VOLUME 81, NUMBER 21 PHYSICAL REVIEW LETTERS 23 NVEMBER 1998

Elementary Excitations in Trapped Bose-Einstein Condensed Gases
Beyond the Mean-Field Approximation

L. Pitaevskil->** and S. Stringafi*
'Department of Physics, Technion, 32000 Haifa, Israel
ZKapitza Institute for Physical Problems, 117454, Moscow, Russia
3Dipartimento di Fisica, Universita di Trento, Trento, Italy
“Istituto Nazionale di Fisica della Materia, 1-3850 Povo, Italy
(Received 24 July 1998

Using the hydrodynamic theory of superfluids and the Lee-Huang-Yang equation of state for
interacting Bose gases, we derive the first correction to the collective frequencies of a trapped gas,
due to effects beyond the mean field approximation. The corresponding frequency shift, which is
calculated at zero temperature and for largeis compared with other corrections due to finite size,
nonlinearity, and temperature. We show that for reasonable choices of the relevant parameters of the
system, the non-mean-field correction is the leading contribution and amounts to about 1%. The role
of the deformation of the trap is also discussed. [S0031-9007(98)07637-6]
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The experimental measurements [1-3] of the collective m 9 v + V(M + 1 mv2> S )
oscillations of Bose-Einstein condensed gases confined in ot

magnetic traps have provided an excellent confirmatiomolding at zero temperature. Hereis the density of

of the predictions of mean-field theory (see [4] for athe systemy is the velocity field, ands is the chemical
recent theoretical review). The accuracy of the meanpotential. Equations (1) and (2) permit one to describe the
field predictions is not surprising since in these gases thRw frequency collective excitations also in nonuniform
average distance between particles is significantly largeBose superfluids, provided the density profile varies on
than the range of interatomic forces. Typically, the gasa macroscopic scale and one can use the local density

parametern(0)a®, where n(0) is the density evaluated approximation for the chemical potential
in the center of the trap, and is the s-wave scattering

length, is smaller than0~*. According to the theory of (1) = piln(e, 0] + Veu(r), (3)
Lee, Huang, and Yang (LHY) [5], the first corrections where w,(n) is the chemical potential calculated for a
to the mean-field predictions are expected to behave likaniform gas at density and Ve, is the external confining
Va3n and to be consequently of the order of 1% or less irpotential.
these systems. While such corrections are too small to be In the following we will consider the linearized regime
observed in the density profiles or in the release energyf Egs. (1) and (2). We write(r,7) = n(r) + dn(r,1)
they might be observable in the frequency of the collectiveand u(r, 1) = uo + 8 u(r, 1) with u; = (dpu;/dn)dn,
excitations where the accuracy of measurements is muc$o that Egs. (1) and (2) can be rewritten in the useful form
higher. For example, an accuracy-660.3-0.4% has been 928n 9
M
o v(2 )] - .

already achieved in the experiment of [3]. 3 4)
Measuring effects beyond mean-field theory is a chal- ot
lenging task and would open new perspectives in th&he ground state density(r) entering Eq. (4) can be
many-body investigation of these novel systems. So faeasily calculated by imposing the equilibrium condition
the theoretical investigation of these effects has been limgg = ue(n(r)) + Ve (r), where ug is the ground state
ited to the equilibrium properties, either including first value of the chemical potential, fixed to ensure the proper
guantum corrections in analytic form [6,7], or through nu-normalization ofn(r).
merical simulations based on Monte Carlo methods [8]. Equations (1)—(4) do not necessarily require that the
The purpose of this work is to provide an analytic calcu-trapped gas is weakly interacting. It is also worth notic-
lation of the first corrections to the collective frequenciesing that the density: entering these equations should not
due to non-mean-field effects. These corrections are cabe confused with the density of the condensate, which

culated in the larg&v limit and at zero temperature. in general does not obey equations of macroscopic type.
Our starting point is the hydrodynamic equations ofOnly in the weakly interacting limit, where quantum de-
superfluids (see, for example, [9]) pletion effects are negligible, can the density of the system
5 be identified with the condensate density. In this case,
—n + V(vn) =0 (1) Egs. (1)—(4) are equivalent to the time dependent Gross-
ot Pitaevskii equations for the order parameter, evaluated in
and the largeN limit (see, for example, [10]).
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According to LHY theory, the chemical potential of a (., €) = wo(2n? + 2n,4 + 3n, + €)V2,  (10)

uniform interacting Bose gas is determined by the 10wy here, s the number of radial nodes afids the angular
density expansion: momentum of the excitation. Equation (10) shows that the
_ 32 Jain collective frequencies in the mean-field approximation are
pi(n) = gn| 1 + N an |, ®)  fixed, apart from geometrical factors, only by the oscillator
frequency, a quantity measured with very high precision
whereg = 4m/i*a/m is the interaction coupling constant. in experiments. This is a remarkable feature exhibited by
Equation (5) represents a major result of many body thethese harmonically trapped gases which allows for a safe
ory and accounts for nontrivial renormalization effects ofinvestigation of small corrections.
the coupling constant. It provides the first correction to  Once the solutions of (9) are known, Eg. (8) can be
the resultw = gn given by lowest order theory, hereafter easily solved by treating its right-hand side as a small
called Bogoliubov or mean-field approximation. The LHY perturbation. One finds that the corresponding frequency
equation of state (5) can be derived starting from Bogoli-shifts obey the general equation
ubov theory. In this scheme the energy of the system, in- 3 o2 /
cluding the zero-point motion of elementary excitations, is do _ __ag 5 Jd r(V3 on 35””“ ,
given by E = Ngn + 13, ole(p) — p*/2m — gn], ©  Amw? o [dironton
wheree(p) is the energy of elementary excitations in Bo- where n are the solutions of (9) and are the corre-
goliubov theory. The zero point energy contains an ultrasponding frequencies. The integrals of (11) extend to the
violet divergency at large which is cured by the proper region where the Thomas-Fermi density is positive.
renormalizationg — g(1 + g% 2 p#0 m/p?) of the cou- In the absence of trapping, the gas is uniform and the
pling constant, so that one finally obtains a convergent resolutions of Egs. (8) and (9) have the fodm ~ ¢'¢* and
sult for the energy of the system, yielding result (5) for theexhibit a phonon dispersio@a = cg. In this case Eq. (8)
chemical potential. It is worth noticing that the LHY cor- [or, equivalently, (11)] gives the Beliaev result [12]
rection does not involve additional parameters with respecdc/c = 8y/a3n/ 7 for the shift of the sound velocity with
to Bogoliubov theory, being fixed by the scattering lengthrespect to the Bogoliubov value = /gn/m, calculated
and by the density. at the densityn. Notice that even in the uniform case
Using the LHY equation of state (5), the equation forn differs from nrr because of Eq. (6). The shift of
the ground state density can be solved by iteration and ortbe sound velocity is consistent with the change in the
finds the result [6] compressibilitymc? = ndu/on associated with the LHY
_ _ . 3/2 correction in the equation of state (5).
n(r) = nre(r) — ante ,(r)’ ©) Equation (11) shows that the so-called “surface” oscil-
where nte(r) = [uo = Veu(r))/g is the so-called |a40ns 6, = rty,,, satisfying the conditioV26n = 0,
Thomas-Fermi result for the ground state density [11] and;e not affected by the LHY correction. For spherical

3/2

(11)

— 3/2 . . . .
a = (_32/3\/77_)“ 2. trapping these solutions obey the dispersion law=
Notice that in the same scheme the condensate dens@@ wo, which is simply obtained setting. = 0 in (10)
. . 3/2 . . ! -
ne is given by nc(r) = nre(r) — jantr (r) which is In order to observe effects beyond mean field, one has
smaller than the density(r) and yields [4] the result consequently to focus on compressional modes, which are
Now 57 sensitive to the equation of state. The lowest mode in
—Nt =5 a*n(0) (7)  a spherical trap is the monopole (breathing) oscillation

(n, = 1,€ = 0), characterized by the zeroth order disper-

for the quantum depletion of the condensate of an atomigi(;n w = /5w, and by density oscillations of the form
gas confined in a harmonic tr?p. / 12 dn ~ (r* — 3/5R?). In this case Eq. (11) yields
Using (5) one can writ€du;/on) = g(1 + 3/2antg
Sw 637
so that Eq. (4) takes the form 28 _ N3
q. (4 1 o g V4 n(0), (12)
mw?8n + V(gntrVén) = - Vi(agnitsn). (8) showing that the fractional shift of the monopole frequency

) . ) o is proportional to the square root of the gas parameter
Equation (8) provides the appropriate generalization of th@ya|uated in the center of the trap. This correction exhibits
zeroth order hydrodynamic (HD) equation the same dependence on the gas parameter as the quantum

mw?8n + V(gnteVén) = 0 (9) depletion of the condensate, although the coefficient of
eoroportionality slightly differs in the two cases. It is
useful to write the gas parameter in terms of the relevant
parameters of the system as [4]

used in [10] to evaluate the collective frequencies in th
large N, Thomas-Fermi approximation. Equation (9) ad-

mits analytical solutions if the external potential is har- 12/5
. . . . 1 2/5

monic. In particular, for an isotropic traf{; = ;m X &3n(0) = 15 (Nl/ﬁ a ) ’
o

(13)

wir?) the solutions of (9) obey the dispersion relation [10] Ao
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where N is the number of atoms in the trap ang, = in the trap and the coefficier® can be calculated in an
(h/mwo)'/? is the oscillator length. Using, for example, explicit way [14]. For the monopole mode in the spherical
N = 10° anda/an, = 6 X 1073, we predict a fractional trap, one has$s = —1/6 so that for fractional amplitudes

shift of 1%. A similar value is found for the quantum less than 10%, the effects of nonlinearity are very small.
depletion of the condensate. Equation (13) shows that in In addition to finite size and nonlinearity effects,
order to enhance the value of the gas parameter it is momne should also take into account that experiments are
effective to increase the value of the ratigay, rather carried out at finite temperature. At present there is
than the value oV which enter the equation with a much no fully reliable theory to account for the temperature
lower power. In practice, however, it is not easy to obtaindependence of the collective frequencies of these trapped
large values ofz’n(0) and hence large frequency shifts. gases. However, one expects that these effects should
So far the achievement of high densities is in fact limitedvanish very rapidly whei&T is smaller than the chemical
by three-body recombinations. potential. A rough estimate of the thermal effect can be
The above shift of the monopole frequency should beobtained by assuming that the shift of the real part of
compared with other corrections which might be relevantw is of the same order as its imaginary part which is
in actual experiments, like finite size, nonlinearity, andresponsible for the damping of the oscillation. This might
thermal effects. Finite size effects arise because even iprovide an experimental control of the thermal effect on
the mean-field scheme the Thomas-Fermi vallfew, the frequency shift.
holds only in the largeV limit. These corrections arise  Finally, an important question concerns the role of the
from the “quantum pressure term” in the equation foranisotropy of the confining potential. In fact, most of the
the velocity field, which is ignored in Eg. (2), and can magnetic traps are at present nonspherical. For an axially
be calculated by a proper perturbation procedure in théleformed trap of the fornv.,, = %mwiri + %mw312,
Gross-Pitaevskii equation. Using a sum rule approach ongherer, = (x2 + y2)1/2 is the radial coordinate, the HD
obtains the following result for the leading correction to Eq. (9) admits several interesting solutions. In addition to
the monopole oscillation in the large limit and isotropic  the dipole (center of mass) oscillation, the excitations so

trapping [13] far investigated experimentally are the= 2 quadrupole
Swy 7 ( ane 4 R mode, whose density varies a ~ r’Y», and the
oy ~ "6\ R | C , (14)  m = 0 oscillations resulting from the coupling between
(0]

the quadrupole and the monopole modes (notice that
where C = 1.3 is a dimensionless parameter aRd=  the zth component;n, of angular momentum is still a
ano(15Na/an,)'/* is the radius of the system. For the good quantum number in axially deformed systems). The
surface quadrupole mode, one finds that the fractiona}, = 2 quadrupole mode has frequeney= /2 w, and
shift has opposite sign and is larger by a factor of 5. is not affected by non-mean-field effects sin€ésn =

It is worth noticing that the corrections to the Thomas-, Conversely, the decoupled frequencies of ihe= 0
Fermi value due to non-mean-field (12) and finite size (14modes are given by [10]

effects depend on different combinations of the relevant
parameters of the syster_n. In fact, ﬁnite size effects 2 = w_2 — 9+ i)lz + l(9)«4 —16A2 + 16)1/2,
depend on the combinatioWa/ap,, while non-mean- wi 2

field effects depend oN'%a/ay,. Inthe thermodynamic (15)
limit, where N — « and wo — 0, with the productv w; _

kept constant, finite size corrections go to zero, whilevhere A = w./w, characterizes the asymmetry of the
the gas parameter (13) has a finite value [4]. The larg&/ap. The corresponding density oszcillations have the
N, thermodynamic limit is reasonably well realized in form — 6n ~ —2u(s* = 2)/mw?® + ri + (s* — 4)z°.
experimentsl For examp|e, using the same valuegvfor After some Iength, but Straightfor\Nard algebra, one finds
anda/ayn, employed above, one finds that the finite size So 637

shift (14) of the monopole frequency is much smaller — = ——4/a’n(0) f+(A) (16)
(~0.1%) than the non-mean-field correction (12). In w 128

general, finite size effects are negligible if the conditionfor the frequency shift of the: = 0 modes where

N > (ano/a)*10g(R/an,) is satisfied.

[38)

Nonlinearity is another important effect to discuss. fe(d) = S (s> — 2
In fact, in actual experiments the amplitude of the N 3 (3s* — 2052 + 40)
oscillation cannot be made arbitrarily small. The effects 1 8 + A2 (17)

of nonlinearity have been investigated in details in [14] in =5 = )
the framework of the Thomas-Fermi approximation. The 2 6VOr* — 1647 + 16

leading corrections to the frequency shift can be writterand the index+ refers to the higher«) and lower ()

in the form w/w = A?8, where A is the fractional solutions of Eq. (15). Notice that for a spherical trap
amplitude of the oscillation of the atomic cloud confined(A = 1) the solutions of (15) are> = 5 (monopole) and
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1.0 might be used to improve the accuracy of measurements.
One should, however, notice that, for small values of
A, the trapped gases exhibit, in addition to the radial
0.8 f, excitations, also a low-lying branch of axial modes [16].
This could produce a “parametric” instability [17] of the
compressional radial oscillation due to decay into two or
0.6 - more axial excitations.

In conclusion, in this Letter we have derived the
first corrections to the collective frequencies of trapped
Bose gases arising from effects beyond mean-field theory.
We have shown that with reasonable choices of the
parameters these effects, although small, might be visible
experimentally. Their direct observation would represent
an important achievement in the study of many-body
effects associated with Bose-Einstein condensation.
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