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We study the effect that electron-electron interaction has on the properties of a multilayer elec
system. We consider the case corresponding to filling factor unity in each layer and find t
as a function of the sample parameters, the system has ferromagnetic, canted antiferromagne
paramagnetic interlayer spin correlations. These three ground states are QHE phases because
existence of a finite activation energy. In the ferromagnetic phase the gap is due to the intra
exchange energy, whereas in the paramagnetic phase the gap appears due to spatial modulation
interwell coherence. [S0031-9007(98)07800-4]
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The quantum Hall effect (QHE) is one of the most strik
ing phenomena observed in two-dimensional electron g
(2DEG) systems [1]. The QHE occurs because the 2DE
becomes incompressible at certain filling factors. In th
odd integer and fractional QHE, the energy gap source
the incompressibility is produced by interactions betwee
electrons. In the even integer QHE the incompressibili
is due to the quantization of the electron kinetic energ
Given the new physics which appears in 2DEG in th
QHE regime, the question that arises is whether the qua
tum Hall phases are unique to 2DEG or can they occ
in three-dimensional (3D) conductors [2]. In this direc
tion, some studies in narrow gap 3D semiconductors in t
strong magnetic field limit have shown some signatures
an incipient quantum Hall phase [3]. On the other han
the progress in epitaxial growth has made it possible
fabricate semiconductor systems where 2DEG’s with e
tra degrees of freedom exist:

(i) Wide parabolic quantum wells where a thick elec
tron gas layer (,2000 Å) is formed. This system presents
a clear QHE phase [4].

(ii) Double quantum well (DQW) systems with elec-
trons confined to two parallel sheets separated by a d
tance comparable to that between electrons within a pla
[5]. DQW systems present QHE at total integer filling
factors, even in the absence of tunneling between the el
tron planes.

(iii) Superlattices, where an appreciable dispersion
the electronic spectrum in the direction perpendicular
the layers exits. Accurately quantized Hall plateaus ha
been observed in these multilayer systems [6,7] when
magnetic field is applied parallel to the superlattice axi
Studies of vertical transport in these supperlattices ha
shown [7] the existence of a chiral two-dimensional syste
that forms at the surface of the layered system [8]. Th
poor mobility of the bulk narrow gap semiconductor
and the small number of new degrees of freedom of th
parabolic and DQW’s with respect the 2DEG, made th
superlattices the best candidates for studying QHE pha
in 3D conductors.
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In this work we study the effect that the electron ele
tron interaction has on the properties of the multilay
electron system. We consider the case corresponding
filling factor unity in each electron layer. Two points ar
raised in this paper: the magnetic order of the electr
layers and the conditions for the occurrence of the QH
in this system. The main results we obtain are the follo
ing: (i) As a function of the sample parameters (Zeem
coupling,H, interlayer tunneling,t, and barrier thickness,
d) we find that the system changes from a QHE state w
interlayer ferromagnetic spin correlations to a new QH
state with canted antiferromagnetic interlayer correlatio
(see Fig. 1). This phase is similar to the canted phase
predicted to occur in DQW systems at total filling facto
2, and experimentally verified [10]. For larger values
the tunneling amplitude, we find that the system u
dergoes another phase transition towards a paramagn
state. These transitions are second order phase transit

FIG. 1. Phase diagram for a multilayer system, with fillin
factor unity in each well. The Zeeman coupling isH ­
0.01e2ye, and the electron layer thicknessb ­ 0.8,. Three
phases are present: a ferromagnetic phase (shadow reg
a canted antiferromagnetic region (C), and a paramagn
region (P).
© 1998 The American Physical Society
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FIG. 2. Activation energy of a multilayer system as a functio
of the tunneling amplitude. The Zeeman coupling isH ­
0.01e2ye,, the barrier thicknessd ­ 0.2,, and the electron
layer thickness isb ­ 0.8,. The vertical lines indicate the
values oft where the different phase transitions occur.

(ii) We also study the value of the activation energy as
function of the sample parameters. In Fig. 2 we plot th
energy gap as a function of the tunneling amplitude f
a multilayer system withd ­ 0.2, and H ­ 0.01e2ye,
(here , is the magnetic length). We find that this ga
is finite even for very large values oft, where the sys-
tem is paramagnetic. This implies that the paramagne
phase of the multilayer system is also a QHE phase.
we explain below, the energy gap in the paramagne
phase appears because the system breaks spontane
the translational symmetry along the multilayer axis b
modulating the interwell coherence. From our results w
conclude that in multilayer electron systems, with fillin
factor unity in each well, the QHE prevails in all phase
due to the existence of a finite activation energy, even
d, t ! `.

We treat the electron electron interaction in the Hartre
Fock (HF) approximation. From previous works [5,9,10
12] in 2DEG and DQW systems, we expect the H
approximation to be a good approach for describing M
systems at filling factor unity in each well.

The calculations presented here employ realis
Coulomb interaction potentials and take into accou
interlayer tunneling and Zeeman coupling; therefore w
expect our results to be qualitatively and quantitative
trustworthy. We take the multilayer vertical axis as th
z direction and the electrons live in thex-y planes. The
magnetic field,B, is applied in thez direction. Since
B is very strong, we consider only states in the lowe
energy Landau level of the lowest energy subband
each well. The Hamiltonian of the system is written a
Ĥ ­ H0 1 V , with

H0 ­ 2t
X

ki,jl,k,s

sCy
i,s,kCj,s,k 1 H.c.d

2 H
X

i,s,k

sC
y
i,s,kCi,s,k , (1)
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whereC
y
i,s.k creates an electron in the lowest Landau lev

in layeri with spins (s ­ 61) in the direction ofB, and
with intra Landau level indexk. The sum in the first term
of Eq. (1) is over first neighbors layers. The many-bod
part of Ĥ takes the form

V ­
1

2S

X
s,s0

X
i,j

X
k,k0,q

Vi,jsqde2q2,2y2eiqx sk2k0d,2

3 C
y
i,s,k1qy

C
y
j,s0,k0Cj,s0,k01qy Ci,s,k , (2)

whereS is the sample area and the interaction potenti
has the formVi,j ­ 2pe2yeqFi,jsq, b, dd, with Fi,j being
finite layer thickness form factors [13], which depends o
the thickness of the 2DEG in each layerb, and on the
barrier thicknessd.

The multilayer (ML) systems are doped in the barrier
and in the absence ofB, all layers have the same numbe
of electrons. We consider that this is also the situatio
at large values ofB, since in any other situation it would
cost a large Hartree energy. At filling factor unity in eac
layer the intrawell correlation is not very important so w
consider only solutions with translational symmetry in th
plane (x, y) of the electron gases. Broken translationa
symmetries along the multilayer axis (z direction) are
allowed, always with the condition of having filling factor
unity in each layer. With these constraints, the H
expectation value ofV takes the form

kV l ­ 2
1

2S

X
i,j,q

X
s,s0,k

Vi,jsqde2q2,2y2

kCy
i,s,kCj,s0,kl kCy

j,s0,k2qy
Ci,s,k2qy l . (3)

Here the sum ink is over all its possible values. By
minimizing the energykĤl ­ kH0l 1 kV l, we obtain the
energy of the ground state of the system and its properti

We have solved the Hamiltonian for different values o
d, t, andH. For each layeri we calculate the expectation
value of the total spin operator per electronkSil. For
characterizing the ground state it is also necessary
quantify the interlayer coherence which is given by th
following expectation value,

Ds,s0sid ­
1

Nf

X
k

kCy
i,s,kCi11,s,kl . (4)

HereNf ­ Sy2p,2 is the the Landau level degeneracy
This quantity represents the coherence between wells.

Looking to the values ofkSil we find three different
classes of ground states (see Figs. 1 and 3):

(1) Ferromagnetic phase.—All electron layers are
fully spin polarized in the direction of the magnetic
field, i.e.,kSil ­ s0, 0, 1y2d. This phase occurs for small
values oft or large values ofH. In the ferromagnetic
phase the intralayer coherence is more important th
the interlayer coherence and all the expectation valu
of the operatorsDs,s0sid are zero, and there is not
vertical kinetic energy contribution to the total energy
The ferromagnetic ground state is a QHE phase, a
4693
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FIG. 3. Expectation values of the total spin operator p
electron as a function of the tunneling amplitude. The Zeem
coupling is H ­ 0.01e2ye,, the barrier thicknessd ­ 0.2,,
and the electron layer thickness isd ­ 0.8,. The vertical tick
marks in the lowerx axis indicate the values oft where the
different phase transitions occur.

the activation gap (see Fig. 2) is the cost in energy
adding an electron to the system with the spin pointi
antiparallel to the magnetic field. In this phase th
ground state has the same translational symmetry as
Hamiltonian.

(2) Canted antiferromagnetic phase.—In this phase the
total spin in each layer acquires a component perpendi
lar to the magnetic field,kSil ­ sSi,', Si,zd, and the mag-
nitude ofkSil is smaller than its maximum value,1y2. In
this phase the sign ofSi,' alternates from layer to layer,
i.e.,Si,' ­ 2Si61,', so that the translational symmetry o
the Hamiltonian is spontaneously broken and the unit c
in thez direction consists of two electron layers which a
labeled2i 2 1 and2i. Thez component ofkSil is finite
and it has the same value in all layers, therefore in t
canted phase there is an interlayer antiferromagnetic c
pling of the transverse component of the total spin. B
performing calculations in bigger size unit cells, we hav
checked that this phase is stable with respect to spiral
dering of the transverse component ofkSil.

In the canted phase the interlayer coherence param
is different from zero and verify the relations:

D1,1sid ­ D2,2sid ,

D1,2sid ­ 2Dp
2,1sid , (5)

but the interlayer coherence parameter depends oni. In
Fig. 4 we plot D1,1s2id, D1,1s2i 2 1d, D1,2s2id, and
D1,2s2i 2 1d, as a function oft. We see that

Ds,s0s2id fi Ds,s0s2i 2 1d , (6)

and this implies that there is a modulation of the interlay
coherence. Therefore in the canted phase the translatio
symmetry along the multilayer axis is broken not ju
by the antiferromagnetic ordering of the layers, but al
by the modulation of the interlayer coherence. In th
self-energy calculation, the modulation of the interlay
4694
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FIG. 4. Interlayer coherence parameters as a function of
tunneling amplitude. D11sid are real and we plot its real
part. D12sid are imaginary and we plot its imaginary par
The Zeeman coupling isH ­ 0.01e2ye,, the barrier thickness
d ­ 0.2,, and the electron layer thickness isb ­ 0.8,. The
vertical dashed tick marks in the upperx axis indicate the
values oft where the different phase transitions occur.

coherence acts as a spatial modulation of the hopp
amplitude, and this modulation contributes to the openi
of an energy gap at the Fermi level. The canted pha
appears at intermediate values of the tunneling amplitu
see Figs. 1 and 3, and the reason for its existence
that in this phase the system can take advantage of
kinetic energy by creating interlayer antiferromagnet
spin correlations. The antiferromagnetic order is cant
in order to minimize the loss of Zeeman energy. Th
canted ground state is a QHE phase. The transp
activation energy is finite because the system is partia
spin polarized in the direction ofB, and because the
interlayer coherence is spatially modulated.

Canted ground states corresponding to rotations
all the Si,' are degenerated and therefore this pha
should get a gapless collective mode associated with
degeneracy.

This phase can be considered as the ML generalizat
of the canted phase obtained in DQW systems [9]. T
dependence ont of kSil is very similar to that found
in DQW systems. However, in the ML system ther
is also a modulation of the interlayer coherence whi
obviously cannot appear in DQW systems. In fact, t
canted phase in infinite ML systems can be conside
as the high magnetic field limit of the spin density wav
ground state proposed by Celli and Mermin [14] to occ
in 3D systems. The reason for this instability arises fro
the one-dimensional nature of the electron energies i
strongB.

(3) Paramagnetic phase.—In this phase the expectation
value of the total spin operator is zero in all layer
kSil ­ 0. This phase occurs at large values oft, where
the kinetic energy and interwell coherence energy
much bigger than the Zeeman and intrawell exchan
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energy. In this phaseD1,2sid ­ 0, but the equal spin
interwell coherence parameters are different from ze
and verify D1,1s2i 2 1d ­ D2,2s2i 2 1d fi D1,1sid ­
D2,2s2id. In this phase, the system breaks spontaneou
the translational symmetry by modulating the interwe
coherence along the vertical axis of the multilayer. I
the paramagnetic ground state the unit cell consists
two electron layers. This modulation of the interwe
coherence creates an energy gap at the Fermi energy,
the paramagnetic ground state is a QHE phase.

In these three magnetic phases there is a gap at
Fermi energy and electric resistance will be infinite fo
an electric field parallel to the ML axis. On the othe
hand, current flow perpendicular to thez direction will
not be affected by the interlayer magnetic order an
occurs without dissipation. The Hall conductivity is given
by the classical expressionsxy ­ n3DecyB, being n3D

the average 3D densityn3D ­ 1y2p,2d, so thatsxy ­
e2yhd. In this way the Hall conductance contributed b
a layer of the ML ise2yh.

The superlattices studied in Refs. [6,7] have thick barr
ers and they are in the ferromagnetic phase. For study
antiferromagnetic and paramagnetic phases, it is nec
sary ML’s with thin barriers and large tunneling ampli
tudes. The ML’s are usually doped in the barriers an
in the case of thin barriers this produces a strong scatt
ing of the electrons by impurities, which prevents many
body driven ground states. It is possible to circumve
this problem by working with superlattices superimpose
on wide parabolic wells [15–17]. These systems are r
motely doped, and it is possible to obtain ML’s with thin
barriers and high electron mobility. The ground state
magnetic properties can be studied experimentally by u
ing optically pumped nuclear magnetic resonance. Th
technique has been very useful for the study of the ma
netic nature of 2DEG’s [18]. Also it could be very usefu
in the application of a magnetic field,Bk, parallel to the
electron sheets.Bk changes the value of the Zeeman cou
pling, and as a function of its strength the ground state
the system could change. This phase transition could
identified by studying the activation energy as a functio
of Bk [19]. Strong enoughBk also destroys the interlayer
coherence [20–22]. In the paramagnetic phase the a
vation energy is due to the spatial modulation of the inte
layer coherence, and the application of a strongBk would
destroy the QHE.

In conclusion, we have studied the effect that th
electron-electron interaction has on the properties
a multilayer electron system. We consider the ca
corresponding to filling factor unity in each layer. We
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have found that as a function of the sample paramete
the system has ferromagnetic, canted antiferromagne
or paramagnetic interlayer spin correlations. We hav
obtained that these three ground states are QHE phas
because of the existence of a finite activation energy.
the ferromagnetic phase the gap is due to the intraw
exchange energy, whereas in the paramagnetic phase
gap appears due to the spatial modulation of the interw
coherence.
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