateral charge fluctuations on the linear shear response of thin films. These
fluctuations break the in-plane symmetry of the system and at short enough times cause the interaction
energy to depend on the relative positions of the top and bottom surfaces of the film. This gives
rise to a shear stress which can be significant depending on the time scale of charge reequilibration
and on the charge and thickness of the film. The results have implications for the shear of charged
membranes as well as the shear and frictional properties of electrolytes between two charged surfaces.
[S0031-9007(98)07669-8]
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Recent interest in membrane adhesion and the intedensityf [5]:

calation of (charged) DNA molecules into lipid bilayers

has motivated a renewed interest in the effects of chargeG = [ di{f[n(F)] = pn(F)} = — f drl[n(7)], (1)
fluctuations on binding and stability. While a homoge-
neous, mean-field, model of interactions between similarl
charged membranes, surfaces, or linear molecules resu
in repulsive interactions, theoretical considerations of thee
effects of charge fluctuations, which produce inhomogene-
ity in the system, can generate attractive interactions [1,2].
Such attractions have been seen in computer simulatio
[3]; their origin lies in the correlations of the charge fluc- |

tuations—oppositely charged groups tend to be correlate emselves are rearranged by the deformations. One can

across the thickness of the film and lead to attractions. ompute the change in free energy due to these effects—

_Th(_ase fluctuations _ur_uque;ly enable systems of charge vhich include shear deformations—by writing the density
thin films to show a finite, linear shear response, at lea h terms of the particle positions:

when the nonequilibrium [4] nature of the system is
considered. The existence of lateral charge fluctuations n(7) = 25(; — Ry, 2)
means that the interactions between the two surfaces m

(membranes) bounding the thin film, and even the chargghere R, is the position of the particle labeled by the
distributions within the electrolyte itself, depend on the; qex . Upon a shear deformation, the component

relative in-plane positions of the charges. Motion ofof the particle position Vector,, is modified: R,y o —

those surfaces results in a finite shear response at Ieaﬁt + €upRumg. Where the shear strain is given by
m,a a m,[3

up to §uch times that the_charges all reequilibrate ang s wherea # 8. This change in the particle position
the resistance to such motion disappears. One therefo ctors gives rise to a change in the local density. Since

EXpects a shear stress for the system that depends on @ thermodynamic potential is a functional of the local

characteristic time scale for the motion of the charge ensity, it, t0o, is modified by the shear strains, and we
species and the fluctuation-induced, interaction energy ite T ’ ’

density of the film. _ STI[n()] 857 — F )
In this paper we relate the shear stress on two boundingAg = —€ap [ dr == ZRm pg—
surfaces or membranes to the correlation function for ’ IR

where u is the chemical potential andll[»(7)] is the

smotic pressure of the system. This applies to systems
ere the number of particles is either fixed or in

quilibrium with a bath whose chemical potential is

ontrolled by other means.

In addition to changes in the local volumes induced
expansions or dilations of the systems, a solution is

so affected by deformations in that the solute particles

sn(r) 4 ma
charge fluctuations in the top and bottom layers bounding (3)

the film. This particular correlation function vanishes Using the equality implied by the delta function, per-
in the equilibrium case, and we find its contribution toforming one partial integration, and neglecting boundary
the shear stress within a simple model for the dynamic¢erms in the thermodynamic limit, one finds

of the layer charges in the system. The electrostatic .9 STI .
contribution of the surface layers can be significant in the AG = —eqp f dr == <m)rﬂn(")- (4)
limit where the surface layer charges have long relaxatiot]_h local sh N defined by AG —
times compared with the molecules of the bulk fluid. € local shear SUessrap IS define y AG =

In order to derive an expression for the shear stress €«5 Jd7oap so that we can W”t‘;
of a charged, thin film, we consider the thermodynamic Tag = <rﬁn(;) d ( f )> )

potential G which is a functional of the free energy rq \ 0n(7)
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where we used the fact that the chemical potentiak  Here, A, is the area and the coefficientsg) and B(g)

a constant. This formula agrees, in the continuum limitarise from the intralayer interactions and entropy and
with the expression derived by Doi [6] for discrete par-interlayer effects, respectively. The intralayer effects give
ticles in solution using a somewhat different approachA(q) = x + 27€/q. For an ideal gasy (which, in
The thermodynamic average is important in systems witlgeneral, is proportional to the second derivative [8] of
density fluctuations. These averages may involve théhe local free energy not including the Coulomb terms)
nonequilibrium, but steady-state, distribution of particles.is given by1l/oy, whereoy is the average charge density
This is indeed the case in the charged, thin films considef the layer charges. The second term in the expression
ered here where the derivative of the local free energyor A(g) arises from the Coulomb interactions where
per unit volume f[n(7)], is a constant in equilibrium (and ¢ = e2?/(ekgT) is the Bjerrum length for a medium with
equal to the chemical potential). It is only the shear flowdielectric constanté. The interaction term is proportional

in the system that causes any deviation of this derivativéo the product of layer charge densities and the coefficient
from zero. B(g), whereB(q) = 2mte 9P /q.

We now apply this general formula to the case of Even under shear, the steady-state correlation function
two charged sheets whose layer charges are allowed {to,(g)|?) is isotropic; its integral withg, therefore
fluctuate in thermal equilibrium. The charged sheetssanishes by symmetry. This is to be expected since the
(which can be thought of as two bilayer membranes omotion of the layer cannot affect the fluctuations within
two charged surfaces in a surface force experiment) arthe layer to first order. On the other hand, the interlayer
separated by a polar fluid which contains the counterionsorrelation function is no longer isotropic when the shear
For simplicity, and to demonstrate the most dramatids applied—it contains a term linear ig, and linear
effect, we consider the case of no added salt. We firsn the shear rate. Its integral with, does not vanish
consider the contribution of the charged sheets and theand contributes to the shear stress due to the charge
the counterion effects [7]. fluctuations. Thus, only the interaction term jiy will

For two fluctuating charged sheets, where the freeontribute and
energy includes both the translational entropy of the
charges (and possibly excluded volume and two-body = ksT > iq:B(§)(02(@)a1(—7)). (8)
interaction effects [8]) and their Coulomb interactions, Ag 7
one can express the free energy dengitgs a function
of the fluctuating layer charge density(p) for the layer
located atz = —D/2 and o,(p) for the layer located
at z = D/2, where p = (x,y) is the two-dimensional

Although we have not written the explicit time depen-
dence of the fluctuating charge densitie$g, ¢), we note
that the macroscopic shear stress is related to the equal

position vector within the layer [2]. For ther component time correlatio_n functions of the system in steady state.

of the shear stress, we consider the motion of the layer " Order to find the effects of the shear on the interlayer
located atz = —D/2 with a constant velocity (in the .correlapons, an equation of motion for the charge den.3|ty
% direction) v = ¥D/2, where D is the layer spacing S reqylred. To Qemonstrate that_ the chgrge quctuatlpns
and 7 is the shear rate, while the layer locatedzat= ~ 91Ve rise to a finite shear stress in the §|mplest pos§|ple
D/2 moves with the same velocity in the direction. ~ circumstances, we neglect hydrodynamic effects within
Assuming a simple, macroscopic shear flaus) = 724, t_he layer and |_nert|al effects (t_hese are negllglble at _the
implies that the fluid at; = 0 remains at rest. The time scales of interest) and write the equation of motion

volume average of the local shear stress is then written {07 the fluctuating charge density in the standard manner

: 5f as [9]
Oy = & (_1)l<0'i(ﬁ)< = >> (6) (P
T ,»:Zu ax \ 80i(p) 20 1 (o, L)) = 12 2L 4 g,
_ _ _ at dx do(p)
where f; is the free energy per unit area. The result is 9)

most simply expressed in terms of the Fourier transforms
of the layer charge densities; (§) and o (), whereg is ~ Where the index = 1, 2 accounts for the two layers. The
the two-dimensional wave vector. We shall use the facfvo terms on the left-hand side of Eq. (9) represent
that the correlation function is translationally invariant in the viscous motion of the layer charges under the action
rewriting the stress in terms of the Fourier components. ©Of the convective velocity of the shear flow. The ve-
The free energy per unit aref due to the charge locity vi = yD/2, while v, = —yD/2. The first term
fluctuations (the uniform terms do not contribute toOn the right-hand side is the diffusive term; the in-plane
the shear stress) can be written within the harmonid-aplacian[V? = (4/9x*> + 9/ay?)] arises from the con-

approximation [2] servation of charged molecules within the layer. The sec-
T ond term on the right-hand side represents the fluctuation

fs = *BL Ao + o) forces in the _system.(Langevm-type term) wh.|ch give rise

24 % : ? to the Brownian motion of the layer charges in the plane.

+ 2B(g)o1(—§)o2(q) . (7)  The fluctuation forces are independent in the two layers
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and are assumed to have only short ranged correlations:these limits is determined by the relative magnitudes of

(= (2 2 s oy ns the interlayer spacingp and the charge dependent length
(0:(p.00;(p. 1)) 2kgTVL8(p = p)o(t = 1)5;. A = 1/Q2mfay), over which the charge fluctuations are
(10) significant. Note thatA can be large with respect to
All cross correlations between the different layers vanishrm)lecm"’lr sizes if the qharge density is very Sm"’.‘”' Thus,

. o . sd‘nall D compared withA does not have to involve
since the noise is assumed to arise from very short range ) s
. molecularly close surfaces. With these definitions, we can

thermal fluctuations.

: . . rewrite the shear stress as
These linear equations are solved by Fourier transform-

ing in both space and time; the steady-state fluctuations Doyy x2e2xd
are obtained by using the expression for the equal time?x = " )2 f A+ [0 + 0?2 — e 2d]’

correlation function for the layer charge fluctuations in
the expression for the shear stress: whered = D/A. For large values ofl, one can neglect

w the exponential in the denominator. Furthermore, the
(01§, )o>(—G, 1)) ~f dw{o1(§, w)or(—G, —w)). exponential in the numerator indicates that only small
— values of x will contribute (sinced is large). The
(11)  denominator may be approximated by unity and the
tegral scales similar toA/D)?3.
To obtain more physical insight, it is instructive to

(15)

This relation is due to the fact that in steady state, thd"

correlation function is only a function of differences in te that the Kineti Hiciert has di ) f1h
the time. Since experimental shear rates are macroscod?@ € that the Kinetic coetlicie as dimensions ot tne

(on the order of inverse seconds) while the moleculat1Verse of a time multiplied by an energy. We thus write

relaxation rates are much larger10® sec’!), the shear ~! = 7.kpT which defines the surface diffusion time
generally acts as a small perturbation on the system. W ”for_the I_ayelr cfharges. The shear stress now takes the
therefore linearize the solutions of the equations of motio ollowing Simpie form.

in the shear rate, or velocity, and find . 1
¥ e ~ ksTG7) (5 . (16)
N D%¢
o1(g, )
—(a + iw)8(q, w) + b0, ) — iqgv0i(q, ) This has the correct dimensions of an energy per unit
- b2 — a? — w(ia — w) > volume where the volume is set b§2¢. In addition,

(12) the shear stress depends Iir_learly on the relaxation time of
the layer charges;,. If that time becomes very short, the

with a similar equation foro, wherev — —v, o <  charges relax to equilibrium very quickly and the energy
o2, andf; < 6,. In Eq. (12),a = I'yg*’A(g) andb =  to displace the two charge correlated layers becomes
T'og’B(q), wherel'y = T'kpT. very small. For times less thary, however, the motion

In the expression for the shear stress [Eqg. (8)] we musgenerated by the shear displaces the regions of correlated
keep terms linear iy, so that the integral over the wave charge fluctuations with respect to their optimal positions
vector does not vanish by symmetry. The only terms thain the two layers, i.e., with respect to equilibrium, and
will contribute to the cross correlation function that aretherefore costs free energy, resulting in a finite shear

linear ing, give stress. The dimensionless productrofand the shear rate
vTo ) v determine how fast or slow the rearrangement occurs as
T = > $2¢*BX(§) the system is sheared.
0 g It is important to compare the magnitude of the charge
o fw J [161(g, w)I* + 1624, ®)I*] (1) fluctuati(_)n—i_nduced s.hear stress with tha_t of the back-
. b2 — & + 02 + 4dw? ground liquid separating the two layers. Simple hydrody-

. . , ) namics yieldso,, ~ nvy, wherey is the viscosity. The
Using the expression for the correlation functions of the\/iscosity has the dimensions of a liquid molecular re-

fluctuating force, we get a contribution to the shear stresg,, 4tion time;, multiplied by a typical energy density:
that scales similar tézTI". Performing the integral over ~ kgTT,/d> ,wherea is the molecular size. Thus the

w to get the equal time correlation function under Shearbackground liquid contributes a shear stress:
using v = yD/2, and converting the sum over wave

vectors to an integral, we find ove ~ ksT(77) (L) (17)
. . * 3
. ksTDY ] q5(q) (14) ¢
* Iy 4 A(q)[A%(g) — B*(9)]’ The ratior of the electrostatic to background liquid shear

where the proportional sign indicates that a numericafl'€SSes, i.e., the ratio of Eg. (16) to Eg. (17), scales

coefficient of order unity has been omitted. similar to
The integrals over the wave vector can be simplified _ T1a
in the large and small distance limits. The scaling of YD
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where we have assumed that the Bjerrum length anthe layer charges whose dynamics may be much slower
the molecular size are comparable. Although for largeghan those of the molecules of the background fluid, the
spacingsD > a, the relaxation time of the layer charges fundamental relaxation time of the counterionsshould
which can be impeded by the entanglement of theibe comparable to that of the fluid molecules. The shear
hydrophobic tails in the case of membranes and by latticetress has the form ofzT(y7.)/L3, where the length
effects in the case of solid, charged surfaces, may bg is maximally D3 and minimally ¢3. Sincer. ~ 7,
much larger than the liquid relaxation timg. In this we do not expect that the contribution of the counterions
case, it is possible that the electrostatic contribution to thean ever become larger than that of the background fluid.
shear stress will exceed that of the background liquid andhis is in contrast to the electrostatic contribution of the
give a measurable effect. This effect may be particularlyfayer charges whose slower dynamics can result in a large
large near the liquid-gel transition of charged lipids oreffect. This assumption must be checked by including
surfactants where one expects the surface relaxation timte coupling between the counterion and layer charge
to get very large [10]. fluctuations.
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