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Complete Exact Solution of Diffusion-Limited Coalescence,A 1 A ! A
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Some models of diffusion-limited reaction processes in one dimension lend themselves to ex
analysis. The known approaches yield exact expressions for a limited number of quantit
of interest, such as the particle concentration, or the distribution of distances between nea
particles. However, a full characterization of a particle system is provided only by the infini
hierarchy of multiple-point density correlation functions. We derive an exact description of the fu
hierarchy of correlation functions for the diffusion-limited irreversible coalescence processA 1 A ! A.
[S0031-9007(98)07742-4]
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Nonequilibrium kinetics of diffusion-limited reactions
has been the subject of much recent interest [1–6].
contrast to equilibrium systems—which are best analyz
with standard thermodynamics—or reaction-limited pr
cesses—whose kinetics is well described by classical r
equations [7,8]—there is no general approach to noneq
librium, diffusion-limited reactions. Some diffusion
limited processes in one dimension can be approac
analytically, and exact results for multiple-point densi
correlation functions have been obtained with the fr
Majorana fermions formalism [9,10]. In this Letter, w
derive an exact analytic recursion relation for the full h
erarchy of multiple-point density correlation functions fo
the irreversible diffusion-limited coalescence processA 1

A ! A, following the method of empty intervals [11–13]
Our model [11–13] is defined on the line2` , x ,

`. ParticlesA are represented by points which perform
unbiased diffusion with a diffusion constantD. When
two particles meet, they merge into one particle whic
continues diffusing with the same diffusion constantD as
the reacting particles. Since the reaction step is infinite
fast, the system models thediffusion-limitedcoalescence
processA 1 A ! A.

An exact treatment of the problem is possible throu
the method of empty intervals, known also as the meth
of interparticle distribution functions (IPDF). The key
parameter isEsx, y; td—the probability that the interval
fx, yg is empty (contains no particles) at timet. Particles
just at the edge of an empty interval may diffuse into
out of the interval, affecting the probabilityE. With this
observation in mind, one can write down a rate equati
for the empty interval probability [11,12]. For the mode
at hand, the rate equation is

≠Esx, y; td
≠t

­ D

√
≠2

≠x2 1
≠2

≠y2

!
Esx, y; td . (1)

The coalescence reaction imposes the boundary condi
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lim
y"x or x#y

Esx, y; td ­ 1 , (2)

and in addition, as long as there are any particles left
the system,

lim
x!2`

y!1`

Esx, y; td ­ 0 . (3)

From Esx, y; td one can derive useful parameters, such
the concentration of particles,

rsx; td ­ 2
≠

≠y
Esx, y; tdjy­x , (4)

or the probability that given a particle atx the next nearest
particle is aty (the IPDF),

psx, y; td ­ rsx, y; td21 ≠2

≠x≠y
Esx, y; td . (5)

While such a level of description affords us invaluab
physical insights into many interesting applications [13
it does not characterize the system completely. For th
we need the multiple-point density correlation function
rnsx1, x2, . . . , xn; td, i.e., the joint probability density to
find n particles at x1, x2, . . . , xn at time t. For n ­
1, r1sx, td is identical with the particle concentration
of Eq. (4). However, a complete characterization
the system requires knowledge of thefull hierarchy of
correlation functionshrnj`

n­1.
The multiple-point correlation functions may be ob

tained from a generalization of the method of empty inte
vals [12]. Let Ensx1, y1, x2, y2, . . . , xn, yn; td be the joint
probability that the intervalsfxi , yig (i ­ 1, 2, . . . , n are
empty at timet. The intervals are nonoverlapping, an
ordered: x1 , y1 , · · · , xn , yn. Then, then-point
correlation function is given by
rnsx1, . . . , xn; td ­ s21dn ≠n

≠y1 · · · ≠yn
Ensx1, y1, . . . , xn, yn; tdjy1­x1,...,yn­xn . (6)
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Doering [12] has shown that for irreversible coalescen
theEn satisfy the partial differential equation,

≠

≠t
Ensx1, y1, . . . , xn, yn; td ­ D

√
≠2

≠x2
1

1
≠2

≠y2
1

1 · · ·

1
≠2

≠x2
n

1
≠2

≠y2
n

!
En ,

(7)

with the boundary conditions

lim
xi "yi or yi #xi

Ensx1, y1, . . . , xn, yn; td

­ En21sx1, y1, . . . , xyi , yyi , . . . , xn, yn; td , (8)

and

lim
yi "xi11 or xi11#yi

Ensx1, y1, . . . , xn, yn; td

­ En21sx1, y1, . . . , yyi , xyi11, . . . , xn, yn; td . (9)
ceFor convenience, we use the notation that crossed
arguments (e.g.,xyi) have been removed. TheEn are tied
together in an hierarchical fashion through the bounda
conditions (8) and (9): one must knowEn21 in order to
computeEn.

We now provide a full solution of theEn. At the level
of n ­ 2, the solution is [14]

E2sx1, y1, x2, y2; td ­ Esx1, y1; tdEsx2, y2; td
2 Esx1, x2; tdEsy1, y2; td
1 Esx1, y2; tdEsy1, x2; td . (10)

Clearly, each term on the right-hand side (r.h.s.)
Eq. (10) satisfies Eq. (7), as well as the boundary co
ditions (8) and (9)—sinceEsx, x; td ­ 1 [Eq. (2)]. Simi-
larly, En can also be expressed in terms of products ofE’s
for single intervals:
Ensx1, y1, . . . , xn, yn; td ­
s2n21d!!X

p­1

spEsz1,p , z2,p; tdEsz3,p , z4,p; td · · · Esz2n21,p , z2n,p; td . (11)
l-

e

d

-

t

e-
Here z1,p , z2,p , . . . , z2n,p symbolize anordered permuta-
tion, p, of the variablesx1, y1, . . . , xn, yn, such that

z1,p , z2,p , z3,p , z4,p , . . . , z2n21,p , z2n,p ,

and

z1,p , z3,p , z5,p · · · , z2n21,p . (12)

There are exactlys2n 2 1d!! ­ 1 3 3 3 · · · 3 s2n 2 1d
such permutations.sp is 11 for even permutations
(permutations that require an even number of exchang
between pairs of variables), or21 for odd permutations.

Equation (11) can be proved by induction. Forn ­ 1
it reduces toE1sx, y; td ­ Esx, y; td, and forn ­ 2 it re-
duces to Eq. (10), as required. We need show only th
if (11) is true forn 2 1 (n $ 3), then it is also valid for
n. It is easy to see that because each of theE’s satisfies
Eq. (1), the proposedEn satisfies Eq. (7). Now test the
boundary conditions: Suppose thatxi ­ yi . The permu-
tations in the r.h.s. of (11) are divided into two group
(a) those which leavesxi , yid as an argument of one of the
E’s in the product, and (b) those which separatexi and
yi into differentE’s in the product. The permutations in
group (a) add up toEn21sx1, y1, . . . , xyi , yyi , . . . , xn, yn; td, as
required by the boundary condition (8). This is becau
Esxi , yi; d ­ 1 [from Eq. (2)], and because of the induc
tion assumption regarding the validity of (11) forn 2 1.
Notice that the parity of the permutations in group (a)
the same as ifxi andyi were removed. On the other hand
es

at

s:
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-

is
,

the permutations in group (b) add up to zero, for the fo
lowing reason: Suppose that in some permutationxi and
yi are paired with other variablesz1 and z2; sxi , z1d and
syi , z2d. Then, there exists a similar permutation of th
variablesx1, y1, . . . , xn, yn where individual pairs remain
in the same order, but now the pairings ofxi andyi are ex-
changed:sxi , z2d andsyi , z1d. Whenxi ­ yi , the product
of theE’s in these two permutations is identical. But the
parity of the two permutations is opposite, and so they ad
up to zero. The same is true if the pairings ofxi andyi are
sz1, xid and sz2, yid, or sz1, xid and syi , z2d. [Notice that
the pairingssxi , z1d and sz2, yid cannot occur, because of
the required ordering, Eq. (12).] In summary, the bound
ary condition (8) is satisfied. The proof of (9) follows a
similar line of reasoning.

The ordered permutations of the end points ofn intervals
(2n variables) may be constructedrecursivelyin the fol-
lowing way. The order constraint of Eq. (12) requires tha
z1,p ­ x1, for all permutationsp. Set thenz1 ­ x1, and
z2 equal to one of the othery1, . . . , xn, yn variables. Then,
arrange the remaining2n 2 2 variables in all their ordered
permutations. Finally, repeat this procedure, selecting s
quentiallyz2 ­ y1, x2, y2, . . . , xn, yn. Thus, the number of
permutations for the end points ofn intervals,Nsnd, sat-
isfies the recursion relationNsnd ­ s2n 2 1dNsn 2 1d,
and thereforeNsnd ­ s2n 2 1d!!—sinceNs1d ­ 1. The
recursive construction allows us also to expressEn more
compactly, in terms ofEn21,
Ensx1, y1, . . . , xn, yn; td ­ 1

nX
j­1

Esx1, yj ; tdEn21sxyi , y1, . . . , xj , yyj , . . . , xn, yn; td

2

nX
j­2

Esx1, xj ; tdEn21sxy1, y1, . . . , xyj , yj , . . . , xn, yn; td . (13)
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Until now we have ignored the issue ofinitial condi-
tions. For the solution (11) to work, it is required tha
the same relation be satisfied at timet ­ 0 as well. This
seems at first sight a formidable restriction, but fortunate
some of the most important situations are unaffected by
If the particles are initially randomly distributed, indepen
dently from each other, at a homogeneous concentrat
r0, thenEsx, y; 0d ­ e2r0sy2xd and

Ensx1, y1, . . . , xn, yn; 0d ­ e2r0fs y12x1d1···1s yn2xndg. (14)
One can easily check that Eq. (11) is satisfied.
this case, Eq. (6) yields the obvious relation:rsx1,
x2, . . . , xn; 0d ­ r

n
0 . This uncorrelated random initial

distribution gets quickly correlated with time.
Another interesting situation is the state of the syste

in the long-time asymptotic limit. It can be shown
that the system arrives at auniversal asymptotic state,
independent of the initial distribution of particles
(This excludes some exotic situations, such as frac
4758
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initial distributions.) The long-time asymptotic solution
of Eq. (1), with the boundary conditions (2) and (3), is

Esx, y; td ­ erfc

√
y 2 x
p

8Dt

!
. (15)

Using Eq. (4), the corresponding long-time asymptot
concentration is

rasympsx; td ­
1

p
2pDt

. (16)

Using Eqs. (13) and (6) one can produce then-point
correlations. For example, forn ­ 2 we get

r2sx1, x2; td
r2

asymp
­ 1 2 e22j2

1
p

p je2j2

erfcsjd , (17)

where we used the notationj ­ sx2 2 x1dy
p

8Dt, and
for n ­ 3
r3sx1, x2, x3; td
r3

asymp
­ 1 2 e22j

2
21 2 e22j

2
32 2 e22j

2
31 1 2e2j

2
212j

2
322j

2
31 1

p
p j21se2j

2
21 2 e2j

2
322j

2
31 d erfcsj21d

1
p

p j32se2j
2
32 2 e2j

2
212j

2
31 d erfcsj32d 1

p
p j31se2j

2
31 2 e2j

2
212j

2
32 d erfcsj31d , (18)
e

e
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,
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where now jij ­ sxi 2 xjdy
p

8Dt (notice that j31 ­
j32 1 j21 is not an independent variable).

In Fig. 1, we show the two-point correlation function in
the long-time asymptotic limit [Eq. (17)]. We see that th
two points become uncorrelated as the distance betw
them increases, but that there is an effective stro
repulsive interaction (due to the coalescence reactio
between nearby particles. Interestingly, the two-poi
correlation is a monotonous function of the distanc
A simple convolution of the distances between neare
particles predicts an oscillating tail [15].

The three-point correlation function, Eq. (18), is a b
harder to illustrate. Instead of a full description, in Fig.
we comparer3sx1, x2, x3d to r2sx1, x2dr2sx2, x3dyrsx2d
(in the spirit of the truncation ansatz that might be used

FIG. 1. Two-point correlation function for the coales
cence process in the long-time asymptotic limit. Shown
r2sjdyr2

asymp vs j.
e
en
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e.
st

it
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-
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a Kirkwood approximation, say) along the linex3 2 x2 ­
x2 2 x1. Again, we see that as the distance between th
three particles increases they become rapidly uncorrelate
but that the approximation ansatz fails for short distances
due to reactions.

In summary, we have obtained the complete hierarch
of n-point density correlation functions for the diffusion-
limited irreversible coalescence process,A 1 A ! A, in
one dimension. The recursive form of Eq. (13) allows
one to obtain successive correlations in a mechanic
fashion. We emphasize, however, that the solution i
valid only when the initial conditions satisfy the same
hierarchy, Eq. (13). While this includes the important

FIG. 2. Three-point correlation function for the coalescence
process in the long-time asymptotic limit. Plotted is the rela-
tive error made by the Kirkwood approximation,srKirkwood 2
r3dyr3, for the line j21 ­ j32 ; j. The Kirkwood
approximation in this case isrKirkwood ­ r2sjd2yrasymp .
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cases of initially uncorrelated particles and the long
time asymptotic behavior (which is independent of initia
conditions), it remains an open question to determine t
full class of systems which satisfy this requirement.

The more general problems of reversible coalescence
when the back reactionA ! A 1 A is allowed—and
coalescence with different kinds of particle input can als
be handled, in principle, by the empty interval approac
That is, in both cases (even both at the same time) there
a closed hierarchy of linear partial differential equation
coupled through their boundary conditions, similar to Eq
(7), (8), and (9) [12]. But the linear operators involve
break the simplex-y symmetry of Eq. (7), and a complete
solution remains an open challenge. The empty interva
formalism can also be extended to other diffusion-limite
processes through a simple variable change [9,10,16–1
It will also be interesting to study how the present metho
can be extended to those cases.

I thank Larry Glasser for useful discussions and Charl
Doering for sharing with me his elegant solution for th
two-point correlation function.
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