VOLUME 81, NUMBER 21 PHYSICAL REVIEW LETTERS 23 November 1998

Complete Exact Solution of Diffusion-Limited Coalescenced + A — A

Daniel ben-Avraham*

Physics Department, and Clarkson Institute for Statistical Physics (CISP), Clarkson University,
Potsdam, New York 13699-5820
(Received 12 March 1998

Some models of diffusion-limited reaction processes in one dimension lend themselves to exact
analysis. The known approaches yield exact expressions for a limited number of quantities
of interest, such as the particle concentration, or the distribution of distances between nearest
particles. However, a full characterization of a particle system is provided only by the infinite
hierarchy of multiple-point density correlation functions. We derive an exact description of the full
hierarchy of correlation functions for the diffusion-limited irreversible coalescence pracesd — A.
[S0031-9007(98)07742-4]

PACS numbers: 82.20.Mj, 05.50.+q, 05.70.Ln, 68.10.Jy

Nonequilibrium kinetics of diffusion-limited reactions lim E(x,y;1)=1, (2
has been the subject of much recent interest [1—6]. In yIx or xly
contrast to equilibrium systems—which are best analyzedq in addition, as long as there are any particles left in
with standard thermodynamics—or reaction-limited pro-ip system,
cesses—whose kinetics is well described by classical rate
equations [7,8]—there is no general approach to nonequi- lim E(x,y;t) = 0. (3)
librium, diffusion-limited reactions. Some diffusion- e
limited processes in one dimension can be approached
analytically, and exact results for multiple-point density From E(x, y; ) one can derive useful parameters, such as
correlation functions have been obtained with the freghe concentration of particles,
Majorana fermions formalism [9,10]. In this Letter, we
derive an exact analytic recursion relation for the full hi-
erarchy of multiple-point density correlation functions for
the irreversible diffusion-limited coalescence procéss
A — A, following the method of empty intervals [11—13]. or the probability that given a particle athe next nearest
Our model [11-13] is defined on the linex < x <  particle is aty (the IPDF),
o, ParticlesA are represented by points which perform
unbiased diffusion with a diffusion constait. When p(x,y:1) = p(x,y;l)—l
two particles meet, they merge into one particle which dxdy
continues diffusing with the same diffusion constants
the reacting particles. Since the reaction step is infinitely While such a level of description affords us invaluable
fast, the system models thiiffusion-limitedcoalescence Physical insights into many interesting applications [13],
processA + A — A. it does not characterize the system completely. For that
An exact treatment of the problem is possible throughve need the multiple-point density correlation functions
the method of empty intervals, known also as the method»(x1, X2, ..., x,; ), i.e., the joint probability density to
of interparticle distribution functions (IPDF). The key find n particles atx;,x,...,x, at time . For n =
parameter isE(x, y; r)—the probability that the interval 1, pi(x,?) is identical with the particle concentration
[x,y] is empty (contains no particles) at time Particles 0f Ed. (4). However, a complete characterization of
just at the edge of an empty interval may diffuse into orthe system requires knowledge of thel hierarchy of
out of the interval, affecting the probability. With this ~ correlation functiongp,}, .
observation in mind, one can write down a rate equation The multiple-point correlation functions may be ob-
for the empty interval probability [11,12]. For the model tained from a generalization of the method of empty inter-
at hand, the rate equation is vals [12]. LetE,(xi,y1,x2,y2,..., Xn, ya3 1) be the joint
DE(x.y: 1) 92 92 probability that the interval$x;,y;] (i = 1,2,...,n are
— = = D<—2 + —2)E(x,y;t). (1) empty at timer. The intervals are nonoverlapping, and
ot ax ay ordered:x; < y; < --- <x, <y,. Then, then-point
The coalescence reaction imposes the boundary condi}io:mrrelation function is given by
an
pn(xl’ e Xns t) = (_])n m En(xl,yls e Xns Yo t)|y1=x] ..... V=X, * (6)

n

y—+o

plx;t) = —aiE(x,y;t)[V:x, (4)
y

2

E(x,y;t). )
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Doering [12] has shown that for irreversible coalescencé-or convenience, we use the notation that crossed out

the E,, satisfy the partial differential equation, arguments (e.g#;) have been removed. THg, are tied
9 92 92 together in an hierarchical fashion through the boundary
gEn(xl,yl,...,xn,yn;t) =D\t —= t - conditions (8) and (9): one must knoi,—; in order to
oxi oy computek,,.
92 92 We now provide a full solution of th&,,. At the level
- _l’_ - E s — . .
ax2 a2 ) of n = 2, the solution is [14]
_ N () E>(x1,y1,%2,¥2: 1) = E(x1,y15)E(x2, y25 1)
with the poundary conditions — E(x1,x2;0)E(y1, 23 1)
xiTy,IerT])',lx,-Eil(Xl’yl’”.’xn’yn;t) + E(xl,yz;t)E(yl,)Q;t). (10)

= Eni@nytecofin i i), (8) Clearly, each term on the right-hand side (r.h.s.) of

and Eq. (10) satisfies Eq. (7), as well as the boundary con-
lim En(X1, Y1, oy Xy Y3 1) ditions (8) and (9)—sinc&(x, x; 1) = 1[Eq. (2)]. Simi-
yilxier or xirly; larly, E,, can also be expressed in terms of productg’sf

=E,1(x1, 1. Pis Kitlo oo Xmayns ). (9) | for single intervals:

2n—-1N
En(x1,)71,---,xn,)’n;f) = Z a-pE(Zl,pazZ,p;t)E(Z3,paZ4,p;t)"'E(ZZn—l,p»ZZn,p;t)‘ (ll)
p=1
Here zi 5,22, ...,20,,, Symbolize anordered permuta- | the permutations in group (b) add up to zero, for the fol-

tion, p, of the variables, yi, ..., x,, y,, such that lowing reason: Suppose that in some permutatioand
y; are paired with other variables and z»; (x;,z;) and
(vi,z2). Then, there exists a similar permutation of the
and variablesxy, y1,...,x,, vy, Where individual pairs remain
in the same order, but now the pairingswpfindy; are ex-
changedix;, z;) and(y;,z1). Whenx; = y;, the product
There are exactl2n — 1)!! =1 X 3 X -.- X 2n — 1)  of the E’s in these two permutations is identical. But the
such permutations.o, is +1 for even permutations parity of the two permutations is opposite, and so they add
(permutations that require an even number of exchangas to zero. The same is true if the pairingstpaindy; are
between pairs of variables), erl for odd permutations.  (z1, x;) and(zz,y;), or (z1,x;) and (y;,z2). [Notice that
Equation (11) can be proved by induction. For=1  the pairings(x;, z;) and(z,,y;) cannot occur, because of
it reduces toE(x,y;t) = E(x,y;t), and forn = 2 itre-  the required ordering, Eq. (12).] In summary, the bound-
duces to Eq. (10), as required. We need show only thary condition (8) is satisfied. The proof of (9) follows a
if (11) is true forn — 1 (n = 3), then it is also valid for similar line of reasoning.
n. It is easy to see that because each of Atgesatisfies The ordered permutations of the end points aitervals
Eq. (1), the proposed, satisfies Eqg. (7). Now test the (2n variables) may be constructedcursivelyin the fol-
boundary conditions: Suppose that= y;. The permu- lowing way. The order constraint of Eq. (12) requires that
tations in the r.h.s. of (11) are divided into two groups:z;, = x;, for all permutationg. Set thenz; = x;, and
(a) those which leavéy;, y;) as an argument of one of the z, equal to one of the other, ..., x,, y, variables. Then,
E’s in the product, and (b) those which separateand arrange the remaininZy — 2 variables in all their ordered
y; into differentE’s in the product. The permutations in permutations. Finally, repeat this procedure, selecting se-
group (a) add up t&,— 1 (x1, y1,.... £is ¥ir- - -» Xn, yus t), @S quentiallyzy = y1,x2,v2,..., %4, yu. Thus, the number of
required by the boundary condition (8). This is becausgermutations for the end points efintervals,N(n), sat-
E(x;,y;;) = 1 [from Eg. (2)], and because of the induc- isfies the recursion relatioV(n) = 2n — 1)N(n — 1),
tion assumption regarding the validity of (11) fer— 1.  and therefor&V(n) = (2n — 1)!!—sinceN(1) = 1. The
Notice that the parity of the permutations in group (&) isrecursive construction allows us also to exprEgsnore
the same as if; andy; were removed. On the other hang, compactly, in terms of,, 1,

,p < 22,p>23,p < Z4,ps>+++522n—1,p < L2n,p »

Zl,p < 23,p < 5.p < L2n—1,p - (12)

n
En(-xl,yl,---,xnvyn;t) = ‘I'ZE(Xh)’j;f)Enf](}éi,yl,---,xj,fj,'--,xn,)’nﬂ)
j=1

n
- ZE(xl,xj;I)En—l(Jfl,yl,---,Jéj,yj,---,xn,yn;l)- (13)
Jj=2
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Until now we have ignored the issue wfitial condi- initial distributions.) The long-time asymptotic solution
tions For the solution (11) to work, it is required that of Eq. (1), with the boundary conditions (2) and (3), is
the same relation be satisfied at time= 0 as well. This
seems at first sight a formidable restriction, but fortunately E(x,y;t) = erfc(
some of the most important situations are unaffected by it.

If the particles are initially randomly distributed, indepen-
dently from each other, at a homogeneous concentrati
po, thenE(x, y;0) = e 0% and

En(X1, Y1y Xn, Y03 0) = e~ Polln=x)++ (=] (14) 1
0 . . - Pasymp (X5 1) = ——. (16)

ne can easily check that Eq. (11) is satisfied. In 27Dt
this case, Eq. (6) yields the obvious relatiop(x;,

X2,...,%,;0) = py. This uncorrelated random initial
distribution gets quickly correlated with time.

Another interesting situation is the state of the system X1, X051 Cm o
in the long-time asymptotic limit. It can be shown % 1= e + Jmée s erfé), (17)
that the system arrives at @niversal asymptotic state, asymp
independent of the initial distribution of particles. where we used the notatioA = (x, — x1)/+/8Dt, and
(This excludes some exotic situations, such as fra?ta(brn =3

/3D ) (15)

Using Eq. (4), the corresponding long-time asymptotic
%Concentration is

Using Egs. (13) and (6) one can produce thoint
correlations. For example, far = 2 we get

PIXLX XS a8 L 28 28 4 0BG 4 7 (e — B erfo(£a)

pgsymp
+ VT Enle 8 — e B Eerfe(£y) + VA faile 6 — e BT erfe(£y), (18)
. | . L .
where now &; = (x; — x;)/+/8Dt (notice thatés; =  aKirkwood approximation, say) along the ling — x, =
&3 + &1 isnotan independent variable). x, — x1. Again, we see that as the distance between the

In Fig. 1, we show the two-point correlation function in three particles increases they become rapidly uncorrelated,
the long-time asymptotic limit [Eq. (17)]. We see that the but that the approximation ansatz fails for short distances,
two points become uncorrelated as the distance betweeatue to reactions.
them increases, but that there is an effective strong In summary, we have obtained the complete hierarchy
repulsive interaction (due to the coalescence reactiomf n-point density correlation functions for the diffusion-
between nearby particles. Interestingly, the two-pointimited irreversible coalescence procedsi} A — A, in
correlation is a monotonous function of the distanceone dimension. The recursive form of Eq. (13) allows
A simple convolution of the distances between nearesbne to obtain successive correlations in a mechanical
particles predicts an oscillating tail [15]. fashion. We emphasize, however, that the solution is

The three-point correlation function, Eq. (18), is a bitvalid only when the initial conditions satisfy the same
harder to illustrate. Instead of a full description, in Fig. 2hierarchy, Eq. (13). While this includes the important
we compareps(xi,x2,x3) 10 pa(xy, x2)p2(x2,x3)/p(x2)

(in the spirit of the truncation ansatz that might be used in

5
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15 FIG. 2. Three-point correlation function for the coalescence

process in the long-time asymptotic limit. Plotted is the rela-
FIG. 1. Two-point correlation function for the coales- tive error made by the Kirkwood approximatiofpkirkwood —
cence process in the long-time asymptotic limit. Shown isp3)/p3;, for the line & = &, = ¢&. The Kirkwood
pz(g)/p,fsymp vs &. approximation in this case Bkirkwood = p2(§)2/pasymp.
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cases of initially uncorrelated particles and the long- V. Kuzovkov and E. Kotomin, Rep. Prog. Phy&l, 1479

time asymptotic behavior (which is independent of initial (1988).

conditions), it remains an open question to determine thel6] J. Stat. Phys65, Nos. 5/6 (1991); this issue contains the

full class of systems which satisfy this requirement. proceedings of a conference &fodels of Non-Classical
The more general problems of reversible coalescence—  Reéaction Rateswhich was held at National Institutes

when the back reactiot — A + A is allowed—and of Health (1991) in honor of the 60th birthday of

coalescence with different kinds of particle input can also G.H. Weiss. : I :

. L . [7] K.J. Laidler, Chemical Kinetics (McGraw-Hill, New
be handled, in principle, by the empty interval approach. ™~ v 1965).
That s, in both cases (even both at the same time) there igg) S.W. Benson,The Foundations of Chemical Kinetics
a closed hierarchy of linear partial differential equations, (McGraw-Hill, New York, 1960).
coupled through their boundary conditions, similar to Egs. [9] H. Hinrichsen, K. Krebs, and M.P. Pfannmiiller, J. Stat.
(7), (8), and (9) [12]. But the linear operators involved Phys. 78, 1429 (1995); B. Wehefritz, K. Krebs, and
break the simple-y symmetry of Eq. (7), and a complete M.P. Pfannmdiller, J. Stat. Physr8, 1471 (1995);
solution remains an open challenge. The empty intervals  H. Hinrichsen, K. Krebs, and I. Peschel, Z. Phys1@0,
formalism can also be extended to other diffusion-limited 105 (1996). o
processes through a simple variable change [9,10,16—1&]1.0] M. Henkel, E. Orlandini, and J. Santos, Ann. Phys. (N.Y.)

It will also be interesting to study how the present methOd[n] éSg'bi?f’A(\}g%;)r}] M.A. Burschka and C.R. Doerin
can be extended to those cases. ' a5 (10 ’ o 9

. . . J. Stat. Phys60, 695 (1990).
| thank Larry Glasser for useful discussions and Charlletlz] CR. Doeri);\g Physic(a (A%Sterdam%A’ 386 (1992).

Doering for sharing with me his elegant solution for the[13] For reviews, see D. ben-Avraham, Mod. Phys. Lett9,B
two-point correlation function. 895-919 (1995); ifNonequilibrium Statistical Mechanics
in One Dimension,edited by V. Privman (Cambridge
University Press, Cambridge, 1997), pp. 29-50.
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