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Semiclassical Representation of Width-Weighted Spectra
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We consider a system having decaying states with complex enefigiesiI';/2, and we define

the “width-weighted spectrum” a®I'(E) = ZJ- I';6(E — E;). We derive a semiclassical formula

for this width-weighted spectrum, a formula which is analogous to the periodic-orbit representation
of the density of states. The formula applies if classical motion is regular and if decay occurs
by tunneling through a barrier. The semiclassical formula involves not periodic orbits or closed
orbits, but action integrals associated with irreducible loops on the “extremal torus,” on which the
particle climbs up the barrier and hangs at the top. Calculations confirm the validity of the formula.
[S0031-9007(98)07690-X]

PACS numbers: 03.65.Sq

Gutzwiller [1] gave a semiclassical representation oftrum. When we examine quantum processes whose rates
the density of states of a quantum systep(E) =  are governed by tunneling (such as some chemical reac-
Z, 86(E — E;), in terms of a sum over periodic orbits tion rates, some nuclear decay rates, or some conductance
of the corresponding classical system. An alternativeprocesses in microstructures), it might be difficult to find
derivation of the relationship between the quantum denthe tunneling rate for each individual quasibound state. In
sity of states and classical periodic orbits, suitable forsuch cases it may be useful to have available a simple rep-
integrable systems with regular spectra, was given byesentation of the averaged or large-scale structure of the
Berry and Tabor [2]. Later, Du and Delos [3] gave tunneling rate. Thus we pose the following questions. Is
a semiclassical formula for the photoabsorption specthere a semiclassical representation of the width-weighted

trum of an atom, the oscillator-strength dendity (E) =  spectrumDI'(E)? What kind of paths are needed to rep-
> fi6(E — Ej), where f; is the oscillator strength for resentit? How are those paths weighted?
transition from a low-lying initial state into statg In These questions will be answered in this Letter for a

this case the semiclassical representation involves a sugystem with a regular spectrum. Specifically, we consider
over closed classical orbits of the electron which starthe case of the hydrogen atom subjected to an external
from the nucleus and return to it. Recently, Creagh anelectric field. (However, many aspects of our derivation
Whelan [4] considered a splitting-weighted density ofare valid for other regular systems, and also for spectra
statesDA(E) = Zj AE;8(E — E;), where AE; is the weighted in other ways.)

small energy gap between symmetric and antisymmetric The hydrogen atom in an electric field is a physical
states in a model double-well system. Their semiclassicaystem which permits a detailed study of the tunneling
representation of this quantity involves a few real periodichrough a dynamical barrier. The Hamiltonian is (using
orbits in a chaotic region of phase space, as well as conatomic unitsii = 1,e = 1,m, = 1)

plex orbits to describe the underbarrier motion. p? 1
In this Letter we consider a system having quasibound H = T m + Fz, 2)
states with complex energieE; = E; — iT';/2, and we pm Tz
define the “width-weighted spectrum” as where F is the strength of the applied electric field.
We consider the cylindrically symmetric states, =
DT(E) = D T;8(E — Ej). (1)  mhA =0. Itis convenient to use scaled variables,=
J F~Y4 q— w™2q,p— wp, e = E/F'/2. The poten-
Each quasibound state with real energy= E; is tial energy has a saddle pointat= —1, e = —2. For

weighted by the width’;, which is related to the decay energies below this saddle energy, the classical motion
time of the state by; = 7/I';. In the case we consider, is bounded and the quantum spectrum is quasidiscrete,
the widthsI'; arise because of quantum tunneling throughwith states of long lifetime and quite sharply defined en-
a potential-energy barrier. We seek a semiclassicargy. High-Rydberg states of the pure Coulomb field are
formula for this width-weighted spectrum—a formula split into regular Stark manifolds. For energies above the
analogous to periodic-orbit or closed-orbit formulassaddle, the classical motion is unbounded if the electron
mentioned previously. is ejected from the atom in a “downhill” direction, and
Why might a semiclassical representation of this width-bounded if it leaves the atom going “uphill.” A critical
weighted spectrum be of interest? Periodic-orbit ancejection angled.(e) = arcco$l — &£?/2) separates these
closed-orbit representations focus not on individual quantwo motions. Accordingly, above the saddle, the quan-
tum states, but on the large-scale structure of the spetam spectrum consists of quasidiscrete levels superposed
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on a smoothly rising continuum. The higher-energy (up+esponding formula fol” is 7z times the vibrational fre-
hill) quasidiscrete levels of each manifold survive, while quency times an exponential factor. Our system is sepa-
the lower-energy (downhill) levels in each manifold arerable, and tunneling is only in the coordinate, but it is
broadened into the smooth continuum [5]. not equivalent to a one-dimensional system. The tunnel-
The Stark Hamiltonian (2) is integrable, and evening terms makeE and 8 complex in such a way that,
separable in semiparabolic coordinates(), and the stays real. Therefore the preexponential factor in Eq. (5)
corresponding effective Hamiltonians are involves both/, andJ,.
— 27 o2 47n _ From these quantization conditions (4), we may con-
H,=p,/2 —euw +u’/2=(1+p), (3)  struct a width-weighted spectrum, Eq. (1), holdifidixed
H, = p2/2 —ev®> —v*/2=(1 - B). and finding €;,T;). The scaled spectrum is obtained by
fixing e = Ew? and finding the corresponding (real) val-

Motion in theu coordinate is always bound, but fer< 0
ues ofw;; then

there is an effective (dynamical) barrier in themotion, y
which allows the possibility of tunneling. The classical I'n
v motion is bound fore < —2, and unbound foe = 0. DI = > Twd(E — En) = D, (—2¢)
Between the saddle and the zero-field ionization threshold, " "
i.e., for —2 = ¢ = 0, the v motion is bound if and only where T, = I'hyw?. In this calculation, we include all
if 8= B.(e) =1 — £2/2. The separation constagtis  resonances which lie below the effective barrier in the
related to the angle of ejection of the electron from thecoordinate; thus we include all quasidiscrete states, but we
atom byB = cos¥é. do not include above-barrier resonances, which may be so
Accordingly, at eaclie, w), the bound trajectories form broad that they might better be regarded as background
a one-parameter family of tori witB.(¢) = 8 = 1. The  continuum.
trajectories can therefore also be labeled by their action Figure 1 shows an example of a scaled quasidiscrete
variables,J, (e, B;w), J, (e, B;w). Quantization of these spectrum for a scaled energy € —1.5) well above
action variables identifies “eigentrajectories” or “eigen-the saddle (at this scaled energy. = —0.125,6,. =
tori,” labeled by quantum numbens= (n,,n,) (formore  97.181°). Each point of this figure marks the width
details see [6]). Standard semiclassical formulas [7], inlog I',, plotted against its quantized, [8]. For example,
cluding tunneling near the top of a quadratic barrier in theat principal quantum number = n, + n, + 1 =9, we
v coordinate, lead to quantization conditions for the enersee states with, v quantum numbers frorn, = 8,n, =
gies and widths of the quasibound states: 0) (the most “uphill” and longest-lived state of the group)
N s _ 1 to (n, = 3,n, = 5) (the most “downhill” and shortest-
Tule, Bsw) = wlu(e, B) = 2mhlny + 3), lived state of the group). In this family, states with =

S(w — wn), (6)

Ju(e, Bsw) = wl,(e, B) (4) 6 correspond to trajectories that go over the effective
1 ; barrier, so we do not include them. The other states

= 27Tﬁ<nu + E) ) ie XK/M — 5. labeled in Fig. 1 are for = 22; in this family, n, can be
as large ad3 before the trajectory goes over the barrier.

Quantities with a tilde are defined here as scaled quantities,
for example,/,, J, are the scaled actionsK is the action

integral for a cycle of underbarrier motion in thecoor- 50

dinate,n, = 0,1,2,... andn, = 0,1,2,... are integers @9 (8.13)
which define the parabolic states afd= ardI'(1/2 + ol /
iK/2hw)] — (K/2R7)[log(K/2hw)] + K/ha is the R I T A S DR

parabolic-barrier correction. This correction is often o s AP TR
small, but in our case it is needed in order to avoid certain R R A A

logarithmic singularities: near the top of the barrier (i.e.,
above the saddle an@l = B.) the derivatives)J, /9 and S
aJ,/dpB diverge. However, the corresponding derivatives SR TR
of J, + & are finite. °
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If the widths are not too large, they can be determined | P
from Eq. (4) by the formula @10
h Wy aJ. 200 - = - .
- B —K/h _ a8 —wk
R A T atdn ¢ (5) w
A(EB) W o) FIG. 1. Semiquantal result of lof, vs w for the scaled

. . energye = —1.5. The parabolic quantum numbers,(n,) are
where d(J,,J,)/d(E, B) is the Jacobian of the transfor- labeled for the most “downhill’3, 5), (8, 13) and for the most

mation from action variables/,,J,) to the conserved «yphill” (8,0), (21,0) states for the principal quantum numbers
guantities(E, 8). In a one-dimensional system, the cor-n = 9 andn = 22.

4538



VOLUME 81, NUMBER 21

PHYSICAL REVIEW LETTERS

23 NVEMBER 1998

0.2

0.1 -

r an

0.0

3.5

Semiquantal
(6,10)

(6.7

B

(6.9)

\

should be called “semiquantal”; they use semiclassical
approximations at certain points, but the formulas focus
on energies and widths of individual states. The formulas
developed below we call “semiclassical”: they will be

the analogs of the formulas of periodic-orbit theory or
closed-orbit theory, which give simple representations of
the large-scale structure of the spectrum.

Let us now write the semiclassical formula forl".

120 -

Dr

Semiclassical

This formula involves properties of the “extremal torus,” or
“last surviving torus” at each scaled energy. As explained
above, the motion is oscillatory mif 8 > B.(e). When

B = B.(g), the v motion ascends the dynamical barrier
and hangs at the top, and we call the associated torus the

-120

extremal torus. For smalle8, the particle goes over the
dynamical barrier and escapes (see Fig. 3).

45
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Semiclassical

Action variables of the extremal torus are well defined,
Ju = Ju(e, Be), Jy = Jy(e, Bc). Derivatives ofJ, (g, B)
diverge a8 — B.(&), but in the formulas below these di-
vergences will be canceled by corresponding divergences
in é.

The semiclassical formula is [11]

FIG. 2. Comparison between (a) semiquantal and (b), (c
semiclassical results for the width-weighted spectrum at scale
In the semiquantal result, some widths are 1
labeled by the quantum numbers, (n,). The straight line in
(c) is the result from Eq. (7) fo, = M, = 0. The solid
line with few oscillations is the result from Eq. (7) taking the
sum until [M,| = [M,| = 1, and the dotted line is the result
by the summation untilM,,| = |M,| = 5. (b) Is the result for

energys = —1.5.

|M,| = 300,|M,| = 200 [9].

Each state has also a quantized valug3pf those states
with the largest width (i.e., larger,) have B, closer

to Be.

weighted spectrum.

In Fig. 2(a), Iy is plotted as a function ofy. The N
result looks like a quasiperiodic sequence of widths vs

Il
30
w

Such states are the most important in a width-
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DT (7)

iw[M,J,+M,]T,
Z DM,,,M,,e [ udu :l’
MM,
here
(_)MH+M1,

B m [%K/%u - l(Mu - MU%U/%M)]. (8)

All guantities here must be evaluated gt= B.. The
sum overM, and M, includes all positive and negative
integers, including zero, so the result is indeed a quasiperi-
odic function ofw: it oscillates as a function of with
fundamental frequenciek, andJ,, and with all multiples
and combinations thereof. Each oscillation has amplitude
Dy, .m,, Which is a function of the “canonical periods”

#0=207,/08, tx = 20K/0B,
—20(J, + 8/w)/0B,

Dy, m,

(9)

Ty

w. This is what we define as a width-weighted scaledall of which are evaluated 88 = 8..
spectrum. Such results of Eq. (5) are what could be Figure 2(c) shows the result of taking more and more
regarded as “quantum results” [10]. More precisely theyterms in the summation of Eq. (7). The straight line is

FIG. 3. Electron orbits intv (upper) orzp (lower).

bound. Right:

T

For larger ejection angles it goes over the effective barrier and escapes. Center: At the critical angle the orbit

Left: For ejection angle less than the critical an@lethe orbit remains

approaches an unstable periodic orbit—these orbits lie on the extremal torus.

4539



VOLUME 81, NUMBER 21 PHYSICAL REVIEW LETTERS 23 NVEMBER 1998

1.0 With the help of the semiclassical representation of the
the width-weighted spectrum, each peak in the Fourier
Semiquantal @ transform [see Fig. 4(b)] can be identified with a given
irreducible loop on the extremal torus, havibg u-cycles
andM, v-cycles. We emphasize that these loops do not
in general correspond to closed orbits or to periodic orbits.
For example, we see a larg@1 peak, but the frequencies
of the u and v motions are never equal, and nb/{()
periodic or closed orbit exists.
The needles under the peaks in Fig. 4(b) correspond to
the values of|Dy, u,1>. The height of the maxima in
0.0 the Fourier transform of the semiclassical results depends
Semiclassical 12 (b) strongly on the parabolic correctiod; this happens
on i becauseé is only a small correction taJ,, but its
l derivative is a substantial part df, and therefore of
l)Mme
o2 i To conclude, in this Letter we define a width-weighted
spectrum, and we give a semiclassical representation of
or4 it. As an example we consider the scaled spectrum of the

j 0/3
»/ l hydrogen atom in an electric field. The Fourier transform
A M of this scaled width-weighted spectrum gives peaks not
LI |
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|| \ at actions of periodic orbits, nor at actions of closed
09 1.0 orbits, but at actions corresponding to fundamental loops
of the extremal torus: The torus corresponding to limiting

FIG. 4. Comparison between (a) semiquantal and (b) semimnotion climbing to the top of the effective barrier.
classical results for the absolute square of the Fourier transform This research was supported by NSF. M. W. B. thanks
at the scaled energy = —1.5. Peaks in the semiclassical re- CAPES for financial support.

sult are located at action$y, »,, and they are labeled by the
cycle numbers¥,/M,). The needles under these peaks cor-
respond to the values ¢Dy,, 4, 1.
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