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Black Holes and Superconformal Mechanics
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The dynamics of a (super)particle near the horizon of an extreme Reissner-Nordström black hole is
shown to be governed by an action that reduces to a (super)conformal mechanics model in the limit of
large black hole mass. [S0031-9007(98)07631-5]
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A new class of interactingsp 1 1d-dimensional con-
formal field theories has recently been discovered as
world-volume field theories on “test”p branes in the
d-dimensional near-horizon background of other bran
[1]. The key point is the fact that the near-horizo
geometry is of the formadSp12 3 Sd2p22, with theadS
isometries being realized on the test brane as conform
symmetry. Perhaps the simplest realization of this id
is provided by a charged point particle near the ho
zon of ad ­ 4 extreme Reissner-Nordström (RN) blac
hole. Here we use this example to elucidate some s
prising connections between black holes and conform
invariance.

As an illustration of the issues, consider the conform
mechanics model of [2] (see also [3]) for the conjuga
pair sp, xd. The Hamiltonian is

H ­
p2

2m
1

g
2x2 . (1)

This was shown in [2] to a have a continuous spectru
of energy eigenstates with energy eigenvalueE . 0, but
there is no ground state atE ­ 0. In the black hole
interpretation of the model, the classical analog of a
eigenstate ofH is an orbit of a timelike Killing vector
field k, equal to≠y≠t in the region outside the horizon
and the energy is then the value ofk2. The absence of
a ground state ofH at E ­ 0 can now be interpreted
as due to the fact that the orbit ofk with k2 ­ 0 is
a null geodesic generator of the event horizon, whi
is not covered by the static coordinates adapted to≠t.
The procedure used in [2] to cure this problem was
choose a different combination of conserved charges
the Hamiltonian. This corresponds to a different choic
of time, one for which the world lines of static particle
pass through the black hole horizon instead of remaini
in the exterior spacetime.

Thus, the study of conformal quantum mechani
has potential applications to the quantum mechan
of black holes. Here we shall limit ourselves to a
exposition of the classical aspects of this connection, a
its supersymmetric extension. We start from the extrem
RN metric in isotropic coordinates
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ds2 ­ 2

µ
1 1

M
r

∂22

dt2 1

µ
1 1

M
r

∂2

3 fdr2 1 r2dV2g , (2)

where dV2 ­ du2 1 sin2 udw2 is the SO(3)-invariant
metric onS2, andM is the black hole mass, in units for
which G ­ 1. The near-horizon geometry is therefore [4

ds2 ­ 2

µ
r

M

∂2

dt2 1

µ
M
r

∂2

dr2 1 M2dV2, (3)

which is the Bertotti-Robinson (BR) metric [5]. It
can be characterized as the SOs1, 2d 3 SOs3d invariant
conformally flat metric onadS2 3 S2. The parameterM
may now be interpreted as theS2 radius (which is also
proportional to the radius of curvature of theadS2 factor).
A test particle in this near-horizon geometry provide
a model of conformal mechanics in which the SOs1, 2d
isometry of the background spacetime is realized as
one-dimensional conformal symmetry. If the particle’
massm equals the absolute value of its chargeq, then
this is just thep ­ 0 case of the construction of [1].
However, there is nothing to prevent us from considerin
m fi jqj, and we begin by considering this more genera
case. We shall see that this leads to a new “relativisti
model of conformal mechanics. In the “nonrelativistic”
limit, which can be viewed as a limit of large black hole
mass, one recovers the Hamiltonian (1).

Various supersymmetric generalizations of conform
mechanics have been studied by Akulov and Pashnev a
by Fubini and Rabinovici [6]. A relativistic generalization
of one such model can be obtained from the radi
dynamics of a superparticle in the near-horizon geomet
of an extreme RN solution ofd ­ 4 N ­ 2 supergravity.
An important feature of the supersymmetric case
that the superparticle has a fermionic gauge invarianc
“k symmetry,” whenm ­ jqj. Since this reduces the
total number of fermions by half, it leads to a considerab
simplification of the Hamiltonian governing radial motion
To take advantage of this simplification, we shall conside
here only them ­ jqj superparticle.

Conformal mechanics and black holes.—In horospheri-
cal coordinatesst, f ­ ryMd for adS2, the 4-metric and
© 1998 The American Physical Society 4553
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a is
Maxwell 1-form of the BR solution of Maxwell-Einstein
theory are

ds2 ­ 2f2dt2 1
M2

f2 df2 1 M2dV2,

A ­ fdt .
(4)

The metric is singular atf ­ 0, but this is just a
coordinate singularity andf ­ 0 is actually a nonsingular
degenerate Killing horizon of the timelike Killing vector
field ≠y≠t. We now define a new radial coordinater by

f ­ s2Myrd2. (5)

The BR metric is then

ds2 ­ 2s2Myrd4dt2 1 s2Myrd2dr2 1 M2dV2. (6)

Note that the Killing horizon in these coordinates is no
at r ­ `.

The (static-gauge) Hamiltonian of a particle of massm
and chargeq in this background isH ­ 2p0 wherep0
solves the mass-shell constraintsp 2 qAd2 1 m2 ­ 0.
This yields

H ­ s2Myrd2f
p

m2 1 sr2p2
r 1 4L2dy4M2 2 qg , (7)

whereL2 ­ p2
u 1 sin22 up2

w , which becomes minus the
Laplacian upon quantization [with eigenvalues,s, 1 1d
for integer,]. We can rewrite this Hamiltonian as

H ­
p2

r

2f
1

mg
2r2f

, (8)

where

f ­
1
2

f
p

m2 1 sr2p2
r 1 4L2dy4M2 1 qg , (9)

and

g ­ 4M2sm2 2 q2dym 1 4L2ym . (10)

This Hamiltonian defines a new model of conforma
mechanics. The full set of generators of the conform
group are

H ­
1

2f
p2

r 1
g

2r2f
, K ­ 2

1
2

fr2, D ­
1
2

rpr ,

(11)

where K generates conformal boosts (also called th
generator of “special conformal” or “proper conformal
transformations) andD generates dilatations. It may be
verified that the Poisson brackets of these generators cl
to the algebra of Sls2, Rd.

To make contact with previous work on this subject, w
restrict to angular quantum number, and consider the limit

M ! `, sm 2 qd ! 0 , (12)

with M2sm 2 qd kept fixed. In this limitf ! m, so

H ­
p2

r

2m
1

g
2r2 , (13)

with
4554
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g ­ 8M2sm 2 qd 1 4,s, 1 1dym . (14)

This is the conformal mechanics of [2,3]. For obviou
reasons we shall refer to this as nonrelativistic conform
mechanics; the nonrelativistic limit can be thought
as a limit of large black hole mass. When, ­ 0 an
“ultraextreme”m , q particle corresponds to negativeg
and the particle falls tor ­ 0; i.e., it is repelled tof ­
`. On the other hand, a “subextreme”m . q particle is
pushed tor ­ `, which corresponds to it falling through
the black hole horizon atf ­ 0. The force vanishes
(again when, ­ 0) for an “extreme”m ­ q particle, this
being a reflection of the exact cancellation of gravitation
attraction and electrostatic repulsion in this case. A sta
extreme particle of zero angular momentum follows a
orbit of ≠y≠t, and remains outside the black hole horizo

Superconformal mechanics.—The nonrelativistic con-
formal mechanics described above was extended in [6
an SUs1, 1j1d > OSps2j2d invariant superconformal me-
chanics. This can be truncated, forg ­ 0, to an OSps1j2d
invariant superconformal mechanics, which we shall r
cover here as the nonrelativistic, a limit of a relativist
superconformal mechanics describing the radial moti
of a superparticlewith zero orbital angular momentum
in the near-horizon geometry of the extreme RN soluti
of d ­ 4 N ­ 2 supergravity. It follows from the for-
mula (10) thatg ­ 0 for this model, since we assume
both m ­ jqj and , ­ 0. As will be shown elsewhere
[7], the equation of motion of the SUs1, 1j1d-invariant su-
perconformal mechanics withg fi 0 is the nonrelativistic
limit of the radial equation of a superparticle with nonze
angular momentum, but here we limit ourselves to t
simpler case of OSps1j2d and zero angular momentum.

To define the superparticle action as an integral ov
the imagew of the world line in superspace, we introduc
(i) the superspace frame 1-formsEA ­ sEa, Eaid (where
a ­ 1, 2 is an Sls2, Cd index andi ­ 1, 2 is an index of
the SUs2dR R-symmetry group) and (ii) the superspac
Maxwell 1-formA. The action may then be written as

S ­ 2
Z

w
fm

p
2g 2 qAg , (15)

where

g ­ Ea ≠s Ebhab . (16)

This action is obviously invariant (up to surface term
under infinitesimal isometries of the background th
leave invariant the Maxwell field strength 2-formF ­
dA, i.e., under transformations generated by vector sup
fieldsj for which

Ljg ­ 0, LjF ­ 0 . (17)

The algebra of (anti)commutators of the vector superfie
j is, by definition, the algebra of the “isometry group o
the background.” In this case the isometry superalgebr
that of the supergroup SUs1, 1j2d with bosonic subgroup
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SUs1, 1d 3 SUs2d. The SUs1, 1d 3 SUs2d subgroup is
the isometry group ofadS2 3 S2. This supergroup has
eight real (four complex) supercharges as expected fro
the fact that the BR solution preserves all supersymm
tries of d ­ 4 N ­ 2 supergravity. The anticommutator
of these odd generators is [in SOs1, 2d 3 SOs3d notation]

hQi
a , Q̄

b
j j ­ 2

d
i
j

4 sĝm̂n̂db
aM̂m̂n̂ 2

d
b
a

4 sg0m0n0

di
jM 0

m0n0 .
(18)

The ĝm̂ generate the SOs1, 2d Clifford algebra and are
chosen to bêg0 ­ is3, ĝ1 ­ s1, and ĝ2 ­ is2, where
si are the Pauli matrices. Theg0

m0 are the Pauli ma-
trices generating the SOs3d Clifford algebra. Q̄a

i is
the Dirac conjugate ofQi

a in s1, 2d dimensions; i.e.,
Q̄a

i ­ ifsQidyĝ2ĝ0ga. The conformal SUs1, 1d charges
sH, K , Dd are packaged in̂Mm̂n̂ as

H ­ 2P0 ­ 22sM02 1 M01d ;

K ­ 2sM02 2 M01d; D ­ 2M21 ,
(19)

andM 0
m0n0 are SOs3d generators.

We now define

Qa ­ Q1
a 1 ´abQ̄

b
1 1 Q2

a 1 ´abQ̄
b
2 , (20)

and it follows that

Qa ­

µ
S

iQ

∂
, (21)

whereQ andS are real. The anticommutator of these od
generators is

hQa , Qbj ­ 2Mab , (22)

where

Mab ­

√
iK D
D iH

!
. (23)

Thus the chargessH, K , D, Q, Sd generate a sub-
supergroup which is actually OSps1j2; Rd [the nonvanish-
ing (anti)commutation relations are given in (31) below
This is the sub-supergroup relevant to the truncated s
tem in which we consider a superparticle moving radiall
This system is equivalent to ad ­ 2 superparticle on a
superspace withadS2 “body” and isometry supergroup
OSps1j2; Rd, the Sps2; Rd > SUs1, 1d subgroup being
the isometry group ofadS2. This simplified model still
captures the essential feature of the black hole, i.e., t
existence of an event horizon.

One has only to gauge fix the reparametrization inva
ance of the action for a superparticle in thisadS2 su-
perspace to find a model of superconformal mechani
but unlessm ­ q, both the standard supersymmetry an
the conformal supersymmetry will be nonlinearly realized
i.e., there will be no state annihilated by eitherQ or S.
This is hardly surprising since there is clearly no class
cal solution of zero energy wheng fi 0 whereas there is
when g ­ 0. This distinction is reflected in thek sym-
metry of them ­ jqj action which, for reasons explained
in detail elsewhere, ensures that half of the supersymm
m
e-

d

].
ys-
y.

he

ri-

cs,
d
;

i-

e-

tries are linearly realized. In the present context, it mea
that Q is linearly realized in that the ground state is ann
hilated byQ, while S is nonlinearly realized. This is the
case that we are going to study in detail in this paper.

We proceed by first passing to the Hamiltonian form
of the above superparticle action, which is a function
of the s2j2d superspace coordinate variablesZM and their
conjugate momentapM . The Lagrangian in this form is

L ­ ÙZMpM 2
1
2

ys p̃2 1 m2d 1 z aEM
a spM 2 qAMd ,

(24)

where y is a Lagrange multiplier for the mass-she
constraint,z is a two-component real spinor Lagrang
multiplier for the fermionic constraints, and

p̃a ­ EM
a spM 2 qAMd . (25)

The fermionic constraints are purely second class
m fi q, but half first class and half second class whe
m ­ q. Now, E

m
a vanishes in flat superspace. It mus

therefore continue to vanish in any superconformal
flat superspace since the supervielbeins are obtained
such cases from that of flat superspace by a super-W
transformation with scalar superfield parameter [8]. Th
BR background is superconformally flat, so we have

p̃2 ­ gmnspm 2 qAmd spn 2 qAnd , (26)

where gmn ; habEm
a En

b . The mass-shell constraint for
the superparticle is therefore formally identical to that o
the bosonic particle. The only difference resides in th
fact that the inverse metricgmn and the Maxwell 1-form
Am aresuperfields. Their leading components are just th
inverse metric and Maxwell 1-form of the bosonic action
but they will also contain terms proportional to fermions

Now, all fermion terms in the expansion ofgmn

and Am must be even in fermions. In the specia
case that the superspace iss2j2d dimensional withadS2
body, the expansion in fermions must terminate at t
quadratic order because there are only two fermion
variables. If we further specialize to them ­ jqj case
then only one combination of these two can actual
appear (this is implied byk invariance). Thus, all fermion
bilinears vanish identically in this case and the mass-sh
constraint, and hence the Hamiltonian isidentical to that
of the bosonic particle. The same is true of all the Sls2; Rd
generators. The remaining generators of OSps1j2; Rd
are the supersymmetry chargeQ and the generator of
superconformal boosts (alias “special” supersymmetry)S.
These could be deduced from the charges associated w
the fermionic Killing vector superfields of the backgroun
superspace, but it is easy to guess them as they
necessarily linear in the one physical fermion, which w
may callc. The final result is as follows. The Sps2; Rd >
Sls2; Rd generators of this (m ­ q, d ­ 2) model are

H ­
1

2f
p2

r , K ­ 2
1
2

fr2, D ­
1
2

rpr , (27)
4555
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where

f ­
1
2

mf
p

1 1 srpry2mMd2 1 1g , (28)

and the fermionic generators are

Q ­
pr

p
2f

c , S ­
p

fy2 rc , (29)

wherec is an anticommuting world line “field.” Given
the Poisson bracket (PB) relations

hr , pr j ­ 1, hc , cj ­ i , (30)

one may verify that these generators define the L
superalgebra of OSps1j2; Rd. Specifically, the nonzero PB
relations are

hD, Hj ­ H, hD, Kj ­ 2K , hH, Kj ­ 2D ,

hD, Qj ­
Q
2 , hD, Sj ­ 2

S
2 ,

hH, Sj ­ 2Q, hK , Qj ­ 2S ,

hQ, Qj ­ iH, hS, Sj ­ 2iK , hQ, Sj ­ iD .

(31)

In the M ! ` limit we obtain an OSps1j2d invariant
superconformal mechanics model withg ­ 0.

We have shown that the dynamics of a (super)partic
in the near-horizon geometry of the extreme RN solutio
of d ­ 4 N ­ 2 supergravity is governed by a mode
of (super)conformal mechanics that generalizes previo
constructions of such models. For purely radial motion
(L2 ­ 0), and whenm ­ jqj there is a family of degener-
ate ground states of the particle Hamiltonian parametriz
by krl. Becauser scales under dilatations, conformal in-
variance is spontaneously broken for any finite or nonze
krl, but it is unbroken when eitherkrl ­ 0 or krl ­ `.
As explained in a slightly different context in [1], the
quantitykrlyM is effectively the coupling constant, so the
“end of the universe” limitkrl ! 0 (recall that this corre-
sponds tokfl ! `) is equivalent to theM ! ` limit in
which we obtain a free nonrelativistic superconformal me
chanics. The other limit in whichkrl ! ` is an ultrarela-
tivistic one in which the particle’s orbit approaches a nu
geodesic generator of the Killing horizon. The Hamilton
ian governing the particle’s dynamics in this limit may be
found by takingM ! 0 for fixed m andq. In theL2 ­ 0
case this yields

H ­
2Mpr

r
1 O sM2d . (32)
4556
ie

le
n
l
us
,

ed

ro

-

ll
-

By ignoring the O sM2d terms, we effectively take the
limit, and the Sls2, Rd generators reduce to

H ­
2Mpr

r
, K ­ 2

r3pr

8M
, D ­

1
2

rpr . (33)

The M dependence may now be removed by the resca
ing r !

p
Mr, pr ! pry

p
M. The absence of any de-

pendence of this Hamiltonian onm andq means that the
full symmetry group of this model is that of themassless
(super)particle in the same background. For superconfo
mally flat backgrounds, such asadS2 or the BR space-
time, the symmetry group is the same as that of a fre
particle in flat space, and is therefore an infinite rank ex
tension of the superconformal group [9].
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