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Spectral Function of Superconducting Cuprates near Optimal Doping

Andrey V. Chubukov1 and Dirk K. Morr2
1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

2University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 6
(Received 15 June 1998)

We argue that the unusual peak-dip-hump features observed in photoemission experiments on Bi2212
at T ø Tc can be explained by the interaction of the fermionic quasiparticles with overdamped spin
fluctuations. We show that the strong spin-fermion interaction combined with the feedback effect
on the spin damping due to superconductivity yields the fermionic spectral functionAskF , vd which
simultaneously displays a quasiparticle peak atv  D and a broad maximum (hump) atv ¿ D. In
between the two regimes, the spectral function has a dip atv , 2D. We argue that our theory also
explains the tunneling data. [S0031-9007(98)07732-1]

PACS numbers: 74.25.–q, 71.10.Ca, 79.60.– i
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In recent years, the bulk of studies of cuprate superco
ductors was focused on their unusual normal state prop
ties. Less attention was paid to the behavior of cuprat
in the superconducting state. It was generally believ
that the superconducting behavior, even in underdop
cuprates, is rather conventional in the sense that m
experiments can be explained in the framework of th
BCS-type theory for ad-wave superconductor. Recently
however, this belief has been challenged by photoem
sion experiments on Bi2212 materials [1,2]. These e
periments demonstrated that even in slightly overdop
cuprates and atT ø Tc, the spectral functionAsk, vd
nears0, pd is qualitatively different from the one expected
for a conventional superconductor. Specifically, in a co
ventional case,Ask, vd possesses a single sharp peak
v 

p
D2

k 1 e2
k whereDk is the superconducting gap and

ek is the fermionic dispersion. The photoemission data f
Bi2212 do show a sharp quasiparticle peak near the Fer
surface, but they also reveal two extra features inAsk, vd:
a dip at frequencies right above the peak and a broad ma
mum (hump) at somewhat larger frequencies. Moreove
as one moves away from the Fermi surface, the sharp p
looses its intensity but does not disperse, while the po
tion of the hump varies withk and gradually recovers the
normal state dispersion.

Several phenomenological theories [1,3] identified th
sharp peak observed in photoemission belowTc as a dis-
persionless collective mode of yet unknown origin. In th
present Letter, we present an alternative explanation of
photoemission data. We argue that the unusual superc
ducting properties of cuprates can be explained by a stro
interaction between electrons and overdamped spin flu
tuations peaked at some momentumQ near sp, pd [4].
Similar arguments were earlier displayed by Grabows
et al. [5] who found peak-dip-hump features in their nu
merical study of the Hubbard model within the fluctuatio
exchange approximation. Our results qualitatively agr
with theirs; however, we consider the problem analytical
and present a physical explanation of the effect. Spec
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cally, we show that the peak/dip/hump features in the sp
tral function emerge as a combination of two effects: (i)
almost complete destruction of the Fermi-liquid behav
in the normal state, which eliminates the quasiparticle pe
and gives rise to a hump in the spectral function at high
frequencies, and (ii) a reduction of the spin damping
small frequencies in the superconducting state which, a
feedback effect, restores Fermi-liquid behavior of the sp
tral function in the frequency rangev , 2D. As a result,
the spectral function near the Fermi surface possess
quasiparticle peak atv , D, a dip atv ø 2D where the
spectral function experiences a crossover to a non-Fe
liquid behavior, and a hump at a higher frequency. Ask
moves away from the Fermi surface, the hump disper
with k while the quasiparticle peak looses only its inte
sity as it cannot move farther in frequency than2D. This
behavior fully agrees with the photoemission results [1,

The point of departure in our calculations is the spi
fermion model for cuprates [6,7] in which low-energ
fermions interact with their low-energy collective spi
degrees of freedom. The input parameters for the mo
are the spin correlation lengthj, Fermi velocityyF , and
the spin-fermion couplingg. Perturbation theory holds
in powers of the dimensional ratiōg ~ gysyFj1y2d which
obviously increases with decreasing doping. It was argu
on the basis of a comparison with NMR data [6,7] th
ḡ $ 1 already in slightly overdoped cuprates, i.e., f
comparison with experiments one needs to solve the s
fermion model in the strong coupling limit.

One can show quite generally that due to the particu
Fermi-surface (FS) geometry in cuprates, which allows
hot spots (i.e., points on the FS connected byQ), the full
dynamical spin susceptibility possesses a dynamical ex
nent z  2 [8]. For ḡ $ 1, the z  2 behavior extends
above typical energiesyfj21y2 which dominate perturba-
tion series. In this situation, the fermionic self-energy ne
hot spots,Sf sek , vd, turns out to be independent of th
quasiparticle energy [7], and is related via an integral eq
tion over frequency with the dynamical part of the boson
© 1998 The American Physical Society
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self-energySbsVd at Q. In the same regime, vertex cor-
rections become irrelevant [9]. Furthermore, sinceQ is the
distance between hot spots,SbsVd in turn is dominated by
momentum integration near hot spots, i.e., it can be e
pressed as a frequency integral ofSf svd. As a result, the
problem generally reduces to a solution of two coupled i
tegral equations forSf svd andSbsVd.

For the normal state, the actual situation is simpler sin
in the absence of symmetry breaking, the fermionic se
energy, which depends only on frequency, does not affe
the polarization bubble [10]. As a consequence, the ex
SbsVd is unaffected bySf and is the same as for free
fermions. Expanding the fermionic dispersion to linea
order ink 2 kf , one obtains [7]Sbj2  iVyvsf where
vsf  s3y16dyFysḡ2jd. Accordingly,Sf svd is obtained
by a straightforward integration over frequency and has t
form [7] Sf svd  2vys1 1

p
1 2 ijvjyvsf d. For the

normal state Green’s function we then findGnsk, vd ø Zy
fSf svd 2 ēkg whereZ  ḡ22 and ēk  Zek. At small
frequencies,v , vsf, Sf svd ø v 1 ivjvjys4vsfd, i.e.,
the Fermi-liquid behavior is preserved, and the spect
function Ask, vd has a conventional Fermi-liquid peak a
v  ēk though with a reduced residueZ. For v . vsf,
however, the system crosses over to a region which is in
basin of attraction of the quantum critical point,j  `. In
this region,ḡ2Sf svd ø eipy4jAvj1y2 sgnsvd whereA 
4ḡ4vsf is independent ofj. As a result, instead of a sharp
quasiparticle peak, the spectral function possesses on
broad maximum atv  ē

2
kys4vsfd  e

2
kyA. Experimen-

tally, vsf , 10 20 meV at optimal doping [6], which is
comparable to the resolution of the photoemission expe
ments. In this situation, the photoemission experimen
probev . vsf whereAsk, vd displays only a broad maxi-
mum (see Fig. 1a).

Consider now the situation atT ø Tc. We argue that
there are two key effects associated with superconduct
ity. First, the quasiparticle Green’s function is modifie
due to the fermionic pairing. Second, there is a fee
back effect on the bosonic self-energySbsQ, vd due to
the opening of the superconducting gap which in turn influ
ences the fermionic self-energy. Physically, this feedba
effect is related to the fact that the opening of the supe
conducting gap nears0, pd reduces the spin damping at low
frequencies and hence increasesvsf in the same frequency
range. In other words,vsf in a superconductor acquires a
frequency dependence. The full self-consistent treatme
of the superconducting state is rather involved as not on
Sf and Sb, but also the pairing susceptibility are self
consistently connected to each other. In our analysis bel
we assume that (i) the spectral weight of the pairing susce
tibility at T ø Tc is mostly contained in thed-functional
peak, and (ii) that the feedback effect from supercondu
tivity on the fermionic self-energy can be absorbed int
the frequency dependence ofvsf. The first assumption
is valid as long as superconducting fluctuations are wea
which is likely to be the case outside the pseudogap regim
It implies that the BCS approximation is valid, i.e., tha
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FIG. 1. The calculated quasiparticle spectral function in t
normal state (a) and in the superconducting state alongM 2 G
[s0, pd 2 s0, 0d] (b) and M 2 Y [s0, pd 2 sp, pd] (c). The
results are presented forb  5. For the M point, we used
ē  D̄. The theoretical data are convoluted with the Gauss
resolution function with the half width0.25D.

G21
sc sk, vd  G21

n sk, vd 1 D
2
kGns2k, 2vd whereD

2
k is

the strength of thed-wave pairing susceptibility. At this
stage, we again reduce the problem to a set of two in
gral equations forSf andSb . The second assumption in
essence eliminates the integral equation forSf as it im-
plies thatSfsvd ø 2vyf1 1

p
1 2 ijvjyvsfsvd g. This

assumption is physically motivated as the reduction of t
spin damping at low frequencies is the key feedback
fect due to superconductivity. Nevertheless, its applic
tion requires care as in a superconductor,Sb contains both
imaginary and real parts (the latter gradually vanishes
v ¿ D). In a Fermi gas, both parts ofSb arenonanalytic
functions of frequency atv  2D̄ [Im Sb ~ Qsv 2 2D̄d
while ReSb ~ ln jv 2 2D̄j], and ReSb has to be kept to
preserve the analyticity of the retarded spin susceptibil
at T  0. In our case, the fermionic self-energy reduc
the jump in ImSb, but as long as ImSb is nonanalytic,
ReSf still has to be kept atT  0. On the other hand,
the singularity in the real part ofSb is rather weak (loga-
rithmical) even in a Fermi gas, and we expect that it
washed out by thermal fluctuations already at temperatu
T , Tcl which are much smaller than̄D. In the calcula-
tions below, we assume thatTcl ø T ø D̄, in which case
the neglect of ReSfsvd does not yield unphysical results
and at the same time, one can neglect terms,TyD, i.e.,
evaluate the polarization bubble atT  0.

We now present our calculations. SubstitutingGnsk, vd
into the equation forGscsk, vd, we obtain

Gscsk, vd  Z
Sf svd 1 ēk

S2svd 2 sD̄2
k 1 ē

2
kd

, (1)

whereD̄skd  ZDskd. As in the normal state, the possi
bility to observe a sharp quasiparticle peak in the spec
4717
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function depends on the ratiovyvsfsvd: for v , vsfsvd,
Ask, vd possesses a conventional quasiparticle peak
v  sD̄2

k 1 ē
2
kd1y2, while for v . vsfsvd, it possesses

only a broad maximum atv  sD̄2
k 1 ē

2
kdy4vsfsvd.

Our next goal is to obtainvsfsvd. For this we need
to evaluate the polarization bubbles made offull normal
and anomalous Green’s functions. Nears0, pd, where
D̄skd is close to its maximum valuēD, it is convenient
to measurevsfsvd in units of D̄, i.e., introducebv 
D̄yvsfsvd andb  b`  D̄yvsfs`d wherevsfs`d is the
normal state value ofvsf. In these variables, we obtained
after momentum integration in the polarization bubbles

bv 
b
v

3 Re
Z `

0
dV

D̄2 2 SsV1dSsV2d 1 DsV1dDsV2d
DsV1dDsV2d

,

(2)

where V6  V 6 vy2, and DsVd 
p

S2sVd 2 D̄2.
Unlike the normal state, this integral equation cannot b
reduced to an algebraic one because the supercond
ing Green’s functioncannot be written as the normal
state Fermi-gas result plus a momentum-independe
self-energy. In other words, the condition for the non
renormalizability ofSb is lost in a superconductor.

The functional form ofbv depends on the value of
b which varies with doping. In overdoped cuprates
vsfs`d ¿ D, i.e., b ø 1. In this limit, the damping
of the fermions in the polarization bubble is negligible
[i.e., SfsV6d ø V6], the integral equation reduces to an
algebraic one, andbv has the same functional form as
the spin damping in the superconducting Fermi gas:
is zero forv , 2D̄, jumps tobv  bpy2 at v $ 2D̄,
and gradually approachesb with increasing frequency
[11]. In this situation, at frequencies comparable toD,
vyvsf ø 1, i.e., the spectral function atk  kF indeed
possesses a quasiparticle peak atv  D̄. It does not,
however, possess a broad maximum at larger frequenc
since at smallb, v becomes larger thanvsfsvd only at
v ¿ D̄2y4vsfsvd.

Near optimal doping, howeverD , 30 40 meV while
vsf , 10 20 meV, i.e., b . 1, and it further increases
with decreasing doping. This is also corroborated by ea
lier calculations ofD which yielded [7]b ~ j. Naively,
one might expect that in this situation,bv becomes smooth,
and the conditionv , vsfsvd is satisfied only at frequen-
cies much smaller thanD. If this were the case, then one
would not be able to observe the sharp quasiparticle pe
below Tc. Solving Eq. (2) numerically (see Fig. 2), we
found, however, that while the high frequency part ofbv

evolves with increasingb from a frequency independent
to an almost linear in frequency form, a sharp drop
bv survives even for moderately largeb. These results
can also be obtained analytically. Analyzing the result
we found that for moderately largeb, one still hasv ,

vsfsvd at v , 2D, however atv . 2D, v . vsfsvd.
4718
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FIG. 2. The solution of the integral equation for th
frequency-dependent spin-fluctuation frequencyvsfsvd in the
superconducting state. In the normal state,vsf  vsfs`d. For
all b  D̄yvsfs`d, v

21
sf svd sharply drops at around2D̄. At

very low frequencies, this result is valid only at finiteT , while
at T  0, v

21
sf should be zero below some critical frequenc

[12]—its finite value here is an artifact of restricting with only
the imaginary part of the bosonic self-energy.

This implies that the system is in the Fermi-liquid regime
v , 2D̄ (and, hence, still possesses a sharp quasipart
peak atv  D̄), but it crosses over to the strong couplin
regime atv . 2D. Furthermore, forb ¿ 1, the condi-
tionsv . 2D̄ andv  D̄2y4vsfsvd , D̄b ¿ D̄ can be
satisfied simultaneously. This implies that in addition to
peak atv  D̄, the spectral function atk  kF also pos-
sesses a broad maximum atv , bD̄ ¿ D̄. In between
the two regimes, i.e., atv ø 2D̄, the spectral function
has a dip. This form of the spectral function, which w
plotted in Fig. 1, is fully consistent with the photoemis
sion data [1,2]. Furthermore, we find that the quasipartic
peak does virtually not disperse withk as the region of
Fermi liquid behavior does not extend farther than2D̄

away from the Fermi surface. Instead, the peak grad
ally decreases in amplitude as one moves away fromkF .
This is clearly seen in Figs. 1b,c. In contrast, the positi
of the hump followsv ~ sD̄2

k 1 ē
2
kd. Nears0, pd, where

ēk is small, the dispersion is weak, whereas farther aw
from the Fermi surface it disperses withk and gradually
recovers the normal state dispersion. In Fig. 3, we pl
ted the frequency position of the quasiparticle peak a
hump in the superconducting state versus the normal s
position of the hump. This dependence on momentum
also fully consistent with the photoemission data [1]. F
even largerb, we found that thoughbv drops below2D̄,
still D̄yvsfsD̄d . 1, i.e., the system does not recover th
quasiparticle peak belowTc. We attribute this behavior to
heavily underdoped cuprates.

We also compute the density of statesNsvd in the super-
conducting state assuming that the dominant contribut
to Nsvd comes from momenta nears0, pd. Integrating
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FIG. 3. The frequency position of the quasiparticle peak a
the hump in the superconducting state versus position of
hump in the normal state obtained from Fig. 1.

Ask, vd over ēk, we obtain

Nsvd ~ Re
Sfsvdq

S2svd 2 D̄2
. (3)

The plots ofNsvd for variousb are presented in Fig. 4.
We see that for all values ofb, Nsvd possesses a peak a
v  aD̄ wherea ø 1 for smallb and gradually increases
with increasingb. For largerb, Nsvd displays a dip at
frequencies slightly larger than2D̄; the amplitude of the
dip increases withb. Above the dip,Nsvd increases asp

v and eventually saturates. These results are in f
agreement with the tunneling data in Ref. [13] except f
the observed anisotropy betweenNsv . 0d and Nsv ,

0d for which we do not have an explanation.
Finally, we discuss the value of the gap and its vari

tion with doping. Our theory predicts that at some di
tance away from the Fermi surface, the quasiparticle pe
in Ask, vd should be located atv ø 2D̄. Applying this
result to nearly optimally doped Bi2212 materials studie
in Refs. [1,2], we obtainD̄ , 25 30 meV. Almost the
same result is obtained by extracting2D̄ from the onset of
the dip in the measuredNsvd [13]. The gap obtained for-
mally as half distance between the peaks inNsvd is larger,
but Fig. 4 shows that this distance becomes progressiv
larger thanD̄ with increasingb. We performed the same
analysis of the tunneling data for theTc  83 K under-
doped material, and obtained almost the same value oD̄

as at optimal doping. We therefore argue thatD̄ almost
saturates around optimal doping, and the observed incre
of the peak frequency inNsvd with decreasing doping is
mostly due to strong coupling effects which shift the pea
towards higher frequencies.

To summarize, in this paper we present the explanat
of the unusual peak/dip/hump features observed in ph
toemission experiments on Bi2212 atT ø Tc. We show
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FIG. 4. The tunneling density of states in the superconducti
state. Observe the development of a dip with increasingb.

that these features emerge due to a strong spin-fermion
teraction combined with the feedback effect on the sp
damping due to fermionic pairing. We argue that our th
ory also explains the tunneling data for the supercondu
ing density of states. We predict that the superconduct
gap saturates around optimal doping, and that the obser
increase of the peak frequency in the tunneling density
states with decreasing doping is chiefly due to strong co
pling effects.
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