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Quantum Phase Transitions in the Triangular-Lattice Bilayer Heisenberg Model
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We study the triangular-lattice bilayer Heisenberg model with antiferromagnetic interplane coupling
J, and nearest-neighbor intraplane couplihg= AJ, by expansions im. For negativer a phase
transition is found to an ordered phase ala= —0.2636 = 0.0001, which is in the 3D classical
Heisenberg universality class. Far> 0, we find a transition at a rather large. = 1.2. The
universality class of the transition is consistent with that of Kawamura’s 3D antiferromagnetic stacked
triangular lattice. The spectral weight for the triplet excitations, at the ordering wave vector, remains
finite at the transition, suggesting that a phase with free spinons does not exist in this model.
[S0031-9007(98)07709-6]

PACS numbers: 75.10.Jm, 75.40.Cx, 75.40.Mg, 75.50.Ee

In recent years much interest has focused on the natuferromagnetic or antiferromagnetic, and an antiferromag-
of quantum disordered phases of the Heisenberg antifenetic interlayer nearest-neighbor couplihg, between the
romagnets, where the combination of low dimensionality spins on top of each other. Varying the ratio= J/J,
low spin, and frustration cause the ground state of thellows one to investigate the quantum phase transition be-
system to be disordered [1,2]. The case of one-spatial diween the ordered and disordered phases of the model.
mension is relatively well studied and understood. TwoThe corresponding square-lattice Heisenberg bilayer has
dimensional systems have received particularly large atbheen extensively studied by many authors [11]. It was
tention, due to their relevance to high temperature sufound that with increasing the triplet excitations at the
perconductivity. However, despite much effort, quantumordering wave vector soften and at a criticalthe gap
disordered phases are not fully understood i 2. closes and there is a continuous quantum phase transi-

A special situation is those types of quantum disorderedion to a magnetically ordered phase. This transition lies
phases where the ground state is to a good approximatian the universality class of the 3D classical Heisenberg
a product of local singlets over even-spin clusters. Thisnodel. Not surprisingly, we obtain similar results for fer-
can arise due to explicitly dimerized (or clustered) Hamil-romagnetic in-plane couplings in the triangular-lattice bi-
tonians; a situation that appears to be relevant for the mdayer model.
terial CaV4Oy [3]. Another scenario is the spontaneous More interesting, however, is the case of antiferromag-
breaking of translational symmetry, as found in large- netic in-plane couplings. In this case the classical ground
theories and also suspected in several frustrated modelkstate is noncolinear. Thus, it represents a candidate sys-
which leads to dimerization [4—6]. In all these systemstem to look for free spinons, when the ground state is
the elementary excitations are triplets with a finite excita-disordered by quantum fluctuations. The bilayer coupling
tion energy. can be viewed as reducing the effective spin of the 2D

In contrast to these, a different class of quantum disorgquantum system, thus leading to a disordered ground state.
dered phases would be one where the elementary excit&urthermore, this system presents a possibility to find
tions are free spin-half objects or spinons. Such phasespvel quantum critical points, different from the univer-
for d = 2, have been predicted in systems where thesality class of the 3D classical Heisenberg model. It has
classical ground state is noncolinear [7] and their propbeen shown [7,8] that when there is a transition from
erties have been investigated by field-theoretic methoda noncolinear classical phase to a phase with unbound
[8]. However, no lattice models are known where suchspinons, the universality class of the transition is that of
a behavior is realized. One potential candidate systerthe three-dimensional O(4) model. Furthermore, one ex-
for such a behavior is the Kagome-lattice antiferromagnetpects that in this case the triplet excitations would decay
where the ground state is widely believed to be magnetiinto the two-spinon continuum and not remain well de-
cally disordered [9,10]. fined. The alternative possibility is that such a phase with

Here we study the triangular-lattice bilayer Heisenberdgree spinons does not exist and there is a direct transi-
model. The model consists of two layers of triangu-tion from a magnetically ordered phase to one with mas-
lar lattices, one on top of the other, with an intralayersive triplet excitations. In this case the quantum phase
nearest-neighbor Heisenberg couplihgwhich could be transition may lie in the universality class of the classical
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stacked triangular-lattice Heisenberg model, first found by TABLE I. Series for the triplet energieB(q).
Kawamura [12]. — o —

We study the model by a strong coupling expansion 4= 4= Qar
in the parameter = J/J , calculating the ordering sus- O 1.0 1.0
ceptibility, the triplet excitation spectrum, and its spec- 1 3.0 —L5
tral weight. Our analysis of the susceptibility and the :(1)'35 _11'887755
inverse gap series shows evidence for a phase transition 4125 04453125
Ae = 1.2 with exponentsy = 0.53 andy = 1.1. These 15.6328125 148828125
results are consistent with the universality class discussed; —-26.944335937 5 14.685 058 593 75
by Kawamura [12] for the stacked triangular Heisenberg 7 56.977 294921 875 —43.228 4545898437
antiferromagnet and not consistent with the 3D classicalg —244.898 391723633 84.745834 3505859

O(4) model. 9
Furthermore, we find that aa is increased in the 10

794.878 423690 796
—2301.24252033234

—241.322 682380676
911.485698 580 742

model and the minimum of the triplet spectrum becomes
more pronounced, the spectral weight of the triplets is

reduced over much of the Brillouin zone but it stays finiteof the effective Hamiltoniard{ (R), whereR;; = r; —
and grows withA in the vicinity of the ordering wave r; is the vector connecting sitésandj. It can easily be

vector. This implies that the triplets stay well defined diagonalized by a Fourier transform. We have calculated
excitations, near the minimum, even at the transition tqhese guantities complete to 10th order.

the ordered phase. Together with the estimates for the |n Table I, the expansion coefficients fd#(q) with
critical exponents at the transition, this suggests that freq = 0 andQay = 47 /3 e; are presented, corresponding
spinons do not exist in this model. The divergence ofio the ordering wave vectors for the ferromagnetic and the
the magnetic susceptibility and the closing of the tripletantiferromagnetic systems. The expansion coefficients for
gap at the ordering wave vector of the triangular latticethe magnetic susceptibilities at the same two wave vectors
also implies that forA > A., the system is magnetically [11,16], calculated to 10th order are given in Table II.
ordered. Thus, our results provide further support for the |n addition to the wave vector dependent susceptibili-
existence of antiferromagnetic order in the single-plangjes and the excitation spectra, we also calculate series for
triangular-lattice antiferromagnet [10,13,14]. the spectral weights associated with the excitations. The

The triangular-lattice bilayer Heisenberg model is givenspectral weights are defined by the delta-function piece of
by the Hamiltonian: the dynamical correlation function,

H =7, Sai - Spi S(q, w) = A(q)S[e(q) — @] + B(q, ).

They are calculated via the spin-spin correlation functions,
where the intermediate states are restricted to the elemen-
& tary triplet excitations [17]. These latter calculations are
ij) o

) more difficult and are only done to 6th order.
where A and B refer to the two layers of the triangular  For ferromagnetic intraplane couplings, the critical point
lattice and(i, /) are nearest neighbors in a given layer of 5ccyrs at small values of < 0, so even with relatively
the lattice. The triangular lattice sites are spanned by thgnort series we can determine the critical point quite well
two nonorthogonal primitive vectors and also get reasonable estimates for the critical exponents.
For the susceptibility series, thelog Pade approximants

+J Z [Sai - Sa; + Sgi - Sgjl, (1)

1
e = (1,0) and e, = E(—l,\/g).

For J = 0, spins are coupled only in pairs and the TABLE Il.  Susceptibility seriesy(q).

ground state is a direct product of singlets over these pairs. _ _
o X , X . q=20 q = Qar

The excitations are isolated triplets localized at some site
i. For finite values ofA = J/J, an effective Hamilton- 0.250 000 000 000 00 0.250 000 000 000 00
ian H (R, ;) describing the interaction between these _17'5102050888888%00% 0 0'855320500%030%0(?0%00 0
![ocalltz_ed degen_era_tpe\.trlplet states can be derived by a sys —30.750 000 000 000 0.609 375 000 000 00
ematic expansion in. 128.476 562 501 74 —0.101 562498263 4

HR) = D A, (R).

O~NO Ol WN - O

The methods for calculating/ ¢ in powers of A =
J/J . are well developed and discussed in the Iiteraturel
[15]. The excitation spectrum is given by the eigenvalues

©

0

—528.799479 161 14
2148.0511067806
—8631.9544994009
34434.857 183080
—136648.824764 77
539861.353042 63

1.9749349013237
0.240885426 764 74
—1.0813931891307
—13.218768766 815
59.415134 251052
—93.997993 646 134
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TABLE Il

Critical exponents.

Universality class

14

Y

the inverse gap series, which lead ta.,(v) values
of (1.18,0.45),(1.22,0.51),(1.25,0.59),(1.29,0.57). These
lead us to conclude thait., = 1.2 and thatr = 0.53

Ising [18] 0.6300 * 0.0008 12402 = 0.0009  andy =~ 1.1. These exponents are also obtained if the
xy [18] 0.6693 £ 0.0010 13160 £ 0.0012  gnproximants are hiased to have the critical point near
gt(age[;g]erg el 070 370400” 13866 ig;)mz Ae = 1.2._ These results are consi_stent with Kfawaml__lra’s
Chiral [12] 055 11 universality class for the stacked triangular-lattice Heisen-
This work ~0.53 ~1.1 berg model, where he found = 0.55 andy = 1.1 [12],

and not consistent with the O(4) universality class, which
has v = 0.74 and y = 1.47 [20]. The difference be-

. tween the critical exponents for Kawamura’s universality
lead to estimates class and those of other 3D classical models is high-
Ac = —0.26362 £ 0.000 09, y = 1.407 = 0.004. lighted in Table Ill. Following Chubukov, Sachdev, and

Here the uncertainties reflect the spread between differeenthil [7], Kawamura’s universality class should arise

Pade estimates. Applyingrlog Pade approximants to the in this model only if there is a direct transition from the
inverse of the energy-gap series, one obtains disordered phase without free spinons to Bhgsublattice

A, = —0.2641 = 0.0005, v =0.73 = 0.01. ordered phase. . . .
Another way to explore the existence of an intermediate
Here, the estimates for the critical points and exponentphase with free spinons is to study the spectral weights
from individual approximants are correlated and the morgor the triplets and see if it vanishes asis increased.
negative the critical point estimates, the larger is th@yhen the spinons become the elementary excitations, the
exponent. Given the length of our series, these nuMgiplets can break up into a pair of spinons and thus will
bers are in quite good agreement with the 3D classicalot remain sharp excitations. To analyze the series for
Heisenberg university class, where the best current eshe triplet spectra, we use Euler transforms and Pade
timates come from field theoryy = 1.3866 + 0.0012,  gpproximants. In Fig. 1, we show the Brillouin zone of
v = 0.7054 * 0.0011 [18]. That the series analysis gives the triangular lattice. In Fig. 2, the excitation spectra for
slightly higher estimates for the exponents is common to, — (.2, 0.4, and 1.0 are shown along selected contours.
many models and is primarily due to corrections to scalqp, Fig. 3, the spectral weights estimated by thg3BPade
ing [19]. _ _ _ are shown along the same contours. It is evident from
We now consider the analysis far > 0, which cor-  these plots that as is increased, the triplet dispersion
responds to antiferromagnetic intraplane couplings. Wejevelops a sharp minimum at the ordering wave vector
analyzed the inverse of the energy gap and the orderingf the triangular-lattice Heisenberg model. The spectral
susceptibility series using-log Pade approximants and \yeight associated with the triplets is rapidly reduced over
differential approximants. In this case, the convergenceyych of the Brillouin zone, however, in the vicinity of

was much poorer as the critical point occurs at muchhe ordering wave vector, the spectral weights continue
largerA.. The estimates for the critical points and the ex-

ponents show tremendous scatter. Assuming that the two
series have the same critical point, the most consistent

25
estimate forA. is in the rangel.18—-1.29. In that range T
there are four approximants for the susceptibility se- iEEE EEII
ries, which give 4., y) values of (1.19,1.10),(1.19,1.08), 2ol I L - ]
(1.21,1.06),(1.26,1.32), and four approximants for - S e
&=
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FIG. 1. Brillouin zone of the triangular lattice. FIG. 2. Dispersion of the triplet excitations.
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