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Unambiguous Proof for Berry’s Phase in the Sodium Trimer:
Analysis of the Transition A2E000000 √ X2E000
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Preciseab initio calculations of the rovibrational structures of theA2E00 and X2E0 electronic states
of Na3 prompt a new vibrational assignment of theA √ X transition and provide the basis for the
rotational analysis of the vibrational bandAsys ­ 1, yb ­ 0, ya ­ 0d √ Xs0, 0, 0d by means of high-
resolution optical-optical double resonance. The calculations, which use the single-surface adia
approach, reproduce our experimental data only if, as required by theory, a geometric phase ofp under
pseudorotation around the equilateral configuration is imposed. We consider this the first verifica
of Berry’s phase in high-resolution molecular spectroscopy. [S0031-9007(98)07707-2]

PACS numbers: 31.15.Ar, 33.15.Hp, 33.20.Kf, 33.40.+ f
he

s,

e
the

e.

ns

ic
The sodium trimer represents a textbook example of t
Jahn-Teller (JT) theorem according to which, in nonline
conformations, electronic degeneracy by symmetry is u
stable towards the symmetry-reducing modes of vibrati
[1]. In Na3, the degeneracies which occur in some of th
electronic states at equilateral geometries take on the sh
of conical intersections of two adiabatic potential energ
surfaces (PES).

If the JT stabilization is strong compared to th
vibrational energy, the internal motion of the molecu
will be confined to the lower sheet of the potentia
and a single-surface adiabatic treatment should be fu
adequate. Furthermore, an unusual kind of vibration
motion will arise which encircles the point of degenerac
(Fig. 1). Since theory predicts a sign change of th
electronic wave function under a full cycle of this so
called pseudorotation around the conical intersection [
the nuclear wave function must also change sign. Th
represents a molecular version of Berry’s geometric pha
[3], which here takes the valuep. A short survey of
earlier investigations of geometric phases in molecul
can be found in a recent paper on the vibronic structu
of the Na3 X state [4]. For reviews on Berry’s phase in
more general context see, e.g., Refs. [5] and [6].

In the Na3 molecule, the consequences of the geomet
phase would show most obviously for a free pseudoro
tional (PsR) motion, namely, as a half-integer quantiz
tion of the vibrational angular momentumj, with levels
of A1yA2 andE vibronic symmetry alternating according
to 2jy3 being integer or not. Such a free case is appro
mately realized in theB state of Na3. Indeed the first,
low-resolution spectra of this state were interpreted
evidence for half-integer values ofj [7]. However, as sub-
sequently established both by calculations [8] and by me
surements with rotational resolution [9], the Na3 B state
exhibits only a pseudo-JT distorted nondegenerate surf
0031-9007y98y81(21)y4584(4)$15.00
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with a pseudorotation that is integer quantized; i.e., t
geometric phase is 0.

If pseudorotation is hindered by significant barrier
as is the case in theX and A states of Na3, E and
A vibronic levels appear in weakly split pairs. Sinc
the energetic order within these pairs is reversed if
geometric phase is changed fromp to 0 [10], the different
rotational fingerprints of theE andA vibronic partners give
conclusive evidence of the actual value of Berry’s phas

The present paper treats theA √ X transition of Na3.
Both states involved have conical potential intersectio

FIG. 1. Cut through the lower adiabatic PES of the electron
A state of Na3 for E mode atomic displacements.
© 1998 The American Physical Society
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at equilateral geometries. The progression of theA
vibrational levels to which theXs0, 0, 0d state populated in
our experiment can be excited (Fig. 2) is accompanied
significant changes in the degree to which pseudorotat
is hindered by potential barriers: In the nearly rigi
vibrational ground state, which is localized in the potenti
wells at obtuseC2y configurations, the coupling between
the three equivalent minima only shows up as a P
tunneling splitting (into anEyA doublet) that is as small
as1022 cm21. With increasing vibrational excitation, an
intermediate regime follows where the vibrational leve
exhibit splittings on the order of the rotational energ
scale. Finally, rather delocalized vibrational states a
reached in which the rotational levels of theEyA vibronic
components are clearly separated.

Independent experiments in Hanover [11] and in o
laboratory [12] showed in fact that the rotational struc
tures of theX andA vibrationalgroundstates can be suc-
cessfully assigned in terms of a rigid asymmetric roto
This description, however, breaks down even for the low
est excited vibrationalA state, as further measurements b
our group soon revealed.

Because of the large amplitude of the vibrational m
tion on the strongly anharmonic potentials, an assignm
of the experimental spectra requires some guiding the
retical predictions. We have therefore performed calc
lations of rovibrational energy levels on newab initio
potential energy surfaces for the two statesX andA. On
this basis we have been able to rovibronically assign
observed bands up to 170 cm21 above theA √ X origin
and thus to verify by experiment that a proper adiaba
treatment must indeed include a geometric phase ofp.

In this paper we focus on the strongest of th
higher vibrational bands; i.e., the fundamental transitio
As1, 0, 0d √ Xs0, 0, 0d in the breathing mode. Its tunneling
splitting of 1.6 cm21 exceeds the rotational energy spac
ings for smaller values of the angular momentum quantu
numberN , and it is also much larger than the uncertaintie
of our calculated energy levels. This band is ther
fore well suited for exploring the effects of Berry’s phase

Experiment.—Our setup has been described in deta
elsewhere [12]. In short, argon gas atp ø 6 bar seeded
-

R
T

P
I i

nt
en

si
ty

(0,1,0) (0,2,0)
(1,2,0)

(2,0,0)

(1,0,0)

(0,3,0)
(0,0,2)

(1,0,2)

(0,0,0)

14895.40 14895.45 14895.50
0

pump line for
spectra in Fig. 3

(0,1,1) (0,4,1)(0,2,1)

tr
an

s.
m

om
en

ts

wave number [cm ]-1
14900 14950 15000 15050 15100 15150 15200

ab initio,
Berry's phase =π

Berry's phase = 0 A " A '1              2:←

E" E':←


vibronic
symmetries:

FIG. 2. Top: the A √ X
system of Na3 and its assign-
ment in terms of transitions
Asys, yb , yad √ Xs0, 0, 0d. The
brackets indicate the pseudoro
tational splittings. Bottom:
absolute values of transition
moments calculatedab initio.
by
ion
d
al

sR

ls
y
re

ur
-

r.
-

y

o-
ent
o-
u-

all

tic

e
n

-
m
s

e-
.
il

with sodium vapor at a temperature ofø960 K expands
adiabatically into vacuum through a nozzle of 70mm di-
ameter and 400mm length. In this process, along wit
mono- and dimers and very small fractions of higher cl
ters, sodium trimers are formed. After passing a skimm
of 1 mm diameter at a distance of 10 mm from the nozz
they propagate through the detection chamber as a
supersonic molecular beam at a velocity of1 3 103 mys.
At three interaction zones, the molecular beam is cros
perpendicularly by continuous laser beams. We use
independent single-mode dye lasers (“pump” and “prob
with a power ofø100 mW each and one 8 W single-lin
(514.5 nm) Ar1 “ionization” laser, which are arranged a
follows: A fraction ofø5% of the pump laser beam is ut
lized for monitoring laser-induced fluorescence (LIF) a
distanced1 ­ 120 mm from the nozzle; the rest intersec
the molecular beam atd2 ­ 280 mm. At d3 ­ 380 mm,
the superimposed beams of the probe and ionization la
are focused by a cylindrical lens to form a light she
of ø30 mm thickness which the molecular beam cross
in the extraction region of an ion multiplier. This zon
is used for resonant two-photon ionization (RTPI).

Since the narrowly spaced rovibronic transitions
Na3 show a hyperfine substructure with a width of abo
2 GHz, there is usually considerable overlap, so that e
at a resolution of better than 50 MHz the LIF or RTPI e
citation spectra are so complicated as to presently defy
rect interpretation. A solution is offered by optical-optic
double resonance (OODR), a labeling technique which
implement as follows: The pump laser is fixed to a prom
nent peak of the LIF spectrum and is modulated by a ch
per with frequencyf. The population of both the initia
and the final levels of the pump transition will be mod
lated accordingly, although with opposite signs. Th
modulation provides the label. If the RTPI signal tak
downstream from the pump zone is filtered by a lock
amplifier tuned tof, the only transitions observed will b
those which either start from the same level as the pu
transition (“primary resonances”) or start from levels pop
lated on the way from pump to probe by backfluoresce
from the upper pump level (“secondary resonances”).
mary and secondary resonances will differ in sign. F
4585
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our measurement, we put the pump on a fixed line
the As0, 0, 0d √ Xs0, 0, 0d band and scanned the probe
through theAs1, 0, 0d √ Xs0, 0, 0d band. It is difficult to
find a pump line that is “clean” in the sense that it rep
resents one (or several) hyperfine/pseudorotational co
ponent(s) of onlya singlerigid-rotor rotational transition.
Even such a clean pump line must be anticipated to
multaneously deplete both pseudorotational sublevels
some degree, since we found a mixing of these doubl
in Xs0, 0, 0d when doing other OODR measurements i
which the pump was placed in anexcited(and thus pseu-
dorotationally well-separated) band. In the present ca
we chose a pump line at 14895.45 cm21 (see the inset
of Fig. 2), which from OODR inAs0, 0, 0d √ Xs0, 0, 0d
is known to contain little intensity from asymmetric roto
transitions other than (NKa ,Kc ) 32,1 √ 21,1.

Calculations.—We have performedab initio multiref-
erence configuration interaction (MR-CI) calculations [13
including an effective core polarization potential [14] an
using a large Gaussian-type orbital (GTO) basis set w
bond-center functions. The numerical potential energ
surfaces have been cast in analytical form by expansio
in terms of Morse-transformed internuclear distances [1
with standard deviations ofø0.6 cm21 for 109 calculated
points. Table I collects some properties of the two PE
relevant here, and Fig. 1 depicts a 2D cut through theA
state surface. Further details will be given elsewhere.

Rovibrational energy levels forN # 4 have been de-
termined by variational calculations, using hyperspheric
coordinates for the exact vibration-rotation Hamiltonian a
well as for contracted analytical basis functions [16]. I
hyperspherical coordinates, it is rather trivial to impose th
geometric phase as a boundary condition onf in a single-
surface adiabatic treatment [16]. The results forN ­ 0
are included in Fig. 2 as bars, slightly shifted to matc
theA √ X transition origin. As expected, the pseudorota
tional components ofE andA vibronic symmetry reverse
order upon changing the boundary condition. Compa
son with experiment does give a clear preference for t
correct phasep, but a definitive conclusion requires an
analysis of the underlying rotational structure. Since th
bars in Fig. 2 represent absolute values of the calcula
transition moments, the experimental intensities are obvi
ously reproduced only qualitatively. However, the calcu

TABLE I. Properties of the Na3 potential surfaces.a

Xs1E0d As1E00d
r12 a E r12 a E

C2y (min) 6.137 79.8 2785.11 6.255 78.4 2623.36
C2y saddle 6.951 50.02579.35 7.037 50.4 2471.70
D3h (min) 6.433 60.0 0.00 6.535 60.0 0.00

ns, nb , na 136.0 49.6 88.5 128.0 46.5 77.3

excit. energy Tee ­ 14937, T00 ­ 14927 [14895.769(4) [12] ]
ioniz. energy Iee ­ 31225, I00 ­ 31252 [31363(5) [19] ]

aDistances ina0, angles in degrees, energies in cm21.
4586
in

-
m-

si-
to

ets
n

se,

r

],
d
ith
y
ns
5]

S

al
s

n
e

h
-

ri-
he

e
ted
-
-

lated vibrational energiescoincide to within a couple of
cm21 with the observed band origins. This agreement
considerably better than that obtained only recently for th
X state [4]. Inspection of the wave functions reveals th
the separation of the motion in the three equivalent we
is sufficient for an assignment in terms ofC2y vibrational
quantum numbers. For the correct phasep, E components
are lower fory3 even, but higher fory3 odd. We note that
our assignment differs completely from that proposed b
Dugourdet al. [17] and removes the inconsistent identifi
cation of the first excited band, which shows appreciab
strength, with the transitionAs0, 0, 1d √ Xs0, 0, 0d, which
has very small theoretical intensity. A more detailed ac
count of the vibrational states will be published elsewher

The calculated rotational /pseudorotational (RyPsR)
levels of a vibrational band are very well reproduced b
an effective Hamiltonian in thef coordinate which is
readily derived from the full Hamiltonian in hyperspheri-
cal coordinates. In the case of relatively high barriers,
may be assumed that thef space pertinent to a particular
vibrational level can be spanned by three equivalent fun
tions rotated by2py3. This Hamiltonian then amounts
to treating rotation and pseudorotation by a combinatio
of three equivalent rotors with an angle of2py3 between
their in-plane principal axes of inertia. A least-square
fit furnishes five parameters, i.e., the three rotation
constants, the potential coupling (­ 1y3 of the tunneling
splitting), and the Coriolis coupling between rotation an
pseudorotation. Since the inertial defects turn out to b
small, the rotational constants establish an effectiveC2y

structure for each vibrational level. Table II present
the parameters of this effective Hamiltonian for thre
vibrational states. Note that a positive sign ofV reflects
the energetic orderE belowA.

The RyPsR levels of both vibrational ground states sho
a single asymmetric rotor pattern, with only very sma
splittings into PsR doublets ofEyA rovibronic symmetry.
These doublets are, however, obscured by the hyperfi
substructure. For theAs1, 0, 0d state, by contrast, the
vibronic EyA splitting is large enough to result in two
branches of rotational levels which are well separate
at N ­ 0 and begin interleaving only atN ­ 4; for
even higherN , rather irregular level patterns result which
depend sensitively on the Berry phase. This interpla
of rotation and pseudorotation illustrates why an earlie
attempt to analyze theAs1, 0, 0d √ Xs0, 0, 0d band in the

TABLE II. Parameters of the effective RyPsR Hamiltonian.a

yyy 3V A B C c s b

X 000 0.0025 0.17709 0.08422 0.05680 0.00006 0.0000
A 000 0.0167 0.16690 0.08360 0.05541 0.00026 0.0000
A 100 1.5725 0.15514 0.09557 0.05528 0.02046 0.0064
aPotential couplingV ; rotational constantsA, B, C; Coriolis cou-
pling c (in cm21).
bStandard deviation for a fit of 50sN # 4d ab initio levels.
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FIG. 3. OODR spectra in the bandAs1, 0, 0d √ Xs0, 0, 0d for
the pump line marked in Fig. 2. Calculations with geometr
phases of 0 andp are compared to the experimental spectrum

simple rigid-rotor picture only applied to some OODR
signals, while others could not be explained [18].

An experimental OODR spectrum obtained i
As1, 0, 0d √ Xs0, 0, 0d, which for the given pump-
line involves levels with1 # N # 5, is presented in
Fig. 3. Shown along with it are theab initio predictions
for the cases with and without Berry’s phase, assumi
equal intensities for both pseudorotational pump-lin
components and an intensity fraction of 0.5 for th
backfluorescenceAs0, 0, 0d ! Xs0, 0, 0d that leads to the
secondary resonances.

In the primary resonances, two different substructu
patterns are found, depending on the rovibronic symme
(EyA). These patterns appear to be characteristic
the given pump line, irrespective of which one of th
bands is examined [except forAs0, 0, 0d √ Xs0, 0, 0d].
In addition to the double-resonances which match tho
calculated for the32,1 √ 21,1 pump transition, there are
some weak primary features, as must be expected since
pump line is not completely clean. Among the seconda
resonances, those ofE-symmetry origin generally appear
ic
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weaker than those ofA origin. This may possibly be due
to a distribution of their intensity over more substructure
components, most of which may be too small to clearly
surpass the noise level.

Apart from the hyperfine substructure of the transition
observed, which still awaits detailed understanding, the e
perimental results are well reproduced byab initio calcu-
lations for a geometric phase ofp, while the prediction
for the case without a geometric phase is clearly rejecte
We stress that this conclusion is not based on a gradu
deterioration of agreement but is drawn from the readil
identifiable ordering of the line patterns which originate
from theE and A vibronic components, respectively. A
series of OODR spectra meanwhile obtained by us wit
other pump lines and in different excited vibrational band
corroborate these findings. Thus, using the example of th
Na3 A √ X system, painstakingly optimized OODR ex-
periments together with calculations of unprecedented a
curacy have provided the first verification of Berry’s phase
in the alkali trimers.
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