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We apply the convergent close-coupling (CCC) method to the calculation of the circular dichroism
in helium double photoionization for a photon energy of 99 eV. Comparison is made with the
measurements of Mergelet al. [Phys. Rev. Lett.80, 5301 (1998)], and substantial discrepancy is found.
This is the first example where the CCC theory yields such disagreement with experiment for either
sg, 2ed or se, 2ed angular differential cross sections. Nevertheless, we argue that there are good reasons
to believe in the accuracy of the theoretical predictions. [S0031-9007(98)07687-X]
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In recent times there has been much progress in t
field of double photoionization of helium, both experimen
tally and theoretically. On the experimental side, the rat
of total double to single photoionization has been dete
mined to a high accuracy over a broad energy range [1
3], which is in good agreement with close-coupling-base
theories [4–6]. The next challenge is to study the doub
photoionization angular distributions. Extensive exper
mental effort has already been expended in this directio
Using linearly polarized light Schwarzkopfet al. [7] first
reported measurements of double photoionization of h
lium where the two outgoing electrons are detected
coincidence. Subsequently, the technique of cold ta
get recoil ion momentum spectroscopy (COLTRIMS) wa
applied to also perform such fully differential measure
ments [8–10]. Following the prediction of Berakdar an
Klar [11] that left- and right-hand circular polarized light
should yield different angular distributions for double pho
toionization (unlike single photoionization) Viefhauset al.
[12] confirmed this experimentally. Most recently Merge
et al. [13] applied the COLTRIMS technique using circu-
larly polarized light and presented the most detailed me
surements of circular dichroism (CD). For a single photo
energy of 99 eV, leading to an excess energyE  20 eV,
they presented both the absolute cross sectionss6 and the
resultant CD ss1 2 s2dyss1 1 s2d where6 corre-
spond to the positive or negative helicity.

On the theoretical side, calculations involve the evalu
ation of the dipole matrix element for an initial ground
state of helium and a final state governing two-electro
escape. Since this matrix element may be evaluated
the three gauges known as length (L), velocity (V ), and
acceleration (A) it is vital that the results do not depend on
the choice of gauge. Unfortunately, it is not uncommo
for calculations to differ substantially depending on th
gauge [14]. This endangers any claim of a theory to yie
predictive results. For example, the 3C theory present
by Mergel et al. [13] shows substantial shape variation
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and an order of magnitude difference between theL- and
V -gauge generated cross sections. Thus, the discrepa
between the calculations and experiment could clearly
attributed solely to theory.

The fundamental strength of the 3C description of th
final two-electron state is that it has correct bounda
conditions for infinite separation of the electrons an
the residual ion. It is analytical and is a product o
two Coulomb waves and three Coulomb phases.
weakness is that it ignores the interaction region, relyi
instead primarily on the strength of the Coulomb repulsio
in the asymptotic regions. Nevertheless, it has be
particularly successful in yielding qualitative agreeme
with experiment, with its simplicity allowing for a ready
analysis of the underlying physics of ionization processe

By contrast, the convergent close-coupling (CCC
method is a much more computationally intensive a
proach. For the final state it attempts to solve th
Schrödinger equation for the system of interest relyin
on the close-coupling (CC) expansion of the total wav
function. Recent applications of the method to problem
involving helium with low-energy two-electron escap
reproduced very detailedse, 2ed [15] and sg, 2ed [10,16]
differential cross sections. Using a highly correlate
Hylleraas-type ground state the CCC photoionizatio
results are essentially gauge independent, yield corr
integrated cross sections, and so have a hope of be
predictive [6,16].

In this Letter we compare CCC results with the exper
ment and theory of Mergelet al. [13]. The fully resolved
(energy integrated) cross section of atomic double pho
ionization is [16]

sMsk1, k2d  C

É X
l1l2

s2idl11l2 B
l1l2
1M sk̂1, k̂2d

3 e ifdl1 sE1d1dl2 sE2dgDl1l2 sE1, E2d

É2
, (1)
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where E  E1 1 E2 is the total excess energy,B is a
bipolar harmonic [17], andC is the double photoioniza-
tion constant which depends on the normalization of th
continuum wave functions and the gauge of the electr
magnetic operator. The indexM indicates polarization
of light and is set to 0 for linearly polarized light and to
61 for circularly polarized light depending on the helic-
ity. Hence,sM61 is identified withs6. Note that for
M  0 the z axis is chosen along the polarization axis o
the photon, whereas forM  61 it is directed along the
momentum of the photon.

Expression (1) complies with the general formalism o
circular dichroism in double photoionization develope
previously by several authors, Berakdaret al. [18], for
example. For the initial helium1S ground state, using the
Clebsch-Gordan expansion for the product of two bipola
harmonics [17] we may write Eq. (1) as

sMsk1, k2d  C
X

J L1L2

CJ0
1M,12M

3 B
L1L2
J0 sk̂1, k̂2dgL1L2 sE1, E2d , (2)

whereg is a complicated function of angular momentum
coefficients, phases, and theD matrix elements, but
has no M dependence. The only dependence onM
comes simply from the Clebsch-Gordan coefficient. Th
summations overJ  0, 1, 2, L1, andL2 are independent
of M. In the case of the CD terms1 2 s2 only the
J  1 and L1  L2 terms survive, leading to the CD
expression identical to Eq. (15) of Berakdaret al. [18].
We note that, in contrast to the fully resolved cross sectio
(2), the CD is a much less sensitive parameter requirin
only diagonalgLL terms in the numerator.

The quantity Dl1l2 sE1, E2d in Eq. (1) is the reduced
dipole matrix element which is stripped of its angula
dependence. To calculate this matrix element we empl
the CCC method by expanding the final two-electro
continuum state usingN square-integrable (L2) states,
with the double ionization processes being identified wit
excitation of the positive-energy pseudostates. The
states,f

Nl

nl with energye
Nl

nl , are obtained by diagonalizing
the He1 Hamiltonian in a Laguerre basis of sizeNl . For
each target-space orbital angular momentuml # lmax the
Laguerre exponential falloff parameter is varied until on
of the energies isE2. Upon completion of theN-state
(N 

P
l Nl) CCC calculation we obtain matrix elements

DN
l1l2

sE1, n2d, which correspond to photoionization with
a true continuum electron of energyE1 and orbital
angular momentuml1, together with excitation of the
ionic electron to state denoted byn2l2 with energyE2.

We write theN-state approximation

eifdl1 1dl2 gDN
l1l2

sE1, E2d  eifdl1 sZ1d1dl2 sZ2dg

3 DN
l1l2

sE1, n2d kl2E2 k n2l2l ,
(3)

where the phases are for the given Coulombic charg
Z, and the overlap is between aZ  2 Coulomb radial
e
o-

f

f
d

r

e

n
g

r
oy
n

h
se

e

es

orbital of angular momentuml2 and energyE2 and the
n2l2 pseudostate of the same energy. The formalism rel
on the completeness of the Laguerre basis to ensure
full solution of the problem in the limit of infiniteN . In
practice, we increaseN until convergence in the angular
distributions is obtained. In the present case this is fou
by taking lmax  4 with Nl  17 2 l making a total of
75 states.

The close-coupling boundary conditions have the tr
continuum electron always being shielded by theL2 one,
irrespective of their energies. This is physical when the e
ergy of theL2 electron is substantially smaller than that o
the continuum one, but not when the energies are the ot
way around. This leads to a highly asymmetric ener
distribution within the ionization channels, the so-calle
singly differential cross section (SDCS). In fact, Bray [19
argued that the SDCS should converge to a step funct
(nonzero for0 # E2 # Ey2 and zero forEy2 , E2 # E)
in the limit of infinite N. At sufficiently low energies,
where the SDCS atEy2 is substantial, the finite calcu-
lations yield small, but nonzero cross sections forE2 .

Ey2 and have unphysical oscillations for0 # E2 # Ey2,
though the integral yields a stable (independent ofN) total
(double) ionization cross section. Furthermore, nonze
amplitudes forE2 . Ey2 imply two independent estimates
of the direct and exchange pairs corresponding to the sa
ionization process. This requires an incoherent combin
tion of the two pairs of coherently combined direct an
exchange amplitudes. The latter is particularly substa
tial for the equal energy-sharing kinematical region and
necessary to yield excellent angular distributions [15,20
though the absolute values are affected by the unphy
cal oscillations in the SDCS. This may be remedied if th
true SDCS happens to be known [19]. For example, in t
near threshold region the true SDCS is approximately fl
and so may be obtained directly from the stable integrat
SDCS. Subsequently, the CCC results may be rescale
ensure that the flat SDCS is obtained after integration ov
all the angular variables of the fully differential cross se
tions. This semiempirical procedure does not affect t
angular distributions or their relative magnitudes. If th
CCC theory yields correctly all angular distributions wit
correct relative magnitudes then the rescaling by the sin
constant (a function ofE2) ensures correct absolute mag
nitudes also.

For asymmetric energy sharing, of interest in th
present case, the close-coupling formalism seems ide
The fastZ  1 Coulomb outgoing wave is shielded from
the Z  2 ion by the slowZ  2 Coulomb wave. In
the case ofse, 2ed equivalent formulation works very
well [21,22]. There are no conceptual problems due
an incoherent summation of amplitudes as the seco
pair of direct and exchange amplitudes, corresponding
excitation of the state with energyE1, is usually too small.

In Fig. 1 we present the CCC calculations of doub
photoionization of helium atE  20 eV excess energy
4589
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FIG. 1. Fivefold differential cross sectionss1 and CD
ss1 2 s2dyss1 1 s2d at excess energyE  20 eV, with
electron of energyE1 detected atu1  0±. Note thats2 are a
mirror image ofs1 about the horizontal axis. See text for the
description of the CCC theory. Experiment and the 3C theo
are from Ref. [13].

using spherically polarized light, and compare with th
experiment and the velocity-gauge 3C theory of Merg
et al. [13]. Though the 3C(V ) and 3C(L) results vary
in shape and an order of magnitude in absolute val
[13], the CCC theory would be barely distinguishabl
in the three gauges, and so only theL form is plotted.
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It yields correct values for single photoionization with
excitation and total double ionization cross section (9.3 3

10221 cm2) [6]. As argued in Ref. [10], the experimenta
work of Wehlitz et al. [23] and the theoretical work of
Pont and Shakeshaft [24] suggest that the SDCS at t
energy may be assumed to be flat, and so we obtain
value of9.3 3 10222 cm2yeV. This determines the CCC
scaling factors given in Fig. 1. These are near unity for a
but the least asymmetric energy-sharing case. The sin
scaling factor of 2.5 for the 3C(V ) theory was taken for
best visual fit to the CCC theory.

We see discrepancy between the CCC theory and
periment for both the magnitude and angular distributio
of thes1 cross section. Though the two theories disagr
in angular distributions for the more asymmetric energ
sharing cases, agreement improves dramatically as s
metric energy sharing is approached. The agreement
the experimental CD is much improved, as expected fro
the analysis of (2). However, it is overshadowed by th
discrepancy in the absolute cross sections.

The angular agreement of the two theories is the fi
minor indication that the CCC theory may be correc
A much more major indication of this is obtained b
comparison with the linear polarization data of Bräunin
et al. [10], which is not only taken at the same tota
energy, but gives up to four different fixed electron angl
u1 for a number of fixed electron energiesE1. In Fig. 2
we present the case ofE1  3 and 17 eV. All of the
presented eight CCC(3.0) curves, calculated ass0 from
(2), arise using the nine matrix elements obtained fro
the 75-state CCC calculation whereE2  3 eV for the
n2  9 2 l2 and l2 # 4 pseudostate. This provides fo
a much more thorough test of the theory at a givenE1
than given in Fig. 1. The agreement between experime
and the CCC theory is excellent. Though theE1 given
by Bräuninget al. differ from theE1 of Mergel et al. by
0.5 eV, the CCC(2.5) curves arising from the nine matr
elements used forE1  12.5 eV in Fig. 1 also yield
excellent agreement with the experiment of Bräuninget
al. and the CCC(3.0) calculations. This suggests that
least the CCCE1  12.5 eV results given in Fig. 1 are
also correct.

To summarize, the following are the reasons wh
we believe that the CCCsM61 results presented in
Fig. 1 are correct. The CCC results are much the sa
in all three gauges of the dipole operator. The theo
yields correct absolute integrated cross sections. T
close-coupling approximation is ideal for the asymmetr
energy sharing of the outgoing electrons. Consistency
found with the 3C calculation as equal energy sharing
approached. Absolute agreement with the closely rela
and much more detailed experiment ofsM0 is obtained.
Equation (2) shows simple dependence onM, while the
CCC calculations yieldM-independent quantitiesg.

Should the present theoretical results prove to
incorrect, for other than implementation reasons, th
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FIG. 2. Fivefold differential cross sections for double photo
ionization of helium using linearly polarized light at exces
energy of 20 eV with an electron of energyE1 being detected at
u1. The CCC(3.0) lines and the experiment are from Ref. [10
with the “3.0” indicating that the curves were generated from
CCC calculation which had a 3 eV pseudostate for eachl. The
CCC(2.5) curves are generated from the same matrix eleme
used to generate the CCC result for theE1  17.5 eV part of
Fig. 1, where the CCC calculation had 2.5 eV pseudostates.

the CCC theory is invalidated as a predictive theory o
scattering processes leading to two-electron escape. T
would not be a problem of convergence, but rather
fundamental flaw in the CCC formalism.
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