
VOLUME 81, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 23 NOVEMBER 1998

g

d
ns
el.

4732
Quantum Phase Transitions in the Triangular-Lattice Bilayer Heisenberg Model
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We study the triangular-lattice bilayer Heisenberg model with antiferromagnetic interplane couplin
J' and nearest-neighbor intraplane couplingJ ­ lJ' by expansions inl. For negativel a phase
transition is found to an ordered phase at alc ­ 20.2636 6 0.0001, which is in the 3D classical
Heisenberg universality class. Forl . 0, we find a transition at a rather largelc ø 1.2. The
universality class of the transition is consistent with that of Kawamura’s 3D antiferromagnetic stacke
triangular lattice. The spectral weight for the triplet excitations, at the ordering wave vector, remai
finite at the transition, suggesting that a phase with free spinons does not exist in this mod
[S0031-9007(98)07709-6]
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In recent years much interest has focused on the nat
of quantum disordered phases of the Heisenberg antif
romagnets, where the combination of low dimensionalit
low spin, and frustration cause the ground state of t
system to be disordered [1,2]. The case of one-spatial
mension is relatively well studied and understood. Tw
dimensional systems have received particularly large
tention, due to their relevance to high temperature s
perconductivity. However, despite much effort, quantu
disordered phases are not fully understood ind ­ 2.

A special situation is those types of quantum disorder
phases where the ground state is to a good approxima
a product of local singlets over even-spin clusters. Th
can arise due to explicitly dimerized (or clustered) Ham
tonians; a situation that appears to be relevant for the m
terial CaV4O9 [3]. Another scenario is the spontaneou
breaking of translational symmetry, as found in large-N
theories and also suspected in several frustrated mod
which leads to dimerization [4–6]. In all these system
the elementary excitations are triplets with a finite excit
tion energy.

In contrast to these, a different class of quantum diso
dered phases would be one where the elementary exc
tions are free spin-half objects or spinons. Such phas
for d ­ 2, have been predicted in systems where t
classical ground state is noncolinear [7] and their pro
erties have been investigated by field-theoretic metho
[8]. However, no lattice models are known where suc
a behavior is realized. One potential candidate syst
for such a behavior is the Kagome-lattice antiferromagn
where the ground state is widely believed to be magne
cally disordered [9,10].

Here we study the triangular-lattice bilayer Heisenbe
model. The model consists of two layers of triangu
lar lattices, one on top of the other, with an intralaye
nearest-neighbor Heisenberg couplingJ, which could be
0031-9007y98y81(21)y4732(4)$15.00
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ferromagnetic or antiferromagnetic, and an antiferroma
netic interlayer nearest-neighbor couplingJ', between the
spins on top of each other. Varying the ratiol ­ JyJ'

allows one to investigate the quantum phase transition
tween the ordered and disordered phases of the mo
The corresponding square-lattice Heisenberg bilayer h
been extensively studied by many authors [11]. It w
found that with increasingl the triplet excitations at the
ordering wave vector soften and at a criticall the gap
closes and there is a continuous quantum phase tra
tion to a magnetically ordered phase. This transition li
in the universality class of the 3D classical Heisenbe
model. Not surprisingly, we obtain similar results for fer
romagnetic in-plane couplings in the triangular-lattice b
layer model.

More interesting, however, is the case of antiferroma
netic in-plane couplings. In this case the classical grou
state is noncolinear. Thus, it represents a candidate s
tem to look for free spinons, when the ground state
disordered by quantum fluctuations. The bilayer couplin
can be viewed as reducing the effective spin of the 2
quantum system, thus leading to a disordered ground st
Furthermore, this system presents a possibility to fi
novel quantum critical points, different from the univer
sality class of the 3D classical Heisenberg model. It h
been shown [7,8] that when there is a transition fro
a noncolinear classical phase to a phase with unbou
spinons, the universality class of the transition is that
the three-dimensional O(4) model. Furthermore, one e
pects that in this case the triplet excitations would dec
into the two-spinon continuum and not remain well de
fined. The alternative possibility is that such a phase w
free spinons does not exist and there is a direct tran
tion from a magnetically ordered phase to one with ma
sive triplet excitations. In this case the quantum pha
transition may lie in the universality class of the classic
© 1998 The American Physical Society
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stacked triangular-lattice Heisenberg model, first found b
Kawamura [12].

We study the model by a strong coupling expansio
in the parameterl ­ JyJ', calculating the ordering sus-
ceptibility, the triplet excitation spectrum, and its spec
tral weight. Our analysis of the susceptibility and th
inverse gap series shows evidence for a phase transitio
lc ø 1.2 with exponentsn ø 0.53 andg ø 1.1. These
results are consistent with the universality class discuss
by Kawamura [12] for the stacked triangular Heisenbe
antiferromagnet and not consistent with the 3D classic
O(4) model.

Furthermore, we find that asl is increased in the
model and the minimum of the triplet spectrum become
more pronounced, the spectral weight of the triplets
reduced over much of the Brillouin zone but it stays finit
and grows withl in the vicinity of the ordering wave
vector. This implies that the triplets stay well define
excitations, near the minimum, even at the transition
the ordered phase. Together with the estimates for t
critical exponents at the transition, this suggests that fr
spinons do not exist in this model. The divergence
the magnetic susceptibility and the closing of the triple
gap at the ordering wave vector of the triangular lattic
also implies that forl . lc, the system is magnetically
ordered. Thus, our results provide further support for th
existence of antiferromagnetic order in the single-plan
triangular-lattice antiferromagnet [10,13,14].

The triangular-lattice bilayer Heisenberg model is give
by the Hamiltonian:

H ­ J'

X
i

SA,i ? SB,i

1 J
X
ki,jl

fSA,i ? SA,j 1 SB,i ? SB,jg , (1)

where A and B refer to the two layers of the triangular
lattice andki, jl are nearest neighbors in a given layer o
the lattice. The triangular lattice sites are spanned by t
two nonorthogonal primitive vectors

e1 ­ s1, 0d and e2 ­
1
2

s21,
p

3 d .

For J ­ 0, spins are coupled only in pairs and th
ground state is a direct product of singlets over these pa
The excitations are isolated triplets localized at some s
i. For finite values ofl ­ JyJ' an effective Hamilton-
ian H effsRi,jd describing the interaction between thes
localized degenerate triplet states can be derived by a s
tematic expansion inl:

H effsRd ­
X
n

lnhnsRd .

The methods for calculatingH eff in powers of l ­
JyJ' are well developed and discussed in the literatu
[15]. The excitation spectrum is given by the eigenvalue
y
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TABLE I. Series for the triplet energiesEsqd.

q ­ 0 q ­ QAF

0 1.0 1.0
1 3.0 21.5
2 21.5 1.875
3 20.75 21.875
4 24.125 0.4453125
5 15.632 8125 21.488 28125
6 226.944 335 937 5 14.685 058 593 75
7 56.977 294 921 875 243.228 454 589 843 7
8 2244.898 391 723 633 84.745 834 350 585 9
9 794.878 423 690 796 2241.322 682 380 676

10 22301.242 520 332 34 911.485 698 580 742

of the effective HamiltonianH sRd, whereRi,j ­ ri 2

rj is the vector connecting sitesi andj. It can easily be
diagonalized by a Fourier transform. We have calculate
these quantities complete to 10th order.

In Table I, the expansion coefficients forEsqd with
q ­ 0 andQAF ­ 4py3 e1 are presented, corresponding
to the ordering wave vectors for the ferromagnetic and th
antiferromagnetic systems. The expansion coefficients f
the magnetic susceptibilities at the same two wave vecto
[11,16], calculated to 10th order are given in Table II.

In addition to the wave vector dependent susceptibil
ties and the excitation spectra, we also calculate series
the spectral weights associated with the excitations. Th
spectral weights are defined by the delta-function piece
the dynamical correlation function,

Ssq, vd ­ Asqddfesqd 2 vg 1 Bsq, vd .

They are calculated via the spin-spin correlation function
where the intermediate states are restricted to the eleme
tary triplet excitations [17]. These latter calculations ar
more difficult and are only done to 6th order.

For ferromagnetic intraplane couplings, the critical poin
occurs at small values ofl , 0, so even with relatively
short series we can determine the critical point quite we
and also get reasonable estimates for the critical exponen
For the susceptibility series, thed-log Pade approximants

TABLE II. Susceptibility seriesxsqd.

q ­ 0 q ­ QAF

0 0.250 000 000 000 00 0.250 000 000 000 00
1 21.500 000 000 000 0 0.750 000 000 000 00
2 7.125 000 000 000 0 0.937 500 000 000 00
3 230.750 000 000 000 0.609 375 000 000 00
4 128.476 562 501 74 20.101 562 498 263 4
5 2528.799 479 161 14 1.974 934 901 323 7
6 2148.051 106 780 6 0.240 885 426 764 74
7 28631.954 499 400 9 21.081 393 189 130 7
8 34 434.857 183 080 213.218 768 766 815
9 2136 648.824 764 77 59.415 134 251 052

10 539 861.353 042 63 293.997 993 646 134
4733
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TABLE III. Critical exponents.

Universality class n g

Ising [18] 0.6300 6 0.0008 1.2402 6 0.0009
xy [18] 0.6693 6 0.0010 1.3160 6 0.0012
Heisenberg [18] 0.7054 6 0.0011 1.3866 6 0.0012
O(4) [20] 0.74 1.47
Chiral [12] 0.55 1.1
This work ø0.53 ø1.1

lead to estimates

lc ­ 20.263 62 6 0.000 09, g ­ 1.407 6 0.004 .

Here the uncertainties reflect the spread between differe
Pade estimates. Applyingd-log Pade approximants to the
inverse of the energy-gap series, one obtains

lc ­ 20.2641 6 0.0005, n ­ 0.73 6 0.01 .

Here, the estimates for the critical points and exponen
from individual approximants are correlated and the mor
negative the critical point estimates, the larger is th
exponent. Given the length of our series, these num
bers are in quite good agreement with the 3D classic
Heisenberg university class, where the best current e
timates come from field theory:g ­ 1.3866 6 0.0012,
n ­ 0.7054 6 0.0011 [18]. That the series analysis gives
slightly higher estimates for the exponents is common
many models and is primarily due to corrections to sca
ing [19].

We now consider the analysis forl . 0, which cor-
responds to antiferromagnetic intraplane couplings. W
analyzed the inverse of the energy gap and the orderi
susceptibility series usingd-log Pade approximants and
differential approximants. In this case, the convergenc
was much poorer as the critical point occurs at muc
largerlc. The estimates for the critical points and the ex
ponents show tremendous scatter. Assuming that the tw
series have the same critical point, the most consiste
estimate forlc is in the range1.18 1.29. In that range
there are four approximants for the susceptibility se
ries, which give (lc, g) values of (1.19,1.10),(1.19,1.08),
(1.21,1.06),(1.26,1.32), and four approximants fo

Γ
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W

FIG. 1. Brillouin zone of the triangular lattice.
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the inverse gap series, which lead to (lc, n) values
of (1.18,0.45),(1.22,0.51),(1.25,0.59),(1.29,0.57). Thes
lead us to conclude thatlc ø 1.2 and that n ø 0.53
and g ø 1.1. These exponents are also obtained if th
approximants are biased to have the critical point ne
lc ­ 1.2. These results are consistent with Kawamura’
universality class for the stacked triangular-lattice Heisen
berg model, where he foundn ø 0.55 andg ø 1.1 [12],
and not consistent with the O(4) universality class, whic
has n ø 0.74 and g ø 1.47 [20]. The difference be-
tween the critical exponents for Kawamura’s universalit
class and those of other 3D classical models is hig
lighted in Table III. Following Chubukov, Sachdev, and
Senthil [7], Kawamura’s universality class should aris
in this model only if there is a direct transition from the
disordered phase without free spinons to the3-sublattice
ordered phase.

Another way to explore the existence of an intermedia
phase with free spinons is to study the spectral weigh
for the triplets and see if it vanishes asl is increased.
When the spinons become the elementary excitations, t
triplets can break up into a pair of spinons and thus wi
not remain sharp excitations. To analyze the series f
the triplet spectra, we use Euler transforms and Pa
approximants. In Fig. 1, we show the Brillouin zone o
the triangular lattice. In Fig. 2, the excitation spectra fo
l ­ 0.2, 0.4, and1.0 are shown along selected contours
In Fig. 3, the spectral weights estimated by the [3y3] Pade
are shown along the same contours. It is evident fro
these plots that asl is increased, the triplet dispersion
develops a sharp minimum at the ordering wave vect
of the triangular-lattice Heisenberg model. The spectr
weight associated with the triplets is rapidly reduced ove
much of the Brillouin zone, however, in the vicinity of
the ordering wave vector, the spectral weights continu

Κ Γ W Κ
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FIG. 2. Dispersion of the triplet excitations.
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FIG. 3. Spectral weights along selected contours.

to increase withl, and the triplet excitations remain
sharp. This provides further evidence for the absence
an intermediate phase in this model, and a direct transitio
from the disordered phase with massive triplet excitation
to the magnetically ordered phase.

In conclusion, in this paper we have studied the qua
tum phase transitions in the bilayer triangular-lattic
Heisenberg models in a strong coupling expansion. F
ferromagnetic intralayer coupling, the transition to the or
dered phase is found to be in the 3D classical Heise
berg universality class. The antiferromagnetic intraplan
coupling case appears to be quite different. We find ev
dence that there is a transition to an ordered phase at mu
larger values ofl and the transition is in the universality
class of the stacked triangular lattice. This, together wit
the result that the triplet spectral weight near the orde
ing wave vector continues to grow withl suggests that in
this model, a phase with free spinons does not exist a
there is a direct transition from the disordered phase wi
massive triplet excitations to the three-sublattice ordere
phase. This study lends further support to the idea that t
single-plane spin-half triangular-lattice Heisenberg mod
is ordered.
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