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Stability of Colloidal Quasicrystals
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Freezing of charge-stabilized colloidal suspensions and relative stabilities of crystals and quasic
are studied using thermodynamic perturbation theory. Macroion interactions are modele
effective pair potentials combining electrostatic repulsion with polymer depletion or van
Waals attraction. Comparing free energies—counterion terms included—for elementary cr
and rational approximants to icosahedral quasicrystals, parameters are identified for whichone-
componentquasicrystals are stabilized by a compromise between packing entropy and cohesive e
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Suspensions of mesoscopic-sized (1 1000 nm) col-
loidal particles dispersed in a fluid medium are of bo
practical and fundamental interest [1]. Beyond tradition
relevance to the chemical, food, and pharmaceutical
dustries, the remarkable mechanical, thermal, and opti
properties of these typically soft materials raise intriguin
prospects for novel applications, such as optical switc
ing devices [2]. Recent scientific interest has been driv
largely by advances in sample preparation, scattering, a
imaging techniques [3]. As well-characterized models
atomic systems, colloidal suspensions offer valuable
sight into the basic link between microscopic interpartic
interactions and macroscopic phase behavior in conden
matter. More so than in atomic systems, colloidal intera
tions are eminently tunable through experimental contr
of particle size, charge, and surface chemistry, as well
properties of the suspending medium, such as polariza
ity and salt concentration. A correspondingly rich varie
of thermodynamic phases has been observed, includ
the vapor, liquid, crystal, and glass phases common
atomic systems. A notable exception is the quasicrys
phase, which to date is known to exist only in certain b
nary and ternary metallic alloys [4]. The purpose of th
Letter is to demonstrate, using general statistical mecha
cal methods, the possibility of thermodynamically stab
one-componentcolloidal quasicrystals. If experimentally
observed, such systems would represent a fundament
new type of colloidal order and permit the first real-spac
imaging of quasicrystals.

We focus specifically on suspensions of charged sphe
cal colloidal macroions and oppositely charged counte
ions dispersed in a deionized (salt-free) solvent. T
macroions are modeled as hard spheres of diametes

and uniform surface chargeZe, the counterions as point
particles of elementary chargee, and the solvent as a con
tinuous medium of dielectric constante. Charge neutrality
relates the average macroion and counterion number d
sities viaZrm ­ rc. Electrostatic interactions between
charged macroions in suspension are commonly mo
0031-9007y98y81(2)y469(4)$15.00
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eled by an effective hard-sphere/screened-Coulomb p
potential:

felsrd ­
Z2e2

e

∑
expsksy2d
1 1 ksy2

∏2 exps2krd
r

, r . s ,

­ `, r , s , (1)

wherer is the separation between macroion centers a
k ­

p
4pZe2rmyekBT is the Debye screening constan

Equation (1) was first derived in the dilute regime by De
jaguin, Landau, Verwey, and Overbeek [5]. The screene
Coulomb form has since been shown to be accurate a
for concentrated suspensions, withZ replaced by an ef-
fective charge [6]. At finite macroion volume fraction
h ­ spy6drms3, the volume available to the counterion
is smaller than the total volumeV by a factor ofs1 2 hd.
As a result, the effective counterion density is increas
by a factor of1ys1 2 hd, enhancingscreening [7] accord-
ing to k̃ ­

p
4pZe2rmyekBT s1 2 hd. Henceforth, we

assume an electrostatic potential of the form of Eq. (1
but with this modified screening constant.

Aside from electrostatic repulsions, interactions b
tween macroions also can include an attractive compone
Attractions may arise, for example, in the presence
free (nonadsorbing) polymer via a polymer-depletio
mechanism [8]. For macroion surface-surface separatio
smaller than the characteristic polymer coil diamete
depletion of polymer from the intervening space creat
an osmotic pressure imbalance drawing the macroio
together. The attractive energy is directly proportional
the polymer osmotic pressurePp and the mutual overlap
of excluded volume shells. For coils of sufficiently sma
radius of gyrationRg relative tos, the effect is described
by a pair potential that is nonzero only in the rang
s , r , s 1 2Rg, where it has the form [8]

fdepsxd ­ 2c

∑
1 2

3x
2s1 1 jd

1
1
2

µ
x

1 1 j

∂3∏
,

(2)
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with x ­ rys, j ­ 2Rgys, and c ­ spy6dPps3s1 1

jd3. For size ratiosj . 0.16, triplet overlaps entail three-
body interactions. However, forj . 0.25 (our case be-
low) these are small enough to be ignored [9]. Attraction
also may arise from fluctuating dipole-dipole forces, as d
scribed by the London–van der Waals pair potential [5]

fvdWsxd ­ 2
A
6

∑
1

2x2
1

1
2sx2 2 1d

1 ln

µ
1 2

1
x2

∂∏
,

(3)

where the Hamaker constantA is related to the macroion
and solvent polarizabilities (refractive indices). The neg
tive divergence at contact (r ­ s) can cause irreversible
coagulation unless the macroions are stabilized, e.g., st
cally by adsorbing or grafting a layer of polymer to thei
surfaces. For simplicity, we model this by a cutoff at
distancer ­ Rc, roughly5% 10% larger thans.

Figure 1 depicts effective macroion-macroion pair po
tentials that combine electrostatic repulsion with each
the two types of attraction discussed above. The leng
scales of the interactions are set by the macroion core
ameter, the polymer coil radius (or van der Waals cuto
distance), and the Bjerrum lengthlB ; e2yekBT (at tem-
peratureT). These pair potentials are now taken as in
put to a statistical mechanical theory for the Helmholt
free energy. The macroion contribution to the free e
ergy is determined by means of thermodynamic perturb
tion theory [10]. (An earlier such study by Gastet al. [11]
considered freezing only into an fcc crystal.) The theo
proceeds by splitting the pair potential into short-range re
erence and longer-range perturbation potentials. The na
ral separation here is into a hard-sphere (HS) referen
potentialfHSsrd and a perturbation potentialfpsrd that
combines an attractive well with a repulsive barrier an
long-range tail. To first order infpsrd, the macroion free
energy separates correspondingly into reference and p
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 Depletion
 van der Waals

FIG. 1. Effective pair potentials for charge-stabilized colloida
suspensions withs ­ 50 nm, Z ­ 150e. Solid curve: Index-
matched suspension mixed with polymer ofRgys ­ 0.125,
Pps3ykBT ­ 250. Dashed curve: Non-index-matched with
Rcys ­ 1.058, AykBT ­ 25.
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turbation terms:

Fmfrmsrdg ­ FHSfrmsrdg 1 2prmNm

3
Z `

0
dr 0 r 02gHSsssr 0; frmsrdgdddfpsr 0d ,

(4)

Nm ­ rmV being the macroion number, andFHSfrmsrdg
andgHSsssr; frmsrdgddd the free energy and radial distributio
function (RDF), respectively, of the HS reference syste
both dependent on theequilibriummacroion density distri-
butionrmsrd. Accuracy of first-order perturbation theor
is assured if fluctuations in the total perturbation ener
remain small relative tokBT [10], a condition generally
well satisfied here, where variations infsrd are small for
distances over which the RDF varies appreciably.

For the fluid phase, with spatially constant macroio
density, the macroion free energy is calculated via t
uniform limit [rmsrd ! rm] of Eq. (4), using the essen
tially exact Carnahan-Starling and Verlet-Weis forms [1
for FHSsrmd andgHSsr; rmd, respectively. For the solid
phase, classical density-functional methods [12] are
plied. The reference free energy is obtained by minimizi
a functionalFHSfrmsrdg with respect to the macroion den
sity distributionrmsrd, or in practice the width paramete
a in the Gaussian parametrization

rmsrd ­

µ
a

p

∂3y2 X
R

exps2ajr 2 Rj2d , (5)

the sum running over the lattice sitesR of a specified solid
structure. For nonoverlapping Gaussians, the configu
tional entropy (ideal-gas) part of the functional is give
exactly byFidyNmkBT ­ s3y2d lnsas2ypd 2 5y2. The
excess part is determined by means of the modifi
weighted-density approximation (MWDA) [13], which
reasonably describes HS solids. This maps the excess
of FHSfrmsrdgyNm onto its fluid counterpart, evaluated a
an effective density, viaF MWDA

ex frmsrdgyNm ­ fexsr̂d,
wherefex is the fluid excess free energy per particle a
r̂ is a weighted average ofrmsrd that incorporates exac
two-particle correlations and a subset of higher-order c
relations. The reference RDF—an angular average of
two-particle density—is calculated using an approach
cently proposed by Rascónet al. [14]. This corrects the
first peak for nearest-neighbor correlations—by fixing t
contact value (via the virial theorem), coordination num
ber, and first moment—and treats higher-order peaks
a mean-field fashion. The approximation compares
cellently with simulation data for HS crystals and ha
been successfully applied to Lennard-Jones and squ
well solids [14].

The counterion contribution to the free energy is

Fcsrmd ­ FOCPsrmd 2 Nm
Z2e2

2e

k̃

1 1 k̃sy2
, (6)



VOLUME 81, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 13 JULY 1998

-

l-
e

ter
lly
-

ns
of
g

us

lid
ng

ion

,

es
ns

d
ing
al
bly,
uid
res
il-
s,

n
g

comprising the free energy of a one-component plasm
(OCP) of counterions and the interaction of the macroio
with their own counterion screening clouds [15,16]. Fo
the weakly coupled OCP of interest here, characterized
coupling parameterG ; lByac ø 1, whereac ; f3s1 2

hdy4pZrmg1y3, it can be shown that the density derivativ
of the excess part ofFOCP , associated with counterion-
counterion correlations, is much smaller, by a factor
order1yZ, than that of the (entropic) ideal-gas part. Ther
fore we may ignore correlations [15] and takeFOCP ­
kBTZNm lnfrms3ys1 2 hdg. Although independent of
macroion structure, the counterion free energy is ma
festly state dependent and, under conditions of high cha
and low salt, can profoundly influence phase behavior.

Applying the above procedure, we have calculated to
free energies for a variety of elementary crystals a
model quasicrystals. The crystalline structures examin
include face-centered and body-centered cubic (fcc a
bcc), tetragonal, orthorhombic, and rhombohedral Brav
lattices, and the hexagonal close-packed (hcp) structu
The model quasicrystalline structures are rational appro
mants (RA) to icosahedral quasicrystals generated
projecting a six-dimensional hypercubic lattice onto th
three-dimensional physical space and approximating,
the perpendicular space, the golden meant by a rational
number tn ­ Fn11yFn, where Fn is a term in the Fi-
bonacci sequence. This procedure, together with a o
component occupation of the lattice sites that optimiz
packing efficiency [17], yields periodic lattices with larg
unit cells and local order closely approximating that o
aperiodic quasicrystals. The first four RAs, denoted 1y1,
2y1, 3y2, and 5y3, have unit cells containing, respec
tively, 20, 108, 452, and 1904 atoms and maximum HS
volume fractions of0.5020, 0.6400, 0.6323, and 0.6287
(cf. 0.6288 in the quasiperiodic limitn ! ` and 0.7405
for fcc and hcp crystals). The RDFs illustrated in Fig.
show that nearest-neighbor distances for the RAs are ab
5% shorter than for the crystals. For computational eas
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FIG. 2. Radial distribution function of the hard-sphere soli
for h ­ 0.54. Solid curve: 2y1 rational approximant (as2 ­
230). Dashed curve: fcc crystal (as2 ­ 120).
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we focus on the 2y1 structure, but check to ensure qualita
tively similar results for the higher-order approximants.

From previous work [18], packing efficiency is known
to dominate the stability of HS solids, the RAs being a
ways metastable (higher in free energy) relative to th
crystals. On the other hand, because of their shor
nearest-neighbor distances, the RAs can gain energetica
from short-range attractive interactions. In fact, for po
tential wells of appropriate depth (a fewkBT ) and width
(10% 30% of s), their free energies can be lower than
those of simple crystals. As shown above, such attractio
can be produced in colloidal systems by adding polymer
appropriate size and concentration [Eq. (2)] or by tunin
refractive indices [Eq. (3)].

Assuming a room-temperature, salt-free, aqueo
solvent (lB ­ 0.72 nm), we have surveyed macroion
parameters,s and Z, and parameters defining attractive
interactions—j and Pp for index-matched colloid-
polymer mixtures, Rc and A for non-index-matched
suspensions—computed free energies for each so
structure, and identified parameter combinations tendi
to favor quasicrystal stability. For illustration, Fig. 3 dis-
plays the free energies of a non-index-matched suspens
characterized bys ­ 50 nm, Z ­ 150e, Rcys ­ 1.058,
andAykBT ­ 25. Hamaker constants of this magnitude
though high for polymeric colloids, are typical for metallic
colloids, such as Ag, Au, and Cu. Furthermore, charg
of this magnitude correspond to counterion concentratio
of order 1023 molyl, far exceeding the background con-
centration of1027 molyl for H1 and OH2 ions from the
dissociation of water. Relative stabilities of the fluid an
competing solid structures are assessed by construct
Maxwell common tangents, ensuring equality of chemic
potentials and pressures in coexisting phases. Remarka
over a range of densities intermediate between dense fl
and close-packed crystals, the quasicrystalline structu
are predicted to be thermodynamically stable. The stab
ity can be traced to a competition between two factor
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FIG. 3. Helmholtz free energy per unit volume vs macroio
density (in reduced units) for a colloidal suspension interactin
via pair potential of Fig. 1 (dashed curve).
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FIG. 4. Phase diagram of polymer osmotic pressure
macroion density for a colloid-polymer mixture interacting
via pair potential of Fig. 1 (solid curve). Horizontal tie lines
connect corresponding points on coexistence curves.

namely, packing efficiency, favoring the fcc/hcp crysta
and nearest-neighbor coordination, favoring quasicry
talline order. This is best seen by comparing Figs. 1 a
2 and observing that the attractive well offsrd is more
commensurate with the first peak ofgHSsrd for the 2y1
RA than for the fcc crystal. Stable quasicrystals thu
emerge as a compromise between packing entropy a
cohesive energy in salt-free colloidal suspensions with
concentrated counterion background.

Applying the same approach to colloid-polymer mix
tures, quasicrystalline stability is again predicted for su
ficiently high polymer osmotic pressure. Repeating th
coexistence analysis over a range of osmotic pressures,
have mapped out phase diagrams in thePp-rm plane. A
typical example is presented in Fig. 4. At lower osmoti
pressures, where the interactions are purely repulsive,
fluid freezes into a close-packed crystal, fcc and hcp bei
essentially degenerate. Beyond a threshold osmotic pr
sure, however, freezing occurs into the quasicrystal, whi
remains stable over a significant range of densities. At t
threshold pressure (herePps3ykBT . 220), which we es-
timate to be near crossover between dilute and semidilu
polymer regimes, the fluid, crystal, and quasicrystal coe
ist at a triple point. At higher densities, packing efficienc
prevails and the quasicrystal makes a structural transiti
to the fcc/hcp crystal. The small relative density differ
ences justify our assumption of equal polymer concentr
tions in coexisting phases. Finally, we emphasize that t
predicted region of quasicrystal stability is robust with re
spect to variation of parameters, widening and shifting
higherPp with increasings andZ, and that its existence
depends not on specific details, but only the qualitativ
form, of the interactions.

Summarizing, using thermodynamic perturbation th
ory, we have investigated freezing transitions and asses
the relative stabilities of crystalline and quasicrystallin
solids in charge-stabilized colloidal suspensions. For e
fective macroion interactions combining electrostatic re
472
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pulsion with either polymer-depletion or van der Waa
attraction, system parameters and thermodynamic sta
have been identified for which one-component icosahed
quasicrystals are predicted to be thermodynamically sta
over a significant range of densities. Such systems a
interactions should be experimentally achievable, raisi
prospects for observation of stable colloidal quasicrysta
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