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We propose a theoretical description of the superconducting state of under- to overdoped cuprates,
based on the short coherence length of these materials and the associated strong pairing fluctuations.
The calculated’. and the zero temperature excitation gaf®), as a function of hole concentratian
are in semiguantitative agreement with experiment. AlthofighA (0) has a strong non-BCS depen-
dence, and\(T') deviates significantly from the BCS prediction, we obtain, remarkably, quasiuniversal
behavior for the superfluid densipy(T)/p;(0) and the Josephson critical currdptT’)/1.(0) as a func-
tion of T/T.. Comparison with experiment is addressed. [S0031-9007(98)07719-9]

PACS numbers: 74.20.-z, 74.25.—q, 74.62.—c, 74.72.—-h

Pseudogap phenomena in the cuprates are of interedthen these are plotted as(T)/p,(0) andI.(T)/1.(0), as
not only because of the associated unusual normal-statefunction of7/T., we deduce a quite remarkable, nearly
properties, but more importantly because of the constraintgniversal behavior for the entire range.of
which these phenomena impose on the nature of the super-For simplicity, we describe the cuprate band structure
conductivity and its associated high. Moreover, this by a tight-binding, anisotropic dispersiark = 2¢(2 —
superconducting state presents an interesting challenge ¢tosk, — cosk,) + 2¢,(1 — cosk,) — u,wherer (r,)
theory: while the normal state is highly unconventional,is the hopping integral for the in-plane (out-of-plane) mo-
the superconducting phase exhibits some features of tradion ands;, <« 7;. We emphasize that a more complex
tional BCS superconductivity along with others which areband structure (e.g., including next-nearest neighbor hop-

strikingly different. ping) will not affect the results presented here [3]. We
Thus far, there is no consensus on a theory of cupratassume that the fermions interact via an effective pairing
superconductivity. Scenarios which address the pseuddnteraction with d-wave symmetryVy v = —|g|lok ki

gap state below, can be distinguished by the characterso thate, = %(COSkx — cosky). The present approach

of the excitations responsible for destroying superconduds built on previous work [4—6] based on a particular dia-
tivity. In the theory of Lee and Wen [1], the destruction grammatic theory, first introduced by Kadanoff and Martin
of the superconducting phase is associated with the excj7], and subsequently extended by Patton [8]. This ap-
tation of the low-lying quasiparticles near thewave gap proach can be used to describe the widely discussed BCS
nodes. By contrast, Emery and Kivelson [2] argue thato Bose-Einstein crossover problem [9], which has been
the destruction of the superconductivity is associated witlassociated with smalf. The “pairing approximation” of

low frequency, long wavelength phase fluctuations withinRefs. [7,8] leads to

a microscopically inhomogeneous model, based on one di-

mensional “stripes.” S(K) = D HQ)Go(Q — K)@i_q)- (1a)
In the present paper, we present an alternative sce- ¢
nario in which, along with the quasiparticles of the usual g =[1+gx(Q)(Q), (1b)

BCS theory, there are additionally incoherent (botpre- ~ whereX(K) is the self-energy, ang(Q) = > x G(K) X
formed pair excitations of finite momentump, which as- Go(Q — K)goﬁ_q/z is the pair susceptibility. Equa-
sistin the destruction of superconductivity. This approactions (1), along with the number equatiom =

is based on a self-consistent treatment of the coupling> x G(K), self-consistently determine both the Green’s
of single particle and pair states. It represents a natuunction G(K) and the pair propagator, i.e7l, matrix

ral extension of BCS theory to the short coherence length(Q). We use a four-vector notation, e.&,= (k;iw),

(¢) regime and provides a quantitative framework for ad-Y x = 72, x, and Go(K) = (iw — e)~!. We now
dressing cuprate superconductivity. Here, we find a proshow that these equations yield a natural extension of
nounced departure from BCS behavior in the underdopeBCS theory to include incoherent pairs responsible for the
limit which is continuously reduced with increasing hole pseudogap (labeled by pg), along with the usual quasi-
concentrationr. We derive a phase diagram fdr and  particles and superconducting condensate (labeled by sc).
the zero temperature gafy(0), as a function ofc, which We write theT matrix and self-energy beloW, as

is in semiquantitative agreement with (the anomalous) bet(Q) = 7.(Q) + £,,(Q), andX(K) = 2 (K) + 2,4 (K).
havior observed in cuprate experiments, and we comput€he condensate contribution assumes the familiar BCS
properties of the associated superconducting state such fsm r,.(Q) = —8(Q)A2, /T, whereA,. is the supercon-
the superfluid density, and Josephson critical currefft  ducting gap parameter (and can be chosen to be real)
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and3 . (K) = Afcgoﬁ/(iw + €). Inserting the preceding situation is relevant to both break junction experiments
forms for theT matrix into Eq. (1b), one obtains the gap [13] and to intrinsic Josephson tunneling [14] as well. An
equationl + gx(0) = 0, as well as (for any nonzer@)  expression for the Josephson critical current [15] can be
1e(Q) = g/[1 + gx(Q)]. Note that because of the gap derived under the presumption that the tunneling matrix
equationt,,(Q) is highly peaked about the origin, with a elementiTy > = |To|*6kp, + 711>, where only the first
divergence ap = 0 [10]. As a consequence, in evaluat- (coherent) term contributes for&awave order parameter,
ing the associated contribution to the self-energy, the main

contribution to the® sum comes from this smaf) diver- I = 2e|ToPA% D> 6k”p“%
gentregion so thal,, (K) = —Go(—K)Af,ggoﬁ, where we k.p kEp
have defined the pseudogap parameter [11] " [1 — S(E) — f(Ey) | f(E) — f(Ep):|
AZE— t = — # 2a Ek+Ep Ek_Ep
pe % rs(Q) % 1+ gx(0) (2a) (4)
well approximated by a BCS-like form, i.e3(K) ~ (as well as that assumed by Lee and Wen [1,16]) in that

A’g}/(iw + €), whereA = /A + A2 is the mag- the prefactorAf, is no longer the total excitation gap’.
nitude of the total excitation gap, with tedependence ~ 1he remainder of this paper is directed towards under-
given by thed-wave function¢,. Within the above standing three experimental characteristics of the cuprates:

approximations, the gap and number equations reduce td!) the phase diagram, (i) the superfluid density, and
(iif) the Josephson critical current.

1+¢ Z 1 - 2f(Ex) @2 =0 (2b) () In order to generate physically realistic values of the
K 2Ex K ’ various energy scales, we make two assumptions: (1) We
take g as doping independent (which is not unreasonable
_ ek 2ex - in the absence of any more detailed information about
2|1 + (B [ = (2c) 2 . |
. Ex Ex the pairing mechanism) and (2) incorporate the effect of

o _ _ 5 the Mott transition at half filling, by introducing ande-
where the quasiparticle energy dispersibp = (ek +  pendence into the in-plane hopping matrix elemeptss

A2¢5)'/2 contains the full excitation gap. _ would be expected in the limit of strong on-site Coulomb
The set of equations (2) can be used to determine thgyteractions in a Hubbard model [17]. Thus the hopping
superconducting transition temperatdie (where Ay, = matrix element is renormalized ag(x) = 7o(1 — n) =

0), and the temperature dependence of the various gagx, where ¢, is the matrix element in the absence of
parameters. Equation (2a) contains the physics of the pagtoulomb effects. This dependent energy scale is consis-
excitations, or pseudogap. The remaining two Egs. (2bjent with the requirement that the plasma frequency van-
and (2c) are analogous to their BCS counterparts but witfsh atx = 0. These assumptions leave us with one free
a finite (as a result of nonzetb,) excitation gap af. parameter—g /4t,, for which we assign the value 0.045
It should be stressed that physical quantities whicho optimize the overall fit of the phase diagram to experi-
characterize the superconducting state depend on the paifent. We take, /1 =~ 0.01[18], andry =~ 0.6 eV, which

and particle excitations, as well as condensate in differeng reasonably consistent with experimentally based esti-
ways. The superfluid density can be written in termsmates [19].

of the London penetration depth @8 .»(T)/ps.a»(0) = The results forT., obtained from Egs. (2), as a func-
[Aa5(0)/ Aap (T)T?, where tion of x are plotted in Fig. 1. Also indicated is the cor-
Aare? A2 1 — 2#(E responding zero temperature excitation gs() as well
2 7€ S Z exl L= 2/(E) + f'(Ex) as the pseudogaf,, at7.. These three quantities pro-
ab C2 E2 2F ) T pPg i X
k Tk k vide us, for use in subsequent calculations, with energy
dex 2 dex ok scales which are in reasonable agreement with the data
28k ) S5k Z¥K 1 3) i i -
¢k oK | kK ok ( of Ref. [13], shown in the inset. The temperature de

pendences of the energy gaps in Fig. 1 are shown as the
During the calculation special attention should be paid tdower inset of Fig. 2, for a slightly underdoped case with
lattice effects [12] and to the vertex correction (associated = 0.125. The relative size ofA,(7.), compared to
with the pseudogap self-energy) which enforces gauge inA(0), increases with decreasing In the highly overdoped
variance via the generalized Ward identity. This identitylimit this ratio approaches zero, and the BCS limit is re-
ensures thap, « A2, and it vanishes identically at and covered. This inset illustrates the general behavior as a
aboveT.. The prefactorA?, = A? — Af)g in Eg. (3) in-  function of T/T,: the excitation gap is, generally, finite
dicates that pairs (in addition to quasiparticles) serve tat 7., the superconducting gaf. is established at and
reduce the superfluid density. belowT., while the pseudogafr,, decreases to zero &s

In arelated fashion, we addressixis Josephson tunnel- is reduced fron, to 0. This last observation is consis-
ing between two identical higlt, superconductors. This tent with general expectations f«m’f,g ~ (|A]?) — |Ag)?
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gap parameters (shown in the inset) as phenomenological
inputs, within the context of the present formalism.
4 (i) The superfluid density (normalized to itB = 0
value), given by Eqg. (3), is plotted in Fig. 2 as a function
. of T/T, for several representative values xaf ranging
D from the highly overdoped to highly underdoped regimes.
0L N These plots clearly indicate a “quasiuniversal” behavior
""""" 2147, 0 0O 01 02 03 with respect tox: ps(T)/ps(0) vs T/T. depends only
[ B(T) » \_Hole concentration, X 1 gjightly on x. Moreover, the shape of these curves
| [N | follows closely that of the weak-coupling BCS theory.
""""""" .. The, albeit, small variation with is systematic, with the

N\ 4 lowest value ofc corresponding to the top curve. Recent
F NN experiments provide some preliminary evidence for this
0 L ' ' ' —1= universal behavior [20,21]. However, a firm confirmation
0.0 0.1 0.2 0.3 requires further experiments on a wider range of hole

X concentrations, from extreme under- to overdoped samples

FIG. 1. Phase diagram showing(0) and T, as well as [22]. This universal behavior appears surprising at first

Ape(T:). The inset shows experimental results from Ref. [13].Sig_ht [1,16] becausg of the strongdependence in the_
ratio T./A(0) (see Fig. 1). It should be noted that uni-

) versality would not persist if p,(T)/ps(0) were plotted

[11]. Itshould be noted that the above resiilf, vanishes iy terms of 7/A(0). The nontrivial origin of this effect
atT = 0, is applicable to situations whei is finite. It has a simple explanation within the present theory. At
does not apply for < x. = 0.025, where there is no su- |ow to intermediate temperatures, it follows from Eq. (3)
perconducting phase transition at any firfite In this low  hat )\ib(o)/)\ib(T) = [A2.(T)/A%(0)](1 — AT/T. +
x regime, the system is always in the normal state, an@[(T/Tc)z]) ~1—[A+ B(T)](T/T.), where terms
Eq. (2b) cannot be satisfied; nevertheless, Eq. (2a), whicks order (T /T.)* and higher have been neglected. Here
parametrizes the normal state self-energy [4], implies thaf — 35./7 |n 2?2, (0)/c214y[T./A(0)] represents the
there are pairing fluctuation effects associated with finite;tandard contribution to the line@rdependence o, (7).
Apg down to7 = 0. The new termB(T) = (T./T)A;,(T)/A*(0) derives from

It is important to stress that our subsequent results fofhe pseudogap contribution and has a weaker than linear
the superfluid density and Josephson current need not e gependence (as can be inferred from the lower inset
viewed as contingent on the detailecdependence used of Fig. 3) [23]. For the purposes of illustration, these
to derive the phase diagram. One can approach the calcyyg terms are plotted in the upper inset of Fig. 2 at
lations of these quantities by takirfgy(x) and the various 7,7 — 2. Note that the effective (negative) “slope”

A + B is relativelyx independent over the physical range
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o ’ 17 associated with two compensating contributions, arising
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FIG. 2. Temperature dependence of tlaé-plane inverse 0.0 ‘ S
squared penetration depth. Main figure: from bottom to top 0.0 0.2 0.4 0.6 0.8 1.0
are plotted forx = 0.25 (BCS limit, dot-dashed line), 0.2 T/T
c

(long-dashed), 0.155 (dotted), 0.125 (dashed), and 0.05 (solid

line). Lower inset: energy gaps as a function BfT. for : -
x — 0.125. Upper inset: &) the slope given by the Towr FIG. 3. Temperature dependenceéxis Josephson critical

: ) AT, T current with doping given by the legends in Fig. 2 (main
expansion assuming(7) = A(0); (B) the ratio 3557 /7 at  figure). The variation ofA2 and A as a function ofT /7.
T/T. = 0.2;and @ + B) the sum. are plotted in the insets for the corresponding values. of
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from the quasiparticle and pair excitations, respectively, [3] The details of thec-axis dispersion (incoherent vs coher-

so that quasiuniversal behavior results at [Bw It can be ent) are inessential, but the third dimension is required for
shown that the same compensating effect obtains all the finite T..

way toT,, as is exhibited in Fig. 2. Thus, the destruction [4] B. Janko, J. Maly, and K. Levin, Phys. Rev. B,

of the superconducting state comes predominantly from ~ R11407 (1997); J. Maly, B. Janko, and K. Levin, cond-

- - . : . mat/9710187; cond-mat/9805018 (unpublished).
E%Lixcnatlons at lowr, and quasiparticle excitations at [5] Q. Chen, 1. Kosztin, B. Janké, and K. Levin, cond-mat/

A A . 9805032 (unpublished).
(iii) Finally, as plotted in Fig. 3, we obtain from Eq. (4), [6] 1. Kosztin, Q. Chen, B. Janko, and K. Levin, Phys. Rev. B

similarly, unexpected quasiuniversal behavior for the nor-~ * 5g Rr5936 (1998).
malizedc-axis Josephson critical current for the same wide [7] L.p. Kadanoff and P.C. Martin, Phys. Ret24, 670
range ofx as in Fig. 2. This behavior is in contrast to the (1961).
strongly x dependent quasiparticle tunneling characteris-[8] B.R. Patton, Ph.D. Thesis, Cornell University, 1971
tics which can be inferred from the temperature dependent  (unpublished); Phys. Rev. Le@7, 1273 (1971).
excitation gap plotted in the upper inset of Fig. 3. The [9] A.J. Leggett, J. Phys. (Paris), Collod1, C7/19 (1980);
origin of this universality is essentially the same as that P Noziéres and S. Schmitt-Rink, J. Low Temp. PI8g.
for p,, deriving from two compensating contributions. At éi?s(lsgs);insgaggfr(liégé_)wl' Duan, and L.-Y. Shieh,
25 a funcion of, athough future measurements will - (10} - Touless, Ann. Phys. (Y30, 553 (1960).
. ’ . . . ’ [11] A,, derives from fluctuations ofAq = g\ ¢«
timately, be able to determine this quantity. In these fu- rrelC about|Ay| = KAy_o)l. Thus. (A%
ture experiments the quasiparticle tunneling characteristics i <Aq/ill’fl;:/g221’2 Lo ;/C (K Iq{/;’ v;/hereC (K K') =
should be simultaneously measured, along Wi{T), so -y q;(é)A(K;Q];X(K’Iz Qk)- fNitV" A(K: 0) = 2Go(;K +
that direct comparison can be made to the excitation gap; Q/Z)QG(K + 0/2)¢x. For 1(Q) = 1.(Q), one recovers
in this way, the predictions indicated in Fig. 3 and its up- the Gorkov factorization C,(K,K’') = F(K)F*(K'),
per inset can be tested. Indications, thus far [13,24], are  where F(K) = Ay Go(—K)G(K). By taking 1(Q) =
that this tunneling excitation gap coincides rather well with 1(Q) + 1,,(Q), it follows that (|A[*)= -3, #(Q) X
values obtained from photoemission data (see Fig. 1). [gx(O)F = Al + (=20 15 (Q) [g X (Q)P) = [A|* +

In summary, in this paper we have proposed a scenario ~ Aj,, where we have used the fact that, for< T, 1,,(Q)
for the superconducting state of the cuprates. This state IS highly peaked aroun@ = 0.
evolves continuously with hole doping exhibiting un-  [12] See, e.g., S. Misawa, Phys. Rev5E 11791 (1995).
usual features at low (associated with a large excitation 1] H: II(\/Ilyakzws,EP.GGuptgiarmz; J'FL' égsfg?”iggsqe'
gap atT.) and manifesting the more conventional features NmM?)’/aalgwaét al é?r/;d-mgts/éSggé%e (u,npubliéhed)),
of BCS theory at highx. In this scenario the pseudogap [14] ' - .

) . ; . e X . See, e.g., M. Rapp, A. Murk, R. Semerad, and W. Prusseit,
state is associated with pair excitations, which act in con- Phys. Rev. Lett77, 928 (1996).

cert with the usual quasiparticles. Despite the fact thais) v. Ambegaokar and A. Baratoff, Phys. Rev. Let, 468
the underdoped cuprates exhibit features inconsistent with  (1963);11, 104(E) (1963).

BCS theory [./A(0) is strongly x dependent and is  [16] A.J. Millis, S.M. Girvin, L.B. loffe, and A.l. Larkin,
finite at and abovel'.] we deduce an interesting quasi- cond-mat/9709222.

universality of the normalizeg, and/. as a function of [17] G. Baskaran, Z. Zou, and P.W. Anderson, Solid State
T/T.. In these plots the over- and underdoped systems Commun.63, 973 (1987). _

essentially appear indistinguishable. Current experimentd8] We did not fine-tune the ratio, /7 since only7. depends
lend support to this universality ip,, although a wider slightly on its value (see Ref. []), which is presumably
range of hole concentrations will need to be addresse also doping dependent.

. - (f19] Our choice fort, leads toEr = 300 meV for x = 0.15,
along with future systematic measurements,of in agreement with photoemission data. See, e.g., Z.-X.
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