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Using the hydrodynamic theory of superfluids and the Lee-Huang-Yang equation of state
interacting Bose gases, we derive the first correction to the collective frequencies of a trapped
due to effects beyond the mean field approximation. The corresponding frequency shift, whic
calculated at zero temperature and for largeN , is compared with other corrections due to finite size
nonlinearity, and temperature. We show that for reasonable choices of the relevant parameters
system, the non-mean-field correction is the leading contribution and amounts to about 1%. The
of the deformation of the trap is also discussed. [S0031-9007(98)07637-6]
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The experimental measurements [1–3] of the collecti
oscillations of Bose-Einstein condensed gases confined
magnetic traps have provided an excellent confirmati
of the predictions of mean-field theory (see [4] for
recent theoretical review). The accuracy of the mea
field predictions is not surprising since in these gases
average distance between particles is significantly larg
than the range of interatomic forces. Typically, the ga
parameterns0da3, where ns0d is the density evaluated
in the center of the trap, anda is the s-wave scattering
length, is smaller than1024. According to the theory of
Lee, Huang, and Yang (LHY) [5], the first correction
to the mean-field predictions are expected to behave lp

a3n and to be consequently of the order of 1% or less
these systems. While such corrections are too small to
observed in the density profiles or in the release ener
they might be observable in the frequency of the collecti
excitations where the accuracy of measurements is mu
higher. For example, an accuracy of,0.3 0.4% has been
already achieved in the experiment of [3].

Measuring effects beyond mean-field theory is a cha
lenging task and would open new perspectives in t
many-body investigation of these novel systems. So
the theoretical investigation of these effects has been li
ited to the equilibrium properties, either including firs
quantum corrections in analytic form [6,7], or through nu
merical simulations based on Monte Carlo methods [8
The purpose of this work is to provide an analytic calcu
lation of the first corrections to the collective frequencie
due to non-mean-field effects. These corrections are c
culated in the largeN limit and at zero temperature.

Our starting point is the hydrodynamic equations o
superfluids (see, for example, [9])
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holding at zero temperature. Heren is the density of
the system,v is the velocity field, andm is the chemical
potential. Equations (1) and (2) permit one to describe
low frequency collective excitations also in nonunifor
Bose superfluids, provided the density profile varies
a macroscopic scale and one can use the local den
approximation for the chemical potential

msr, td  mlfnsr, tdg 1 Vextsrd , (3)

where mlsnd is the chemical potential calculated for
uniform gas at densityn andVext is the external confining
potential.

In the following we will consider the linearized regim
of Eqs. (1) and (2). We writensr, td  nsrd 1 dnsr, td
and msr, td  m0 1 dmlsr, td with dml  s≠mly≠nddn,
so that Eqs. (1) and (2) can be rewritten in the useful fo

m
≠2dn
≠t2 2 ===

∑
n===

µ
≠ml

≠n
dn

∂∏
 0 . (4)

The ground state densitynsrd entering Eq. (4) can be
easily calculated by imposing the equilibrium conditio
m0  m,sssnsrdddd 1 Vextsrd, wherem0 is the ground state
value of the chemical potential, fixed to ensure the prop
normalization ofnsrd.

Equations (1)–(4) do not necessarily require that t
trapped gas is weakly interacting. It is also worth noti
ing that the densityn entering these equations should n
be confused with the density of the condensate, wh
in general does not obey equations of macroscopic ty
Only in the weakly interacting limit, where quantum de
pletion effects are negligible, can the density of the syst
be identified with the condensate density. In this ca
Eqs. (1)–(4) are equivalent to the time dependent Gro
Pitaevskii equations for the order parameter, evaluated
the largeN limit (see, for example, [10]).
© 1998 The American Physical Society 4541
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According to LHY theory, the chemical potential of a
uniform interacting Bose gas is determined by the lo
density expansion:

mlsnd  gn

√
1 1

32
3
p

p

p
a3n

!
, (5)

whereg  4p h̄2aym is the interaction coupling constant.
Equation (5) represents a major result of many body th
ory and accounts for nontrivial renormalization effects o
the coupling constant. It provides the first correction t
the resultm  gn given by lowest order theory, hereafter
called Bogoliubov or mean-field approximation. The LHY
equation of state (5) can be derived starting from Bogo
ubov theory. In this scheme the energy of the system, i
cluding the zero-point motion of elementary excitations,
given by E 

1
2 Ngn 1

1
2

P
pfi0fespd 2 p2y2m 2 gng,

whereespd is the energy of elementary excitations in Bo
goliubov theory. The zero point energy contains an ultra
violet divergency at largep which is cured by the proper
renormalizationg ! gs1 1 g 1

V

P
pfi0 myp2d of the cou-

pling constant, so that one finally obtains a convergent r
sult for the energy of the system, yielding result (5) for th
chemical potential. It is worth noticing that the LHY cor-
rection does not involve additional parameters with respe
to Bogoliubov theory, being fixed by the scattering lengt
and by the density.

Using the LHY equation of state (5), the equation fo
the ground state density can be solved by iteration and o
finds the result [6]

nsrd  nTFsrd 2 an
3y2
TF srd , (6)

where nTFsrd  fm0 2 Vextsrdgyg is the so-called
Thomas-Fermi result for the ground state density [11] an
a  s32y3

p
p da3y2.

Notice that in the same scheme the condensate den
nc is given by ncsrd  nTFsrd 2

5
4 an

3y2
TF srd which is

smaller than the densitynsrd and yields [4] the result

Nout

N


5
p

p

8

q
a3ns0d (7)

for the quantum depletion of the condensate of an atom
gas confined in a harmonic trap.

Using (5) one can writes≠mly≠nd  gs1 1 3y2an
1y2
TF d

so that Eq. (4) takes the form

mv2dn 1 ===sgnTF===dnd  2
1
2

===2sagn
3y2
TF dnd . (8)

Equation (8) provides the appropriate generalization of th
zeroth order hydrodynamic (HD) equation

mv2dn 1 ===sgnTF===dnd  0 (9)

used in [10] to evaluate the collective frequencies in th
largeN, Thomas-Fermi approximation. Equation (9) ad
mits analytical solutions if the external potential is har
monic. In particular, for an isotropic trap (Vext  1

2 m 3

v
2
0r2) the solutions of (9) obey the dispersion relation [10
4542
w

e-
f
o

li-
n-
is

-
-

e-
e

ct
h

r
ne

d

sity

ic

e

e
-
-

]

vsnr , ,d  v0s2n2
r 1 2nr, 1 3nr 1 ,d1y2, (10)

wherenr is the number of radial nodes and, is the angular
momentum of the excitation. Equation (10) shows that t
collective frequencies in the mean-field approximation a
fixed, apart from geometrical factors, only by the oscillat
frequency, a quantity measured with very high precisi
in experiments. This is a remarkable feature exhibited
these harmonically trapped gases which allows for a s
investigation of small corrections.

Once the solutions of (9) are known, Eq. (8) can
easily solved by treating its right-hand side as a sm
perturbation. One finds that the corresponding frequen
shifts obey the general equation

dv

v
 2

ag
4mv2

R
d3r s===2dnpddnn

3y2
TFR

d3r dnpdn
, (11)

where dn are the solutions of (9) andv are the corre-
sponding frequencies. The integrals of (11) extend to
region where the Thomas-Fermi density is positive.

In the absence of trapping, the gas is uniform and
solutions of Eqs. (8) and (9) have the formdn , eiqz and
exhibit a phonon dispersionv  cq. In this case Eq. (8)
[or, equivalently, (11)] gives the Beliaev result [12
dcyc  8

p
a3nyp for the shift of the sound velocity with

respect to the Bogoliubov valuec 
p

gnym, calculated
at the densityn. Notice that even in the uniform cas
n differs from nTF because of Eq. (6). The shift o
the sound velocity is consistent with the change in t
compressibilitymc2  n≠my≠n associated with the LHY
correction in the equation of state (5).

Equation (11) shows that the so-called “surface” osc
lations dn  r,Y,m, satisfying the condition===2dn  0,
are not affected by the LHY correction. For spheric
trapping these solutions obey the dispersion lawv p

, v0, which is simply obtained settingnr  0 in (10).
In order to observe effects beyond mean field, one h

consequently to focus on compressional modes, which
sensitive to the equation of state. The lowest mode
a spherical trap is the monopole (breathing) oscillati
(nr  1, ,  0), characterized by the zeroth order dispe
sion v 

p
5 v0 and by density oscillations of the form

dn , sr2 2 3y5R2d. In this case Eq. (11) yields

dvM

vM


63
p

p

128

q
a3ns0d , (12)

showing that the fractional shift of the monopole frequen
is proportional to the square root of the gas parame
evaluated in the center of the trap. This correction exhib
the same dependence on the gas parameter as the qua
depletion of the condensate, although the coefficient
proportionality slightly differs in the two cases. It i
useful to write the gas parameter in terms of the relev
parameters of the system as [4]

a3ns0d 
152y5

8p

√
N1y6 a

aho

!12y5

, (13)
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where N is the number of atoms in the trap andaho 
sh̄ymv0d1y2 is the oscillator length. Using, for example
N  106 andayaho  6 3 1023, we predict a fractional
shift of 1%. A similar value is found for the quantum
depletion of the condensate. Equation (13) shows that
order to enhance the value of the gas parameter it is m
effective to increase the value of the ratioayaho rather
than the value ofN which enter the equation with a much
lower power. In practice, however, it is not easy to obta
large values ofa3ns0d and hence large frequency shifts
So far the achievement of high densities is in fact limite
by three-body recombinations.

The above shift of the monopole frequency should b
compared with other corrections which might be releva
in actual experiments, like finite size, nonlinearity, an
thermal effects. Finite size effects arise because even
the mean-field scheme the Thomas-Fermi value

p
5 v0

holds only in the large-N limit. These corrections arise
from the “quantum pressure term” in the equation fo
the velocity field, which is ignored in Eq. (2), and ca
be calculated by a proper perturbation procedure in t
Gross-Pitaevskii equation. Using a sum rule approach o
obtains the following result for the leading correction t
the monopole oscillation in the largeN limit and isotropic
trapping [13]

dvM

vM
 2

7
6

√
aho

R

!4

log

√
R

Caho

!
, (14)

where C  1.3 is a dimensionless parameter andR 
ahos15Nayahod1y5 is the radius of the system. For the
surface quadrupole mode, one finds that the fraction
shift has opposite sign and is larger by a factor of 5.

It is worth noticing that the corrections to the Thomas
Fermi value due to non-mean-field (12) and finite size (1
effects depend on different combinations of the releva
parameters of the system. In fact, finite size effec
depend on the combinationNayaho, while non-mean-
field effects depend onN1y6ayaho. In the thermodynamic
limit, where N ! ` andv0 ! 0, with the productNv

3
0

kept constant, finite size corrections go to zero, whi
the gas parameter (13) has a finite value [4]. The lar
N , thermodynamic limit is reasonably well realized i
experiments. For example, using the same values forN
and ayaho employed above, one finds that the finite siz
shift (14) of the monopole frequency is much smalle
(,0.1%) than the non-mean-field correction (12). I
general, finite size effects are negligible if the conditio
N ¿ sahoyad2 logsRyahod is satisfied.

Nonlinearity is another important effect to discus
In fact, in actual experiments the amplitude of th
oscillation cannot be made arbitrarily small. The effec
of nonlinearity have been investigated in details in [14]
the framework of the Thomas-Fermi approximation. Th
leading corrections to the frequency shift can be writte
in the form dvyv  A2d, where A is the fractional
amplitude of the oscillation of the atomic cloud confine
,
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in the trap and the coefficientd can be calculated in an
explicit way [14]. For the monopole mode in the spherica
trap, one hasd  21y6 so that for fractional amplitudes
less than 10%, the effects of nonlinearity are very small

In addition to finite size and nonlinearity effects
one should also take into account that experiments a
carried out at finite temperature. At present there
no fully reliable theory to account for the temperatur
dependence of the collective frequencies of these trapp
gases. However, one expects that these effects sho
vanish very rapidly whenkT is smaller than the chemical
potential. A rough estimate of the thermal effect can b
obtained by assuming that the shift of the real part o
v is of the same order as its imaginary part which i
responsible for the damping of the oscillation. This migh
provide an experimental control of the thermal effect o
the frequency shift.

Finally, an important question concerns the role of th
anisotropy of the confining potential. In fact, most of th
magnetic traps are at present nonspherical. For an axia
deformed trap of the formVext 

1
2 mv

2
'r2

' 1
1
2 mv2

z z2,
wherer'  sx2 1 y2d1y2 is the radial coordinate, the HD
Eq. (9) admits several interesting solutions. In addition
the dipole (center of mass) oscillation, the excitations s
far investigated experimentally are them  2 quadrupole
mode, whose density varies asdn , r2Y22, and the
m  0 oscillations resulting from the coupling between
the quadrupole and the monopole modes (notice th
the zth component,m, of angular momentum is still a
good quantum number in axially deformed systems). Th
m  2 quadrupole mode has frequencyv 

p
2 v' and

is not affected by non-mean-field effects since===2dn 
0. Conversely, the decoupled frequencies of them  0
modes are given by [10]

s2 
v2

v
2
'

 2 1
3
2

l2 6
1
2

s9l4 2 16l2 1 16d1y2,

(15)

where l  vzyv' characterizes the asymmetry of the
trap. The corresponding density oscillations have th
form dn , 22mss2 2 2dymv2 1 r2

' 1 ss2 2 4dz2.
After some length, but straightforward algebra, one finds

dv

v


63
p

p

128

q
a3ns0d f6sld (16)

for the frequency shift of them  0 modes where

f6sld 
5
3

ss2 2 2d2

s3s4 2 20s2 1 40d


1
2

6
8 1 l2

6
p

9l4 2 16l2 1 16
,

(17)

and the index6 refers to the higher (1) and lower (2)
solutions of Eq. (15). Notice that for a spherical tra
(l  1) the solutions of (15) ares2  5 (monopole) and
4543
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FIG. 1. Functionsf1 andf2 relative to the higher and lower
m  0 modes [see Eq. (17)], as a function of the deformatio
parameterl  vzyv'.

s2  2 (quadrupole). In the first case one findsf1  1
and one recovers result (12) for the breathing mode, wh
in the second case there is no shift. In Fig. 1 we sho
the functionsf1 and f2 relative to the two modes as a
function of the deformation parameterl.

Another important consequence of the use of deform
trap concerns the effects of nonlinearity. It has bee
shown [14] that these effects can be amplified or reduc
by changing the value ofl. For example, choosingl 
1.40 one finds that the nonlinearity coefficientd of the
high lying solution of (15) vanishes. For this mode on
finds s2  7.1 and f1  0.88. Another interesting case
is obtained choosingl 

p
8. In this case the nonlinear

effect is vanishingly small for the low energy solution
For this mode one findss2  3.2 andf2  0.38.

The largest values of the gas parameter have been
far reached for cigar trap configurationsl ø 1. In this
case the frequency shift of the lower mode with dispersio
s2  5l2y2 is reduced significantly [f2s0d  1y6] with
respect to the case of thel  1 breathing mode [f1s1d 
1]. Conversely, the higher mode, which corresponds to
compressional radial oscillation with dispersions2  4,
exhibits only a small reduction [f1s0d  5y6]. It is
also worth pointing out that for this mode the nonlinea
effect vanishes as [14]dvyv  20.0938l2A2. Finite
size effects are also vanishing in the same limit. Th
fact that nonlinear and finite size effects vanish fo
l ! 0 reflects the occurrence of a hidden symmetr
[15] of the Gross-Pitaevskii equation characterizing th
radial compressional mode in two-dimensional gases a
4544
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might be used to improve the accuracy of measuremen
One should, however, notice that, for small values o
l, the trapped gases exhibit, in addition to the radia
excitations, also a low-lying branch of axial modes [16]
This could produce a “parametric” instability [17] of the
compressional radial oscillation due to decay into two o
more axial excitations.

In conclusion, in this Letter we have derived the
first corrections to the collective frequencies of trappe
Bose gases arising from effects beyond mean-field theor
We have shown that with reasonable choices of th
parameters these effects, although small, might be visib
experimentally. Their direct observation would represen
an important achievement in the study of many-bod
effects associated with Bose-Einstein condensation.
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Note added.—After this paper was submitted for pub
lication, a preprint by Braaten and Pearson [18] appeare
where the authors, using a different method, obtained th
same expressions for the frequency shifts.
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