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We consider a system having decaying states with complex energiesEj 2 iGjy2, and we define
the “width-weighted spectrum” asDGsEd 

P
j GjdsE 2 Ejd. We derive a semiclassical formula

for this width-weighted spectrum, a formula which is analogous to the periodic-orbit representa
of the density of states. The formula applies if classical motion is regular and if decay occ
by tunneling through a barrier. The semiclassical formula involves not periodic orbits or clos
orbits, but action integrals associated with irreducible loops on the “extremal torus,” on which
particle climbs up the barrier and hangs at the top. Calculations confirm the validity of the formu
[S0031-9007(98)07690-X]
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Gutzwiller [1] gave a semiclassical representation o
the density of states of a quantum system,rsEd P

j dsE 2 Ejd, in terms of a sum over periodic orbits
of the corresponding classical system. An alternativ
derivation of the relationship between the quantum de
sity of states and classical periodic orbits, suitable f
integrable systems with regular spectra, was given
Berry and Tabor [2]. Later, Du and Delos [3] gave
a semiclassical formula for the photoabsorption spe
trum of an atom, the oscillator-strength densityDfsEd P

j fjdsE 2 Ejd, wherefj is the oscillator strength for
transition from a low-lying initial state into statej. In
this case the semiclassical representation involves a s
over closed classical orbits of the electron which sta
from the nucleus and return to it. Recently, Creagh an
Whelan [4] considered a splitting-weighted density o
statesDDsEd 

P
j DEjdsE 2 Ejd, where DEj is the

small energy gap between symmetric and antisymmet
states in a model double-well system. Their semiclassic
representation of this quantity involves a few real period
orbits in a chaotic region of phase space, as well as co
plex orbits to describe the underbarrier motion.

In this Letter we consider a system having quasiboun
states with complex energiesEj  Ej 2 iGjy2, and we
define the “width-weighted spectrum” as

DGsEd 
X

j

GjdsE 2 Ejd . (1)

Each quasibound state with real energyE  Ej is
weighted by the widthGj , which is related to the decay
time of the state bytj  h̄yGj. In the case we consider,
the widthsGj arise because of quantum tunneling throug
a potential-energy barrier. We seek a semiclassic
formula for this width-weighted spectrum—a formula
analogous to periodic-orbit or closed-orbit formula
mentioned previously.

Why might a semiclassical representation of this width
weighted spectrum be of interest? Periodic-orbit an
closed-orbit representations focus not on individual qua
tum states, but on the large-scale structure of the sp
0031-9007y98y81(21)y4537(4)$15.00
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trum. When we examine quantum processes whose ra
are governed by tunneling (such as some chemical re
tion rates, some nuclear decay rates, or some conducta
processes in microstructures), it might be difficult to fin
the tunneling rate for each individual quasibound state.
such cases it may be useful to have available a simple re
resentation of the averaged or large-scale structure of
tunneling rate. Thus we pose the following questions.
there a semiclassical representation of the width-weight
spectrumDGsEd? What kind of paths are needed to rep
resent it? How are those paths weighted?

These questions will be answered in this Letter for
system with a regular spectrum. Specifically, we consid
the case of the hydrogen atom subjected to an exter
electric field. (However, many aspects of our derivatio
are valid for other regular systems, and also for spect
weighted in other ways.)

The hydrogen atom in an electric field is a physica
system which permits a detailed study of the tunnelin
through a dynamical barrier. The Hamiltonian is (usin
atomic unitsh̄  1, e  1, me  1)

H 
p2

2
2

1
sr2 1 z2d1y2 1 Fz , (2)

where F is the strength of the applied electric field
We consider the cylindrically symmetric states,Lz 
mh̄  0. It is convenient to use scaled variables,w 
F21y4, q ! w22q, p ! wp, ´  EyF1y2. The poten-
tial energy has a saddle point atzs  21, ´  22. For
energies below this saddle energy, the classical moti
is bounded and the quantum spectrum is quasidiscre
with states of long lifetime and quite sharply defined en
ergy. High-Rydberg states of the pure Coulomb field a
split into regular Stark manifolds. For energies above th
saddle, the classical motion is unbounded if the electro
is ejected from the atom in a “downhill” direction, and
bounded if it leaves the atom going “uphill.” A critical
ejection angleucs´d  arccoss1 2 ´2y2d separates these
two motions. Accordingly, above the saddle, the quan
tum spectrum consists of quasidiscrete levels superpos
© 1998 The American Physical Society 4537
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on a smoothly rising continuum. The higher-energy (u
hill) quasidiscrete levels of each manifold survive, whi
the lower-energy (downhill) levels in each manifold ar
broadened into the smooth continuum [5].

The Stark Hamiltonian (2) is integrable, and eve
separable in semiparabolic coordinates (u, y), and the
corresponding effective Hamiltonians are

Hu  p2
uy2 2 ´u2 1 u4y2  s1 1 bd ,

Hy  p2
yy2 2 ´y2 2 y4y2  s1 2 bd .

(3)

Motion in theu coordinate is always bound, but for´ , 0
there is an effective (dynamical) barrier in they motion,
which allows the possibility of tunneling. The classica
y motion is bound foŕ , 22, and unbound foŕ $ 0.
Between the saddle and the zero-field ionization thresho
i.e., for 22 # ´ # 0, the y motion is bound if and only
if b $ bcs´d  1 2 ´2y2. The separation constantb is
related to the angle of ejection of the electron from th
atom byb  cosu.

Accordingly, at eachs´, wd, the bound trajectories form
a one-parameter family of tori withbcs´d # b # 1. The
trajectories can therefore also be labeled by their act
variables,Jus´, b; wd, Jys´, b; wd. Quantization of these
action variables identifies “eigentrajectories” or “eigen
tori,” labeled by quantum numbersn  snu, nyd (for more
details see [6]). Standard semiclassical formulas [7],
cluding tunneling near the top of a quadratic barrier in t
y coordinate, lead to quantization conditions for the ene
gies and widths of the quasibound states:

Jus´, b; wd  wJ̃us´, bd  2p h̄snu 1
1
2 d ,

Jys´, b; wd  wJ̃ys´, bd (4)

 2p h̄

√
ny 1

1
2

!
2

i
2

h̄e2Ky h̄ 2 d .

Quantities with a tilde are defined here as scaled quantit
for example,J̃u, J̃y are the scaled actions.K is the action
integral for a cycle of underbarrier motion in they coor-
dinate, nu  0, 1, 2, . . . and ny  0, 1, 2, . . . are integers
which define the parabolic states andd  argfGs1y2 1

iKy2h̄pdg 2 sKy2h̄pd flogsKy2h̄pdg 1 Kyh̄p is the
parabolic-barrier correction. This correction is ofte
small, but in our case it is needed in order to avoid certa
logarithmic singularities: near the top of the barrier (i.e
above the saddle andb ø bc) the derivatives≠Jyy≠´ and
≠Jyy≠b diverge. However, the corresponding derivative
of Jy 1 d are finite.

If the widths are not too large, they can be determin
from Eq. (4) by the formula

Gn 
h̄ ≠Ju

≠b

≠sJu,Jyd
≠sE,bd

e2Ky h̄ 

≠J̃u

≠b

w3 ≠sJ̃u,J̃y d
≠s´,bd

e2wK̃ , (5)

where ≠sJu, Jydy≠sE, bd is the Jacobian of the transfor
mation from action variablessJu, Jyd to the conserved
quantitiessE, bd. In a one-dimensional system, the co
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responding formula forG is h̄ times the vibrational fre-
quency times an exponential factor. Our system is se
rable, and tunneling is only in they coordinate, but it is
not equivalent to a one-dimensional system. The tunn
ing terms makeE and b complex in such a way thatJu

stays real. Therefore the preexponential factor in Eq. (
involves bothJu andJy .

From these quantization conditions (4), we may co
struct a width-weighted spectrum, Eq. (1), holdingF fixed
and finding (Ej , Gj). The scaled spectrum is obtained b
fixing ´  Ew2 and finding the corresponding (real) val
ues ofwj; then

DG 
X
n

GndsE 2 End 
X
n

G̃n

s22´d
dsw 2 wnd , (6)

where G̃n  Gnw3. In this calculation, we include all
resonances which lie below the effective barrier in they

coordinate; thus we include all quasidiscrete states, but
do not include above-barrier resonances, which may be
broad that they might better be regarded as backgrou
continuum.

Figure 1 shows an example of a scaled quasidiscr
spectrum for a scaled energy (´  21.5) well above
the saddle (at this scaled energybc  20.125, uc .
97.181±). Each point of this figure marks the width
log Gn plotted against its quantizedwn [8]. For example,
at principal quantum numbern  nu 1 ny 1 1  9, we
see states withu, y quantum numbers fromsnu  8, ny 
0d (the most “uphill” and longest-lived state of the group
to snu  3, ny  5d (the most “downhill” and shortest-
lived state of the group). In this family, states withny $

6 correspond to trajectories that go over the effectiv
barrier, so we do not include them. The other stat
labeled in Fig. 1 are forn  22; in this family, ny can be
as large as13 before the trajectory goes over the barrie
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FIG. 1. Semiquantal result of logGn vs w for the scaled
energy´  21.5. The parabolic quantum numbers (nu, ny) are
labeled for the most “downhill” (3, 5), (8, 13) and for the most
“uphill” ( 8, 0), (21, 0) states for the principal quantum number
n  9 andn  22.
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FIG. 2. Comparison between (a) semiquantal and (b), (
semiclassical results for the width-weighted spectrum at scal
energy´  21.5. In the semiquantal result, some widths ar
labeled by the quantum numbers (nu, ny). The straight line in
(c) is the result from Eq. (7) forMu  My  0. The solid
line with few oscillations is the result from Eq. (7) taking the
sum until jMuj  jMyj  1, and the dotted line is the result
by the summation untiljMuj  jMy j  5. (b) Is the result for
jMuj  300, jMyj  200 [9].

Each state has also a quantized value ofbn; those states
with the largest width (i.e., largerny) have bn closer
to bc. Such states are the most important in a width
weighted spectrum.

In Fig. 2(a), G̃n is plotted as a function ofw. The
result looks like a quasiperiodic sequence of widths v
w. This is what we define as a width-weighted scale
spectrum. Such results of Eq. (5) are what could b
regarded as “quantum results” [10]. More precisely the
e orbit
ρ

v

u

z

FIG. 3. Electron orbits inuy (upper) orzr (lower). Left: For ejection angle less than the critical angleuc the orbit remains
bound. Right: For larger ejection angles it goes over the effective barrier and escapes. Center: At the critical angle th
approaches an unstable periodic orbit—these orbits lie on the extremal torus.
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should be called “semiquantal”: they use semiclassic
approximations at certain points, but the formulas focu
on energies and widths of individual states. The formula
developed below we call “semiclassical”: they will be
the analogs of the formulas of periodic-orbit theory o
closed-orbit theory, which give simple representations
the large-scale structure of the spectrum.

Let us now write the semiclassical formula forDG.
This formula involves properties of the “extremal torus,” o
“last surviving torus” at each scaled energy. As explaine
above, the motion is oscillatory iny if b . bcs´d. When
b  bcs´d, the y motion ascends the dynamical barrie
and hangs at the top, and we call the associated torus
extremal torus. For smallerb, the particle goes over the
dynamical barrier and escapes (see Fig. 3).

Action variables of the extremal torus are well defined
Ĵu  J̃us´, bcd, Ĵy  J̃ys´, bcd. Derivatives ofJ̃ys´, bd
diverge asb ! bcs´d, but in the formulas below these di-
vergences will be canceled by corresponding divergenc
in d.

The semiclassical formula is [11]

DG 
X

Mu,My

DMu,My
eiwfMuĴu1My Ĵy g, (7)

where

DMu,My


1
4p2

s2dMu1My

ft̂Kyt̂u 2 isMu 2 Myt̂yyt̂udg
. (8)

All quantities here must be evaluated atb  bc. The
sum overMu and My includes all positive and negative
integers, including zero, so the result is indeed a quasipe
odic function ofw: it oscillates as a function ofw with
fundamental frequencieŝJu andĴy , and with all multiples
and combinations thereof. Each oscillation has amplitud
DMu,My

, which is a function of the “canonical periods”

t̂u  2≠J̃uy≠b, t̂K  2≠K̃y≠b ,

t̂y  22≠sJ̃y 1 dywdy≠b ,
(9)

all of which are evaluated atb  bc.
Figure 2(c) shows the result of taking more and mor

terms in the summation of Eq. (7). The straight line i
4539
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FIG. 4. Comparison between (a) semiquantal and (b) sem
classical results for the absolute square of the Fourier transfo
at the scaled energý  21.5. Peaks in the semiclassical re-
sult are located at actionsSMu ,My

, and they are labeled by the
cycle numbers (MyyMu). The needles under these peaks co
respond to the values ofjDMu,My

j2.

the result forMu  My  0. The solid line with few
oscillations is the result of taking eight more terms i
the sum (i.e.,jMuj  jMyj  1), and the dotted line is
for summation untiljMuj  jMyj  5. Figures 2(a) and
2(b) compare the semiclassical numerical results fro
Eq. (7) (with jMujmax  300, jMyjmax  200) with the
semiquantal results from Eq. (5) for a scaled energy´ 
21.5. The positions of the maxima for a given statewn
are in good agreement and also the overall behavior of t
peaks is the same. [Of course, the Fourier sum (7) giv
the expected Gibbs’ phenomenon.]

Another way to analyze and understand the width
weighted spectrum is to look at its Fourier transform,

RGsSd 
Z

exps2i2pSwdDGswd dw . (10)

jRGsSdj2 should have peaks located at values of scale
action SMu,My

 sMuĴu 1 My Ĵydy2p, with heights pro-
portional to jDMu,My

j2. This is exactly what we see
in Figs. 4(a) and 4(b), where the (normalized) absolu
square of the Fourier transform is plotted as a functio
of the variableS. For this scaled energy, the value of the
scaled actions of the extremal torus areĴuy2p . 0.237 96
andĴyy2p . 0.389 85.
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With the help of the semiclassical representation of th
the width-weighted spectrum, each peak in the Fouri
transform [see Fig. 4(b)] can be identified with a give
irreducible loop on the extremal torus, havingMu u-cycles
andMy y-cycles. We emphasize that these loops do n
in general correspond to closed orbits or to periodic orbit
For example, we see a large1y1 peak, but the frequencies
of the u and y motions are never equal, and no (1y1)
periodic or closed orbit exists.

The needles under the peaks in Fig. 4(b) correspond
the values ofjDMu,My

j2. The height of the maxima in
the Fourier transform of the semiclassical results depen
strongly on the parabolic correctiond; this happens
becaused is only a small correction toĴy , but its
derivative is a substantial part of̂ty and therefore of
DMu,My

.
To conclude, in this Letter we define a width-weighte

spectrum, and we give a semiclassical representation
it. As an example we consider the scaled spectrum of t
hydrogen atom in an electric field. The Fourier transform
of this scaled width-weighted spectrum gives peaks n
at actions of periodic orbits, nor at actions of close
orbits, but at actions corresponding to fundamental loo
of the extremal torus: The torus corresponding to limitin
motion climbing to the top of the effective barrier.
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