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The dynamics of a (super)particle near the horizon of an extreme Reissner-Nordstrom black hole is
shown to be governed by an action that reduces to a (super)conformal mechanics model in the limit of
large black hole mass. [S0031-9007(98)07631-5]
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A new class of interactingp + 1)-dimensional con- Js? — _(1 4 ﬂ)zdtz . (1 4 ﬂ)z
formal field theories has recently been discovered as the p p
world-volume field theories on “testp branes in the X [dp? + p2dQ?] )

d-dimensional near-horizon background of other branes ] ] ) )
[1]. The key point is the fact that the near-horizonWhere dQ* = d6* + sir’ 9de? is the SO(3)-invariant
geometry is of the fornadsS,+, X $97772, with theads ~ Metric onsS?, andM is the black hole mass, in units for
isometries being realized on the test brane as conformdfhichG = 1. The near-horizon geometry is therefore [4]
symmetry. Perhaps the simplest realization of this idea p\2 ) M \2 ) S
is provided by a charged point particle near the hori- ds” = _<ﬁ> dr= + <—> dp” + M~dQ-,  (3)
zon of ad = 4 extreme Reissner-Nordstrom (RN) black P
hole. Here we use this example to elucidate some suthich is the Bertotti-Robinson (BR) metric [5]. It
prising connections between black holes and conformatan be characterized as the Q) X SQ(3) invariant
invariance. conformally flat metric omudS, X S?. The parameted
As an illustration of the issues, consider the conformamay now be interpreted as tf# radius (which is also
mechanics model of [2] (see also [3]) for the conjugateProportional to the radius of curvature of thés, factor).

pair (p,x). The Hamiltonian is A test particle in this near-horizon geometry provides
2 a model of conformal mechanics in which the 3Q)
H = ;L + %, (1) isometry of the background spacetime is realized as a
m X

one-dimensional conformal symmetry. If the particle’'s
This was shown in [2] to a have a continuous spectrunmassm equals the absolute value of its chargethen
of energy eigenstates with energy eigenvale- 0, but  this is just thep = 0 case of the construction of [1].
there is no ground state & = 0. In the black hole However, there is nothing to prevent us from considering
interpretation of the model, the classical analog of am # |¢|, and we begin by considering this more general
eigenstate of is an orbit of a timelike Killing vector case. We shall see that this leads to a new “relativistic”
field k, equal tod/ar in the region outside the horizon, model of conformal mechanics. In the “nonrelativistic”
and the energy is then the value /of. The absence of limit, which can be viewed as a limit of large black hole
a ground state off at E = 0 can now be interpreted mass, one recovers the Hamiltonian (1).
as due to the fact that the orbit &f with k> = 0 is Various supersymmetric generalizations of conformal
a null geodesic generator of the event horizon, whichmechanics have been studied by Akulov and Pashnev and
is not covered by the static coordinates adapted,to by Fubini and Rabinovici [6]. A relativistic generalization
The procedure used in [2] to cure this problem was taof one such model can be obtained from the radial
choose a different combination of conserved charges adynamics of a superparticle in the near-horizon geometry
the Hamiltonian. This corresponds to a different choiceof an extreme RN solution af = 4 N = 2 supergravity.
of time, one for which the world lines of static particles An important feature of the supersymmetric case is
pass through the black hole horizon instead of remaininghat the superparticle has a fermionic gauge invariance,
in the exterior spacetime. “k symmetry,” whenm = |¢|. Since this reduces the
Thus, the study of conformal quantum mechanicgotal number of fermions by half, it leads to a considerable
has potential applications to the quantum mechanicsimplification of the Hamiltonian governing radial motion.
of black holes. Here we shall limit ourselves to anTo take advantage of this simplification, we shall consider
exposition of the classical aspects of this connection, antere only them = |g| superparticle.
its supersymmetric extension. We start from the extreme Conformal mechanics and black holesln horospheri-
RN metric in isotropic coordinates cal coordinatess, ¢ = p/M) for adS,, the 4-metric and
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Maxwell 1-form of the BR solution of Maxwell-Einstein g =8M*m — q) + 4 + 1)/m. (14)

theory are This is the conformal mechanics of [2,3]. For obvious

ds? = —¢2di® + ﬂjd(bz + M2d02, reasons we shall refer to this as nonrelativistic conformal
4) mecha_m(_:s; the nonrelativistic limit can be thought of
A = as a limit of large black_ hole mass. Whenh= 0 an
) “ultraextreme”m < ¢ particle corresponds to negatiye
The metric is singular at$ = 0, but this is just a and the particle falls to = 0; i.e., it is repelled top =
coordinate singularity angg = 0 is actually a nonsingular . On the other hand, a “subextrema”> ¢ particle is
degenerate Killing horizon of the timelike Killing vector pushed tor = o, which corresponds to it falling through
field 9/0r. We now define a new radial coordinatdoy the black hole horizon atp = 0. The force vanishes
b = 2M/r). (5) (again wher? = 0) for an “extreme’m =q particle,_ thi.s
o being a reflection of the exact cancellation of gravitational
The BR metric is then attraction and electrostatic repulsion in this case. A static
ds*> = —(2M/r)*di* + @M /r)*dr* + M*dQ?. (6) extreme particle of zero angular momentum follows an
orbit of 9/9¢, and remains outside the black hole horizon.
Superconformal mechanies-The nonrelativistic con-
formal mechanics described above was extended in [6] to
an SUl,1|1) = OSp2|2) invariant superconformal me-
chanics. This can be truncated, for= 0, to an OSgl1|2)
invariant superconformal mechanics, which we shall re-
cover here as the nonrelativistic, a limit of a relativistic
H = @M /r)’[Vm? + (r?p? + 4L?)/4M? — q], (7)  superconformal mechanics describing the radial motion
whereL? = p2 + sin2 el’i' which becomes minus the pf a superpartiglewith zero orbital angular momentum
Laplacian upon quantization [with eigenvalué@ + 1)  in the near-horizon geometry of the extreme RN solution

for integer€]. We can rewrite this Hamiltonian as of d = 4 N = 2 supergravity. It follows from the for-
mula (10) thatg = 0 for this model, since we assume

Note that the Killing horizon in these coordinates is now
atr = oo,

The (static-gauge) Hamiltonian of a particle of mass
and charge; in this background i = —py where pg
solves the mass-shell constraigp — gA)*> + m? = 0.
This yields

2
g=P2 L M ’ @8 bothm = lg] and ¢ = 0. As will be shown elsewhere
2f - 2rif [7], the equation of motion of the SW, 1|1)-invariant su-
where perconformal mechanics with # 0 is the nonrelativistic

| limit of the radial equation of a superparticle with nonzero
f= f[\/m2 + (r2p? + 4L%)/4M* + q],  (9) angular momentum, but here we limit ourselves to the
2 simpler case of OSp|2) and zero angular momentum.
and To define the superparticle action as an integral over
_ 20 2 2 2 the imagew of the world line in superspace, we introduce
g =AM (m q7)/m + 4L m. (10) (i) the superspace frame 1-fornis' = (E¢, E¢') (where
This Hamiltonian defines a new model of conformaly = 1,2 is an S(2,C) index andi = 1,2 is an index of
mechanics. The full set of generators of the conformathe SU2); R-symmetry group) and (ii) the superspace

group are Maxwell 1-formA. The action may then be written as
_ 1 5 8 _ 1.5 _ !
H=oppr ¥ 50 K=—5 0 D= Sz_fw[m\/—_g—qA], (15)
(11)
here
where K generates conformal boosts (also called the )
generator of “special conformal” or “proper conformal” g =E*® E’nap . (16)

trar_1§format|ons) af‘“” generates dilatations. It may be This action is obviously invariant (up to surface terms)
verified that the Poisson brackets of these generators Clofﬁder infinitesimal isometries of the background that

to the algebra of §2, R). leave invariant the Maxwell field strength 2-forim =

To_ make contact with previous work on th's SUbJe.Ct'.WedA, i.e., under transformations generated by vector super-
restrict to angular guantum numband consider the limit fields ¢ for which

M — oo, (m—-4q)—0, (12)

Lig =0, LgF =0. (17)
with M2(m — g) kept fixed. In this limitf — m, so , _
5 The algebra of (anti)commutators of the vector superfields
H=P" 4 %’ (13) € is, by definition, the algebra of the “isometry group of
2m  2r the background.” In this case the isometry superalgebra is
with that of the supergroup SU, 1|2) with bosonic subgroup
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SU(1,1) X SU2). The SUl,1) X SU2) subgroup is tries are linearly realized. In the present context, it means
the isometry group of:dS, X S%. This supergroup has thatQ is linearly realized in that the ground state is anni-
eight real (four complex) supercharges as expected frorhilated byQ, while S is nonlinearly realized. This is the
the fact that the BR solution preserves all supersymmeease that we are going to study in detail in this paper.
tries ofd = 4 N = 2 supergravity. The anticommutator We proceed by first passing to the Hamiltonian form
of these odd generators is [in $I02) X SQO(3) notation]  of the above superparticle action, which is a functional
{0, Qf} — _% (57 W — § (V'ml"l)j-an«nw of the(2|2) superspace coordinate vgriapk*% _and thejr
(18) conjugate momentg,,. The Lagrangian in this form is
The %5 generate the S@,2) Clifford algebra and are L = zMp,, — 1 v(p? + m?) + EM(py — qAm),
chosen to beyy = io3, 1 = o1, and ¥, = io,, where 2
o; are the Pauli matrices. The., are the Pauli ma- (24)
trices generating the S@ Clifford algebra. Q;" is  where v is a Lagrange multiplier for the mass-shell
the Dirac conjugate ofQ, in (1,2) dimensions; i.e., constraint,{ is a two-component real spinor Lagrange

0 = il(Q")19290]*. The conformal SU, 1) charges multiplier for the fermionic constraints, and
(H,K, D) are packaged i as

Pa = EN(pm — qAm). (25)
H = =Py = =2Mo + Mo\); (19) The fermionic constraints are purely second class if
K =2My — My); D = 2M>,, m # ¢q, but half first class and half second class when
andM.,,, are S@3) generators. m = ¢q. Now, _Eﬁf vanishes_ in f_Iat superspace. It must
We now define therefore continue to vanish in any superconformally

N _B 5 _B flat superspace since the supervielbeins are obtained in
Qo = Qo + 8apQ1 + Qi + 8ap02,  (20)  gych cases from that of flat superspace by a super-Weyl

and it follows that transformation with scalar superfield parameter [8]. The
BR background is superconformally flat, so we have
9, - ( S ) (21) )

“ Q) P = gm”(Pm - qu) (pn — qAn)s (26)
whereQ andS are real. The anticommutator of these oddwhere g = n*’E™Ej. The mass-shell constraint for
generators is the superparticle is therefore formally identical to that of

Q4. 95} = ~Mug, (22) the bosonic particle. The only difference resides in the

fact that the inverse metrig”” and the Maxwell 1-form
A,, aresuperfields Their leading components are just the
iK D inverse metric and Maxwell 1-form of the bosonic action,
Map = ( D iH ) (23)  put they will also contain terms proportional to fermions.

Now, all fermion terms in the expansion of™”"
Thusr :he \(,:vr;]?rﬁe'iS(H’tK]?’cQ)’G;)z'Ig)ert]ﬁra;e n\? nisuht?- and A,, must be even in fermions. In the special
supergroup ch 1S actually > [ € nonvanis case that the superspace(2) dimensional withads$,
ing (anti)commutation relations are given in (31) below].

A body, the expansion in fermions must terminate at the
Th's.'s th? sub-super_group relevant to the trgncateq Sy%iuadratic order because there are only two fermionic
tem in which we cor)3|der a superparticle moving radlally'variables. If we further specialize to the = |¢| case
This system is equivalent to @ = 2 superparticle on a

superspace withidS, “body” and isometry supergroup then only one combination of these two can actually
2 7 ) appear (this is implied by invariance). Thus, all fermion
:?]Srgllz, Rt)’ the szfl’gs) :1?#(1’ .1) ?;{bgroupd kl’e'tr.'ﬁ] bilinears vanish identically in this case and the mass-shell
€ ISometry group otid>s. IS sImpiitied Model St onstraint, and hence the Hamiltonianidentical to that
captures the essential feature of the black hole, i.e., thgf the bosonic particle. The same is true of all the@Sk)
existence of an event horizon. :

. . .generators. The remaining generators of R
One has only to gauge fix the reparametrization |nvar|-g 99 QFpR)

. S . are the supersymmetry charge and the generator of
ance of thte ?cgon for dalsufperpartlclefln tmIdSZ S#' ._superconformal boosts (alias “special” supersymmefry)
perspace 1o find a model of superconformal MechaniCsy, oqq cqy1d be deduced from the charges associated with

but unlessn = g, both the standard supersymmetry ano_lthe fermionic Killing vector superfields of the background
the conformal supersymmetry will be nonlinearly realized

. i . . 'superspace, but it is easy to guess them as they are
i.e., there will be no state annihilated by eith@ror S. uperspace, but I | y gu y

D - . . .necessarily linear in the one physical fermion, which we
This is hardly surprising since there is clearly no classi-

cal solution of zero energy when # 0 whereas there is may cally. The final result is as follows. The 8pR) =
wheng = 0. This distinction is reflected in the sym- SI(2; R) generators of thisi = ¢, d = 2) model are
metry of them = |¢| action which, for reasons explained ~ ; _ 1 P2 K = —lfrz

in detail elsewhere, ensures that half of the supersymme- 2f 77 277

where

1
D = 5 rpr, (27)
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where By ignoring the O (M?) terms, we effectively take the
1 limit, and the SI2, R) generators reduce to
f=—=m1+ (rp,/2mM)* + 1], (28)
2 _ 2Mp, __rp, 1
and the fermionic generators are H=——= K=-5r D=5rp. (39
S , S =+f/2ry, 29 The M dependence may now be removed by the rescal-
¢ V2f v frard (29) ing r — /Mr, p, — p,/~/M. The absence of any de-
where ¢ is an anticommuting world line “field.” Given pendence of this Hamiltonian on andg means that the
the Poisson bracket (PB) relations full symmetry group of this model is that of threassless
rp)=1, Wy =i, (30) (super)particle in the same background. For superconfor-

_ _ ~mally flat backgrounds, such asiS, or the BR space-
one may verify that these generators define the Ligime, the symmetry group is the same as that of a free
superalgebra of O$pl2; R). Specifically, the nonzero PB particle in flat space, and is therefore an infinite rank ex-

relations are tension of the superconformal group [9].
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