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Connected Network of Minima as a Model Glass: Long Time Dynamics
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A simple model to investigate the long time dynamics of glass formers is presented and applied
to study a Lennard-Jones system in supercooled and glassy phases. According to our model, the
point representing the system in the configurational phase space performs harmonic vibrations around
(and activated jumps between) minima pertaining to a connected network. Exploiting the model, in
agreement with the experimental results, we find evidence for (i) stretched relaxational dynamics, (ii) a
strong T dependence of the stretching parameter, and (iii) breakdown of the Stokes-Einstein law.
[S0031-9007(98)07786-2]

PACS numbers: 61.20.Lc, 64.70.Pf, 82.20.Wt

In recent years many efforts were devoted to the unand, in this way, (i) we can investigate the long time
derstanding of the phase space landscape in supercoolbdhavior of a glass in short simulation times since the
liquids and structural glasses, and, in particular, to thesolution of the master equation is an eigenvalue problem
identification of those landscape details that are responsibnd (i) we can avoid crystallization as the crystalline
for the structural arrest taking place at the glass transitiominima are eliminated from the network. At variance
temperaturel’, [1,2]. It has been recently speculated [3] with previous approaches [5], the characteristics and
that the free energy landscape of structural glasses is simgonnectivity of the minima, and other energy-landscape
lar to that of some generalized spin glass models. It waproperties entering the determination of the transition
shown that in these systems there exists a dynamical terprobabilities, are inferred from the MD investigation of
peratureTp (which is well defined in mean field approxi- a small system (one component LJ in the present case).
mation and becomes a crossover region in real system3he physical quantities (total energy, pressure, transport
at which the spin dynamics is subject to a critical slowingcoefficient) obtained from the model agree with those
down. BelowT), the residual, extremely slow, dynamics derived from MD up to temperatures above the melting
is dominated by long time activated processes consisting gfoint, supporting the jump model even in the liquid
jumps among different free energy minima. A similar situ-phase of LJ fluids. In the low temperature region we
ation holds in the case of structural glasses. Here, accordind evidence for (i) stretched behavior of the relaxation
ing to the mode coupling theory of the glass transition [4], gorocess, (i) temperature dependence of the stretching
critical temperatureT(¢) exists, which marks the freezing exponent,8x, which changes from=1 at high7T down to
of the local molecular structure. Belo¥®: the hopping =0.3 atlow T, and (iii) breakdown of the Stokes-Einstein
processes control the diffusive dynamics. This paralletelation. All of these results are in agreement with the
supports the conjecture that also in structural glasses thexperimental findings in non-network forming glasses,
description of the dynamics slowing down can be done irand, in particular, in those glasses that are “fragile”
term of free energy landscape (FEL). according to Angell’'s definition [6].

The numerical investigation of the dynamics of super- In a glass, the atoms are (almost) frozen in some
cooled liquids and glasses, and their link with the FEL,(meta)stable positions. The short time dynamics is domi-
is very hard due to the presence, approactiipgof this  nated by small vibrations around the stable position. This
very slow dynamics. More important, one has to facedynamics can be described within the harmonic approxi-
the frustrating situation that the simple model systemsnation, and all of the relevant information is obtained by
where the theories are well developed [as, for examplealiagonalizing the dynamical matrix [7]. At long times,
the Lennard-Jones (LJ) systems] cannot be undercoolambllective jumps among different stable positions involv-
down to T¢ because crystallization starts a few degreesng many atoms become possible and are controlled by a
below the melting temperatuf®, . master equation, whose elements, the transition rates, are

In this Letter we introduce an alternative methoddetermined by minima energies, barrier heights and other
to study the slow dynamics in glasses and in deeplyopological properties along the path.
supercooled liquids; at variance with the usual molecular In order to set up the connected network of minima and
dynamics (MD) simulation, we describe the dynamicsdetermine the transition rates, we need the topology of
of the system as relaxation taking place in a connectethe multidimensional potential energy hypersurface of the
network of potential energy minima. The jumps amongsystem. To this end, we numerically analyze the potential
minima are described by an appropriate master equatioenergy landscape (PEL) of smaN (= 11-29 atoms) LJ
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systems with periodic boundary conditions. The small sizdies are observed. The most evident is a linear correlation
of the system allows an exhaustive investigation of thén double log scale between the distance and the barrier
landscape and, at the same time, exhibits complex enoudteight along the LAP between two minima. A rather weak

features and behavior to capture the physics of the systernorrelation is also observed between the energy and curva-

The atoms interact via the 6-12 LJ potentigl;(r) =  ture of extrema points of PEL.

4e[(£)'? — (£)8], with €/kp = 125.2 K (kg, Boltzmann The model we introduce is a connected network of
constant) and- = 0.3405 nm, appropriate for argon. The potential energy minima with a jump dynamics described
simulated density i = 42 X 1073 mol/cm?. by an appropriate master equation

The first step is to search for the potential energy . _
minima. We use a modified steepest descent method [8], Pa(t) = ZWacpe(t), ()
starting from high temperature MD configurations to findwhere p,(¢t) is the probability that the system is in
the inherent configurations corresponding to local minimaminimum «a at time ¢ [actually, p,(t) = p.(¢|b), in-
which are often crystallinelike. In order to establishdicating that att = 0 the system was in minimuna]
whether a minimum corresponds to a glassy structureand the nondiagonal elements of the transition matrix,
we use the static structure fact®fg) = N‘llzieiq"flz. the transition ratedv,,, are determined from the ener-
For a pure crystalline configuration of particles,S(q)  getic and topological properties of the PEL. In order
is made up of “Bragg” peaks and its value at the peakso satisfy the equilibrium conditionp? = p,(t — ) =
iS Smax = N, Whereas for a glass one usually finds(detV/)~'/2¢=FE: with B8 = (kzT)~', W,, must obey
Smax = 2-3. In small size samples there are obviouslythe detailed balanc®,, py = W,,p2. Following [9] we
intermediate situations, and for a minimum to be “glassy’make the ansatz

we adopt the criterio . = N/2. Py detv” 1/2
As a second step, for each pair of mininaaand Wop = —22 (d—f’,) ~BEaw=Ep) (2)
b with energy E, and E,, respectively, we first de- v \ldetVy,

termine the mutual distancel,, = min(lr, — r,l), wherevy is a friction constant which determines the time
wherer, is the position vector of the minima in tfV  scale. This choice of the transition matrix is based on the
dimension configurational space, and min indicates thapproximation of the problem of escape from a metastable
minimization with respect to all symmetry operations: state as a Markovian-Brownia#rdimensional motion in
continuous translations, permutations of particles, andghe overdamped friction regime [9].
the 48 symmetry operations of the cubic group. We To set up our model minima network, we proceed in
then analyze the potential energy profile experienced byhe following way. Having fixed the number of minima
the system in traveling from one minimum to another(M = 400 in the present case), we extract the energy of
and determine the potential energy barrier. Among thehese minima and their curvatures from the previously
different paths joiningz and b, we assume [8] that the found bivariate distribution. For each minimum we
system follows that with the least action. The actionrandomly extrac20 minima connected to it and define
integral is defined a§(¢) = [, dsy/V(r(s)) — Vo, where  a connection matrix,, that contains the number of steps
¢ indicates a generic path,is the curvilinear coordinate, required to go fronu to . We then define the distance
and Vo = min{E,, E;}. The minimization of S(¢) is  d,, asc,, times the value extracted from the distribution
performed by dividing the path inte = 16 intervals and of the distances”(d,;), and from these the energies of
minimizing the action function with respect to the extremasaddle points. The further statistical features of saddle
of the n segments constrained to move in hyperplanepoints (curvatures) and minima (transverse component of
perpendicular to the straight path. The highest energyhe microscopic stress tensor; see below) are determined
value,V,;, along the least action path (LAP) determinesfrom bivariate (correlation curvature-saddle-point energy)
the saddle point of the path. Not all of the pairs ofand simple extractions, respectively.
minima are directly connected, since, sometimes, the LAP To check the reliability of the model, we first con-
joining them crosses a third minimum. Therefore, therecentrate on the static properties. Following our model,
is a nontrivially connected network of minima. Next, we the partition function is approximated by a sum over the
measure the curvature, defined as the determinant of thminima and the harmonic vibrations around them:
Hessian of potential energy function, in each minimum L3N )2 nN-1/2 —BE,
a(de{V"}), anda-b saddle point (dév,,}). Also impor- Z(B) = BT (detvy) e PR (3)
tant is the absolute value of the negative curvature on the In Fig. 1 we show the potential energy of a LJ system
saddle point@ ;. with N = 29 particles as obtained through MD and as
In order to give a full statistical description of the PEL, calculated from (3) by taking into account either all
we study the distributionsP(x), of the relevant quanti- minima (dotted line) or only the glassy ones (solid line).
tiesx (herex represent¥,, AE,, = E, — Ep, dup, Vap, The MD data are obtained by progressively heating the
def{Vv/}, de{V.,}, or @,) and their cross correlations, glass ) up to the liquid phase, and then cooling the
P(x1,x3). Cross correlations among the measured quantisystem slowly(@®), to obtain crystallization. We observe
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FIG. 1. Potential energy of the LJ system as determined fronf!G. 2. Normalized autocorrelation functions of the off-
MD heating the glaséO) and cooling the liquid®), and from diagonal elements of the stress tensor at the indicated

the present model using all of the minima (dotted line) or onlytémperatures as determined from the model (open symbols).
the glassy minima (solid line). The lines represent the best fits to the data with a stretched

exponential time decay. The inset shows theependence of
o the stretching parametgy.
a quantitative agreement between the MD data and the

model up to T = 150 K, a temperature well above
the melting point {,, = 80 K). At higher temperature the fast vibrational dynamics. This explains the presence
the simple local-vibration/collective-jumps model fails. ~ Of only one relaxation step i(r). We observe that (i) the
As for the dynamical properties, the solution of therelaxation dynamics is well represented by a stretched
master equation is found by numerical knowledge ofexponential decay, and (ii) the stretching parameiter
eigenvalues and eigenvectors of the transition matfix)  is strongly temperature dependent. The stretching of the
anduv,(n) respectively¢ = 1,...,M). In particular, a process has been observed by MD in many systems
(t15) = (p2)'S, v, (n)wy (1) An)t @) (e.g., in LJ binary mixtures [11] and in more complex
Pall Py nYa)UpAR)E molecular liquids such as water [12]). In order to check
It is then possible to determine the statistical equilibriumour model against the “real” (MD) results in LJ fluids,
average of a generic observalgk:) from the knowledge we calculated the stress tensor correlation functitn)
of its valueO,,, calculated at the minima andb: by MD simulation in the accessiblE range { > 90 K),
(0(1)y = 2y p2aOuppalt|b). (5) and we fittedC(t)_ to Aexp(—t/fr]) + Bexd —(¢t/7)B«]
We consider three observables: the mass difoSiOI[Ithe term proportional toi takes into accounts the fast

coefficient D, the shear viscosityy, and the structural decay ofC(s) that is present "! the MD simulation]. T_he
relaxation tir1ne7 In the first caséO o=l — ]2 values ofr and Bk are consistent with those resulting
. ab 7 1Lg Lpl

and b = lim,_.(0(1)/61. For the two other cases, we L B8 MECG: S0y 58 SO TE B0 0
first determine the correlation function of the off-diagonal P P ) B0

the model down to 20 K, decrease from 1 at higtDebye
— X X
elements of the stress tensor C(t)_ <gc (}3)" (1) relaxation) down te=0.35 atlow T, a value consistent with
[10]. In the notation of Eq. (5)0u, = og*c, - (where xperimental findings [13] and theoretical prediction [14]
o, is the value of the stress tensor calculated at minimung P 9 P

. S in fragile glass formers.
@). The shear viscosity is then calculated as In Fig. 3a we show the shear viscosity and the relaxa-

7 = (kgTV)"! fxdtC(t), (6) tion tim.e T VErsus inverse temperature. Th_ey are almost

0 proportional to each other, strongly increasing in a small

and the relaxation time is derived from a fit ofC(r) toa  temperature range (150—-20 K). However, their tempera-
stretched exponential deca(z) = C(0) exp—(¢/7)Px. ture behavior is well represented by an Arrhenius law, and

We report the values obtained faf = 400 and av- does not show the dramatic increase expected for fragile

eraged over 50 different extractions of the network paglass formers. Whether this unexpected behavior (i) has
rameters. In Fig. 2 we show the normalized correlatiorto be ascribed to a failure of our model, or (ii) is a genuine
functions C(¢)/C(0) calculated at different temperatures behavior of LJ liquids at constant density, is still unknown.

together with their best fits. In the inset, tiedepen- Atthose temperature where the direct MD calculatiom of

dence of the stretching paramefy is also reported. We is affordable {(O) in Fig. 3a], we found a good agreement
reiterate that our model reproduces only the slow dynambetween MD and model results, supporting hypothesis (ii).
ics of the glass forming liquids and glasses (the so-called In Fig. 3b we report the inverse diffusion coefficient
a or structural relaxation process) and does not describ® ! versusn/T. The Stokes-Einstein (SE) relation that
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long time (low temperature) dynamics. We recover,
in the simple LJ system, some important features of

a real glass former, in particular, (a) stretching of the
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FIG. 3. (@) Shear viscosity and relaxation time versus inverse

temperature. In the inset the viscosity data at low temperature
are shown on an enlarged scale. (b) Inverse diffusion coef-

ficient D~! versus the ration/T. According to the Stokes-

Einstein relation, a linear proportionality is expected (dashed [8]
line). The solid line, with slope 0.28, is the best fit to the low

temperature data.

rigorously describes the diffusive motion of macroscopic
objects in fluids and that reproduces also fairly well the 11
diffusion at atomic scale in liquids at high temperatures[ ]

predicts a direct proportionality, i.e) « T/n. The
dashed line (slope 1) indicates that, at highour model

asymptotically satisfies the SE relation. Upon decreasing

T, the slopeé decreases down t6 = 0.28, indicating a

breakdown of the SE relation, as observed in different
In particular, the crossover betweerj14]
the two regimes occurs in the same temperature region
where B¢ deviates from 1. It is tempting to note that [15]

experiments [15].

the crossover position af/T = 0.1 Pois¢K and the
fractional exponent at low, ¢ = 0.28, are in fairly good

agreement with the experimental results in the fragil

glass formew-terphenyl [16,17].

16]

In conclusion, we have presented a simplified model[17]
based on a vibrational local dynamics and on collective
jumps among minima, that well describes the structural
relaxation features of supercooled liquids and glasses.
Exploiting this model we were able to investigate the

relaxational dynamics, (b) temperature dependence of
stretching parameteBg, and (c) breakdown of the
Stokes-Einstein relation.
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