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A simple model to investigate the long time dynamics of glass formers is presented and app
to study a Lennard-Jones system in supercooled and glassy phases. According to our mode
point representing the system in the configurational phase space performs harmonic vibrations ar
(and activated jumps between) minima pertaining to a connected network. Exploiting the mode
agreement with the experimental results, we find evidence for (i) stretched relaxational dynamics, (
strong T dependence of the stretching parameter, and (iii) breakdown of the Stokes-Einstein
[S0031-9007(98)07786-2]
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In recent years many efforts were devoted to the u
derstanding of the phase space landscape in superco
liquids and structural glasses, and, in particular, to t
identification of those landscape details that are respons
for the structural arrest taking place at the glass transiti
temperatureTg [1,2]. It has been recently speculated [3
that the free energy landscape of structural glasses is si
lar to that of some generalized spin glass models. It w
shown that in these systems there exists a dynamical te
peratureTD (which is well defined in mean field approxi-
mation and becomes a crossover region in real system
at which the spin dynamics is subject to a critical slowin
down. BelowTD the residual, extremely slow, dynamic
is dominated by long time activated processes consisting
jumps among different free energy minima. A similar situ
ation holds in the case of structural glasses. Here, acco
ing to the mode coupling theory of the glass transition [4],
critical temperature (TC) exists, which marks the freezing
of the local molecular structure. BelowTC the hopping
processes control the diffusive dynamics. This paral
supports the conjecture that also in structural glasses
description of the dynamics slowing down can be done
term of free energy landscape (FEL).

The numerical investigation of the dynamics of supe
cooled liquids and glasses, and their link with the FE
is very hard due to the presence, approachingTC, of this
very slow dynamics. More important, one has to fac
the frustrating situation that the simple model system
where the theories are well developed [as, for examp
the Lennard-Jones (LJ) systems] cannot be undercoo
down to TC because crystallization starts a few degre
below the melting temperatureTM .

In this Letter we introduce an alternative metho
to study the slow dynamics in glasses and in deep
supercooled liquids; at variance with the usual molecu
dynamics (MD) simulation, we describe the dynamic
of the system as relaxation taking place in a connect
network of potential energy minima. The jumps amon
minima are described by an appropriate master equati
0031-9007y98y81(21)y4648(4)$15.00
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and, in this way, (i) we can investigate the long tim
behavior of a glass in short simulation times since th
solution of the master equation is an eigenvalue proble
and (ii) we can avoid crystallization as the crystallin
minima are eliminated from the network. At varianc
with previous approaches [5], the characteristics a
connectivity of the minima, and other energy-landsca
properties entering the determination of the transitio
probabilities, are inferred from the MD investigation o
a small system (one component LJ in the present cas
The physical quantities (total energy, pressure, transp
coefficient) obtained from the model agree with thos
derived from MD up to temperatures above the meltin
point, supporting the jump model even in the liqui
phase of LJ fluids. In the low temperature region w
find evidence for (i) stretched behavior of the relaxatio
process, (ii) temperature dependence of the stretch
exponent,bK , which changes fromø1 at highT down to
ø0.3 at low T , and (iii) breakdown of the Stokes-Einstein
relation. All of these results are in agreement with th
experimental findings in non-network forming glasse
and, in particular, in those glasses that are “fragile
according to Angell’s definition [6].

In a glass, the atoms are (almost) frozen in som
(meta)stable positions. The short time dynamics is dom
nated by small vibrations around the stable position. Th
dynamics can be described within the harmonic appro
mation, and all of the relevant information is obtained b
diagonalizing the dynamical matrix [7]. At long times
collective jumps among different stable positions involv
ing many atoms become possible and are controlled b
master equation, whose elements, the transition rates,
determined by minima energies, barrier heights and oth
topological properties along the path.

In order to set up the connected network of minima an
determine the transition rates, we need the topology
the multidimensional potential energy hypersurface of t
system. To this end, we numerically analyze the potent
energy landscape (PEL) of small (N ­ 11 29 atoms) LJ
© 1998 The American Physical Society



VOLUME 81, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 23 NOVEMBER 1998

ion
rier
ak
rva-

of
ed

ix,
-
er

e
the
ble

in
a
of
ly

e

s
e
n
f
dle
t of
ined
y)

-
el,
he

m
s
ll
).

the
e

systems with periodic boundary conditions. The small s
of the system allows an exhaustive investigation of t
landscape and, at the same time, exhibits complex eno
features and behavior to capture the physics of the sys
The atoms interact via the 6–12 LJ potentialVLJsrd ­
4efs s

r d12 2 s s

r d6g, with eykB ­ 125.2 K (kB, Boltzmann
constant) ands ­ 0.3405 nm, appropriate for argon. The
simulated density isr ­ 42 3 1023 molycm3.

The first step is to search for the potential ener
minima. We use a modified steepest descent method
starting from high temperature MD configurations to fin
the inherent configurations corresponding to local minim
which are often crystallinelike. In order to establis
whether a minimum corresponds to a glassy structu
we use the static structure factorSs $qd ­ N21j

P
j ei $q? $rj j2.

For a pure crystalline configuration ofN particles,Ssqd
is made up of “Bragg” peaks and its value at the pea
is Smax ­ N , whereas for a glass one usually find
Smax ø 2 3. In small size samples there are obvious
intermediate situations, and for a minimum to be “glass
we adopt the criterionSmax # Ny2.

As a second step, for each pair of minimaa and
b with energy Ea and Eb , respectively, we first de-
termine the mutual distanceda,b ­ minsjr a 2 r bjd,
wherera is the position vector of the minima in the3N
dimension configurational space, and min indicates
minimization with respect to all symmetry operation
continuous translations, permutations of particles, a
the 48 symmetry operations of the cubic group. W
then analyze the potential energy profile experienced
the system in traveling from one minimum to anoth
and determine the potential energy barrier. Among
different paths joininga and b, we assume [8] that the
system follows that with the least action. The acti
integral is defined asSs,d ­

R
, ds

p
V sssrssdddd 2 V0, where

, indicates a generic path,s is the curvilinear coordinate
and V0 ­ minhEa, Ebj. The minimization of Ss,d is
performed by dividing the path inton ­ 16 intervals and
minimizing the action function with respect to the extrem
of the n segments constrained to move in hyperplan
perpendicular to the straight path. The highest ene
value,Vab, along the least action path (LAP) determin
the saddle point of the path. Not all of the pairs
minima are directly connected, since, sometimes, the L
joining them crosses a third minimum. Therefore, the
is a nontrivially connected network of minima. Next, w
measure the curvature, defined as the determinant of
Hessian of potential energy function, in each minimu
asdethV 00

a jd, anda-b saddle point (dethV 00
abj). Also impor-

tant is the absolute value of the negative curvature on
saddle point,ṽab .

In order to give a full statistical description of the PE
we study the distributions,Psxd, of the relevant quanti-
tiesx (herex representsEa, DEab ­ Ea 2 Eb , dab, Vab ,
dethV 00

a j, dethV 00
abj, or ṽab) and their cross correlations

Psx1, x2d. Cross correlations among the measured qua
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ties are observed. The most evident is a linear correlat
in double log scale between the distance and the bar
height along the LAP between two minima. A rather we
correlation is also observed between the energy and cu
ture of extrema points of PEL.

The model we introduce is a connected network
potential energy minima with a jump dynamics describ
by an appropriate master equation

Ùpastd ­ ScWacpcstd , (1)

where pastd is the probability that the system is in
minimum a at time t [actually, pastd ; past j bd, in-
dicating that att ­ 0 the system was in minimumb]
and the nondiagonal elements of the transition matr
the transition ratesWab, are determined from the ener
getic and topological properties of the PEL. In ord
to satisfy the equilibrium condition,po

a ; past ! `d ~

sdetV 00
a d21y2e2bEa , with b ­ skBT d21, Wab must obey

the detailed balanceWabpo
b ­ Wbapo

a . Following [9] we
make the ansatz

Wab ­
ṽ

2
ab

g

√
detV 00

b

jdetV 00
abj

!1y2

e2bsEab2Ebd, (2)

whereg is a friction constant which determines the tim
scale. This choice of the transition matrix is based on
approximation of the problem of escape from a metasta
state as a Markovian-Browniand-dimensional motion in
the overdamped friction regime [9].

To set up our model minima network, we proceed
the following way. Having fixed the number of minim
(M ­ 400 in the present case), we extract the energy
these minima and their curvatures from the previous
found bivariate distribution. For each minimum w
randomly extract20 minima connected to it and define
a connection matrixcab that contains the number of step
required to go froma to b. We then define the distanc
dab ascab times the value extracted from the distributio
of the distancesPsdabd, and from these the energies o
saddle points. The further statistical features of sad
points (curvatures) and minima (transverse componen
the microscopic stress tensor; see below) are determ
from bivariate (correlation curvature-saddle-point energ
and simple extractions, respectively.

To check the reliability of the model, we first con
centrate on the static properties. Following our mod
the partition function is approximated by a sum over t
minima and the harmonic vibrations around them:

Z sbd ­ b23Ny2SasdetV 00
a d21y2e2bEa . (3)

In Fig. 1 we show the potential energy of a LJ syste
with N ­ 29 particles as obtained through MD and a
calculated from (3) by taking into account either a
minima (dotted line) or only the glassy ones (solid line
The MD data are obtained by progressively heating
glass (s) up to the liquid phase, and then cooling th
system slowlysdd, to obtain crystallization. We observe
4649
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FIG. 1. Potential energy of the LJ system as determined fr
MD heating the glassssd and cooling the liquidsdd, and from
the present model using all of the minima (dotted line) or on
the glassy minima (solid line).

a quantitative agreement between the MD data and
model up to T ø 150 K, a temperature well above
the melting point (Tm ø 80 K). At higher temperature
the simple local-vibration/collective-jumps model fails.

As for the dynamical properties, the solution of th
master equation is found by numerical knowledge
eigenvalues and eigenvectors of the transition matrix,lsnd
andyasnd respectively (n ­ 1, . . . , M). In particular,

past j bd ­ spo
b d21Snyasndybsndelsndt . (4)

It is then possible to determine the statistical equilibriu
average of a generic observableOstd from the knowledge
of its valueOab calculated at the minimaa andb:

kOstdl ­ Sbpo
b SaOabpast j bd . (5)

We consider three observables: the mass diffus
coefficient D, the shear viscosityh, and the structural
relaxation timet. In the first caseOab ­ jr a 2 r bj2,
and D ­ limt!`kOstdly6t. For the two other cases, w
first determine the correlation function of the off-diagon
elements of the stress tensors: Cstd ­ kszxs0dszxstdl
[10]. In the notation of Eq. (5),Oab ­ szx

a s
zx
b (where

sa is the value of the stress tensor calculated at minim
a). The shear viscosity is then calculated as

h ­ skBTV d21
Z `

0
dtCstd , (6)

and the relaxation timet is derived from a fit ofCstd to a
stretched exponential decayCstd ­ Cs0d exp2stytdbK .

We report the values obtained forM ­ 400 and av-
eraged over 50 different extractions of the network p
rameters. In Fig. 2 we show the normalized correlati
functions CstdyCs0d calculated at different temperature
together with their best fits. In the inset, theT depen-
dence of the stretching parameterbK is also reported. We
reiterate that our model reproduces only the slow dyna
ics of the glass forming liquids and glasses (the so-ca
a or structural relaxation process) and does not desc
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FIG. 2. Normalized autocorrelation functions of the off
diagonal elements of the stress tensor at the indica
temperatures as determined from the model (open symbo
The lines represent the best fits to the data with a stretch
exponential time decay. The inset shows theT dependence of
the stretching parameterbK .

the fast vibrational dynamics. This explains the presen
of only one relaxation step inCstd. We observe that (i) the
relaxation dynamics is well represented by a stretch
exponential decay, and (ii) the stretching parameterbK

is strongly temperature dependent. The stretching of
a process has been observed by MD in many syste
(e.g., in LJ binary mixtures [11] and in more comple
molecular liquids such as water [12]). In order to chec
our model against the “real” (MD) results in LJ fluids
we calculated the stress tensor correlation functionCstd
by MD simulation in the accessibleT range (T . 90 K),
and we fittedCstd to A exps2tyt1d 1 B expf2stytdbK g
[the term proportional toA takes into accounts the fas
decay ofCstd that is present in the MD simulation]. The
values oft and bK are consistent with those resulting
from the model, and, as expected,t1 turns out to be
temperature independent. The values ofbK , derived from
the model down to 20 K, decrease from 1 at highT (Debye
relaxation) down toø0.35 at lowT , a value consistent with
experimental findings [13] and theoretical prediction [14
in fragile glass formers.

In Fig. 3a we show the shear viscosity and the relax
tion time t versus inverse temperature. They are almo
proportional to each other, strongly increasing in a sm
temperature range (150–20 K). However, their tempe
ture behavior is well represented by an Arrhenius law, a
does not show the dramatic increase expected for frag
glass formers. Whether this unexpected behavior (i) h
to be ascribed to a failure of our model, or (ii) is a genuin
behavior of LJ liquids at constant density, is still unknown
At those temperature where the direct MD calculation ofh

is affordable [ssd in Fig. 3a], we found a good agreemen
between MD and model results, supporting hypothesis (

In Fig. 3b we report the inverse diffusion coefficien
D21 versushyT . The Stokes-Einstein (SE) relation tha
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FIG. 3. (a) Shear viscosity and relaxation time versus invers
temperature. In the inset the viscosity data at low temperatu
are shown on an enlarged scale. (b) Inverse diffusion coe
ficient D21 versus the ratiohyT . According to the Stokes-
Einstein relation, a linear proportionality is expected (dashe
line). The solid line, with slope 0.28, is the best fit to the low
temperature data.

rigorously describes the diffusive motion of macroscopi
objects in fluids and that reproduces also fairly well th
diffusion at atomic scale in liquids at high temperature
predicts a direct proportionality, i.e.,D ~ Tyh. The
dashed line (slope 1) indicates that, at highT , our model
asymptotically satisfies the SE relation. Upon decreasin
T , the slopej decreases down toj ø 0.28, indicating a
breakdown of the SE relation, as observed in differen
experiments [15]. In particular, the crossover betwee
the two regimes occurs in the same temperature regi
where bK deviates from 1. It is tempting to note that
the crossover position athyT ø 0.1 PoiseyK and the
fractional exponent at lowT , j ø 0.28, are in fairly good
agreement with the experimental results in the fragil
glass formero-terphenyl [16,17].

In conclusion, we have presented a simplified mode
based on a vibrational local dynamics and on collectiv
jumps among minima, that well describes the structur
relaxation features of supercooled liquids and glasse
Exploiting this model we were able to investigate the
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long time (low temperature) dynamics. We recove
in the simple LJ system, some important features
a real glass former, in particular, (a) stretching of th
relaxational dynamics, (b) temperature dependence
stretching parameterbK , and (c) breakdown of the
Stokes-Einstein relation.
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