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Incoherent Interlayer Transport and Angular-Dependent Magnetoresistance Oscillations
in Layered Metals
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The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is
considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids
the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent
transport. Consequently, the existence of a three-dimensional Fermi surfaatnecessary to explain
the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction
is varied. [S0031-9007(98)07660-1]

PACS numbers: 74.70.Kn, 71.10.Hf, 72.15.Gd, 74.20.Mn

One of the most fundamental concepts in solid state@scillations of quasi-two-dimensional systems and a peak
physics is that in most metallic crystals the electronicin the magnetoresistance when the field is parallel to the
conduction occurs through the coherent motion of electayers is evidence for a three-dimensional Fermi surface.
trons in band states associated with well-defined wav&/e now define precisely what we mean by coherent and
vectors [1]. There is currently a great deal of interestincoherent transport (see Fig. 1) and how to calculate the
in whether this concept is valid for interlayer transportassociated conductivity.
in high-T,. superconductors [2,3], organic conductors [4], Coherent interlayer transpor—A three-dimensional
and layered manganite compounds with colossal magnetispersion relatiorz;p (k) can be defined where
toresistance [5]. Incoherent transport means that the mo- 7y — _
tion from layer to layer is diffusive and band states and a _63D(k) _ ek, ky) ZZC_ COS(_kZC)’ _ (1)
Fermi velocity perpendicular to the layers cannot be deWhere 7. is the interlayer hopping integrak is the
fined. The Fermi surface is then not three-dimensionaldYer separation, and(k., k,) is the intralayer dispersion
and Boltzmann transport theory cannot describe the intef€lation, simple examples of which are given in Table I.
layer transport. The electronic group velocity perpendicular to the layers

In organic conductors [6] large variations in the magne—iS

toresistance are observed as the direction of the magnetic _ 1 desplk) _ 2tcc (k.c) 2
field is varied and are referred to as angular-dependent Ve = h o ok, TR sintkz¢). (2)
magnetoresistance oscillations (AMRO) [7]. These

effects in quasi-one-dimensional systems are known as a) ®)

Danner [8], Lebed [9—-11], and third angular effects [12], K,

depending on whether the magnetic field is rotated in
the a-c, b-c, or a-b plane, respectively. (Tha and

¢ axes are the most- and least-conducting directions,
respectively). Oscillations in quasi-two-dimensional
systems include the Yamaji [13] oscillations and the
anomalous AMRO in the low-temperature phase of
a-(BEDT-TTF),MHQ(SCN4[M = K,Rb, TI] [7,14].

We focus on the Danner and Yamaji oscillations here
because their explanation in terms of a three-dimensional
Fermi surface has generally been accepted. The resistance
perpendicular to the layers is a maximum when the field di-
the layers) averaged over s trajeciories on he Ferm, suflS; L _The pitures relevant to_coherent and incaherent

8 s nterlayer transport in a quasi-two-dimensional system. (a) If
face is zero [8,15]. In contrast, it is not clear that coherenthe transport between layers is coherent then one can define a
transport models can explain the angle-dependent magntiwee-dimensional Fermi surface which is a warped cylinder.
toresistance in the quasi-one-dimensidil TSF),PR;, at ~ The interlayer conductivity is determined by correlations of
pressures of about 10 kbar [4,9,10,16,17]. The main rethe electronic group velocity perpendicular to the layers. [See

. . ! . _Eq. (3).] (b) For the incoherent interlayer transport considered
sult of this Letter is that coherent interlayer transport |shgre(63],:e(rrr)“ surface is only defined v?//ithin theplayers and the

not necessaryto explain the Ya_maji and Danner oscilla- interlayer conductivity is determined by the interlayer tunneling
tions. In contrast, the observation of beats in the magnetaate. [See Eq. (5).]
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TABLE |. Different physical quantities relevant to angular-dependent magnetoresistance
oscillations for the cases where intralayer Fermi surface is quasi-one-dimensional (open) and
quasi-two-dimensional (closed). In a magnetic field the electrons oscillate on the Fermi surface
with frequencyw, when the fieldB is perpendicular to the layers. The geometric factor
determines the field directions at which the interlayer resistivity is a maximum [see Eq. (9)].
The magnitude of the Fermi wave vector is denatgd For the quasi-one-dimensional case,

vr is the Fermi velocityy, the interchain hopping integral, aidthe interchain distance. For

the quasi-two-dimensional case; is the effective mass.

Quantity Symbol Quasi-1D Quasi-2D

Intralayer _ _ 72

dispersion €(ky, ky) fivp (k| kr) 21 Coikyb) ; (k2 + k‘%)
Oscillation evrbB ¢B

frequency @o T e
Geometric 2t

factor Y Tor ke
Zero-f(ijeld 'in.terlayer o0 4ecir 20> m*ci’r

conductivity T buy T

The interlayer conductivity involves correlations of this be seen below that in the presence of a tilted magnetic
velocity and is given by Chambers formula [1] field A; andA, are not identical. The zero-field limit of
27 X . R . this expression has been used in treatments of incoherent
Tz =3 [d kv (k)v.(k)8(Er — e3p(k)), (3) interlayer transport in the cuprate superconductors [24].
whereEr is the Fermi energyr the scattering time, and The magnetic field B = (Bx.0.B.) =
F 97 9 ' (Bsin#,0,Bcosh) is described by a vector potential

v, (k) is the velocity averaged over a trajectory on theA which in the Landau gauge has only one nonzero
Fermi surface ending at i

o component, A, = B.x — B,z. The Hamiltonian for
- 1 > layer 1 (z = 0) is then the same as that for a single
v (k) = - fﬂc dr explt/7)v; (k(1)). (4) layer in a perpendicular fiel# cosd. The Hamiltonian

If the magnetic field is tilted sufficiently far away from the for layer 2 (z = ¢) is the same as for layer 1 except
layers that,c tand < fivp, whered is the angle between * 1S replaced with (x — ctan6). This displacement
the field and the normal to the layers, then to lowest ordefctually corresponds to a gauge transformation [25],
in ¢, the expression (3) can be evaluated analytically. Thid — A — VA whereA(7) = Bsinfcy. Wave functions
means neglecting the effects of closed orbits that becomigansform according tay(7) — ¢(7) exieA(F)]. The
important when the field direction is close to the layersGreen’s functions in layers 1 and 2 are then related by
[18]. After long calculations the results for both the quasi- s 2y P 5 s L
one-dimensional and quasi-two-dimensional cases can pe027a 7p) = eXieA(F)IG1(Fa, T) eXL=ie A(Fy)].
written in the form (8) given below. (6)
Incoherent interlayer transport-If the intralayer scat- o . i
tering ratel/r is much larger than the interlayer hop- Substituting this in () gives
ping integralz. [19] then the interlayer transport will be 20212¢
incoherent [20] in the sense that successive interlayer tun- 0zz =
neling events are uncorrelated [21]. The interlayer con-
ductivity is then proportional to the tunneling rate between (7)
just two adjacent layers (see Fig. 1). This rate can be cal- We have evaluated (7) for the simplest possible situa-
culated using standard formalisms for tunneling in metaltion, @ Fermi liquid within each layer, with the dispersion
insulator-metal junctions [22,23] which assume that the€lations given in Table I. The complete details of the
intralayer momentum is conserved. The result (for tem<calculations will be given elsewhere [26]. For the quasi-
peratures much less than the Fermi energy/ard 1) is two-dimensional case we followed a procedure similar to
that used by Hackenbroich and von Oppen [27] in their
]d2rad2r,,A1(?a,?;,,EF)AQ(?,,,?Q,EF), study of magneto-oscillations in antidot lattices. In the
semiclassical approximation the Green'’s function is writ-
() ten as a sum over classical trajectories frmo 7,. For
where L? is the area of the layer andl;(7,, 7, E) (j = the quasi-one-dimensional case the quasiclassical Green’s
1,2) are the spectral functions for layers 1 and 2. It will function [28] was used.

f d*r|G,(7,0, Er)|* codeBsinfcy).
aa

2,2
e‘tic

Oz =
wL?
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In a tilted magnetic field the interlayer conductivity for IS B S s B B B
both coherent and incoherent interlayer transport is y

o.,(0) = O'SZ|:J0(’)/ tand)’

+2i J,(y tang)? } ®) 6
v=1

1 + (vwoT cOSH)?

whereo?. is the zero-field conductivity/, (x) is the vth
order Bessel functionw, is the oscillation frequency
associated with the magnetic field, andis a constant
that depends on the geometry of the Fermi surface (see
Table I). This expression was previously derived by Yagi
et al. [29] for coherent interlayer transport for a quasi- 2
two-dimensional Fermi surface [30]. o7 cosd > 1

then the first term in (8) is dominant. Howeverpitané

equals a zero of the zeroth order Bessel function then P I I B R

p,,©)/p,, (0

at that angles,, will be a minimum and the interlayer 70 80 90 100 110
resistivity will be a maximum. Ifytang > 1, then the 8 (degrees)
zeros occur at angles, given by FIG. 2. Dependence of the interlayer resistance of a quasi-

1 one-dimensional system on the direction of the magnetic field
vy tang, = 7T<n - —) n=1,23,..). (9 for a range of magnetic fields.# is the angle between the
4 magnetic field and the least conducting direction, with the

Determination of these ang|es experimenta"y provideéiG'd in the same plane as the most CondUCting direction.

; ; : The parameter which defines the anisotropy of the intralayer
a value fory and thus information about the intralayer hopping y = 0.25 (cf. Table I). 7 is the intralayer scattering

Fermi su_rface. _ The _values of the Fermi sgrface ar€8me andw, is the frequency at which the electrons oscillate
of quasi-two-dimensional systems determined frombetween the chains when the field is perpendicular to the
AMRO are in good agreement with the Fermi sur-layers. Except very close to §0this figure is similar to the

face areas determined from the frequency of magnetgxperimental data offMTSF),CIO, in Ref. [8].
-oscillations [7].

Figure 2 shows the angular dependence of the inid case the length scale associated with oscillations per-
terlayer resistivity p,, = 1/0,, for parameter values pendicular to the chains iR = 21,/(evrBcosf) [31].
relevant to(TMTSF),CIO4. The results are similar to the At this length scale the phase difference between the wave
experimental results in Ref. [8] and the results of numerifunction of adjacent layers i A(R) = eBSindcR =
cal integration of Chambers formula for coherent transporty tanf. Naively, we might expect maximum resistivity
(3) except near 90 For coherent transport there is a smallwhen this phase difference is an odd multiplemflead-
peak inp..(#) atd = 90°. This is due to the existence of ing to a condition different from (9). However, one must
closed orbits on the Fermi surface when the field lies closéake into account averaging of the electron position over
to the plane of the layers [18]. For incoherent transporthe perpendicular direction.
these orbits do not exist and so the associated magnetore-Given we have shown that the existence of a three-
sistance is not present. Hence, except close to @@  dimensional Fermi surface is not necessary to produce the
Danner oscillations can be explained equally well in termsyamaji oscillations we consider an alternative test for co-
of incoherent transport. Hence, contrary to the claims ofherent transport for quasi-two-dimensional systems. De-
Ref. [9], the observation of Danner oscillations is not necHinitive evidence for the existence of a three-dimensional
essarily evidence for the existence of a three-dimensiondermi surface, such as that shown in Fig. 1(a), is the ob-
Fermi surface. Similarly, the suppression of the Danneservation of a beat frequency in de Haas-van Alphen and
oscillations by the introduction of a small component of Shubnikov—de Haas oscillations. The frequency of these
the magnetic field in thé direction, as is observed in oscillations is determined by extremal areas of the Fermi
(TMTSF),PF; at pressures of about 10 kbar [9], does notsurface [7]. For the Fermi surface shown in Fig. 1(a)
necessarily imply that the field is destroying the threethere are two extremal areas, corresponding to “neck” and
dimensional Fermi surface. “belly” orbits. The small difference between the two ar-

It is the averaging of the phase factor over the spatiakas leads to a beating of the corresponding frequencies
integral in (7) that gives rise to the Yamaji and Danner ef-with a frequency proportional to./Er [7]. Such beat
fects. The length scale associated with the magnetic fieltfequencies have been observed ga(BEDT-TTF),l5,
for the quasi-2d system is the cyclotron lenggthwhich at  8-(BEDT-TTF),IBr; [7], a-(BETS),KHg(SCN), at pres-
the Fermi energy i® = hikr/(eBcosf). For the quasi- sures above 4 kbar [32], and,8uQ; [33]. In the former
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it was used to establish that/Er = 1/175 [7]. How- Rev. B 55, 8654 (1997); I.J. Lee and M.J. Naughton,
ever, in many other quasi-two-dimensional organics no  Phys. Rev. B67, 7423 (1998).

beat frequency is observed [7]. This could be becausBS3] K. Yamaji, J. Phys. Soc. Jpb8, 1520 (1989).

the interlayer transport is incoherent or because the intef}4] This has been considered as a quasi-1D Lebed resonance:
layer hoppingt. is so small that the beat frequency can- M.V. Kartsovniket al.,J. Phys. | (France3, 1187 (1.993);

not be resolved experimentally. Far(BEDT-TTF),l5 Yl' “:je ||Et alo'll J'S'.Dhﬁs' SOC'thnGS' 6;‘ (é§§4)’9§éJ'

the absence of beating has been used to establish the upper Blundell and J. Singleton, Phys. Rev.3, 5 (1996).

. . However, these semiclassical theories are inconsistent
boundz./Er < 1/3000 [7,34]. This implies a conduc- with the violation of Kohler’s rule in these materials [R. H.

tivity anisotropyo.. /oy ~ (t./Er)* < 1077. However, McKenzieet al., Phys. Rev. B57, 11 854 (1998)].

the observed anisotropy in thRe(BEDT-TTF),X materials  [15] M. V. Kartsovniket al.,J. Phys. | (France}, 89 (1991).

is about10~3 [35]. This large discrepancy suggests that[16] A.T. Zheleznyak and V.M. Yakovenko, cond-mat/
the interlayer transport is incoherent in these materials. 9802172.

We have also examined semiclassical transport mod47] Between pressures of 6 and 8.3 kbar the magnetoresis-
els [11] which give Lebed resonances and find that the  tance can be explained in terms of coherent transport [I. J.
resonances are still present for incoherent interlayer trans- _ Lee and M. J. Naughton (unpublished)].
port [26]. A much greater challenge than that consideregeg] N. Hanasaket al., Phys. Rev. B57, 1336 (1998).
here is to explain the angle-dependent magnetoresistan ] Previous estimates of and 7 in various organics (e.g.,
observed i TMTSF),PF, at pressures of about 10 kbar [7,8,34]) suggest these quantities may be comparable.

. . 20] Alternatively, incoherence may arise due to non-Fermi
[9,10]. In particular, the background magnetoresstancé ] liquid ef;\éct{.’ [|2’4]_ y an ! '

is smallest when the field is in the layers, the opposite 0f21] N. Kumar and A. M. Jayannavar, Phys. Rev4B, 5001
what one expects based on the simple Lorentz force argu- = (1992).

ments relevant to semiclassical magnetoresistance. [22] This is reasonable for many organic conductors because
We thank C.C. Agosta, P.W. Anderson, J. S. Brooks, of the thickness of the insulating anion layer71 A)

P. M. Chaikin, D. G. Clarke, G. M. Danner, S. Hill, A.H. which separates the conducting layers and the observation

MacDonald, and S. P. Strong for helpful discussions. of intrinsic Josephson type effects in the superconducting

state of k-(BEDT-TTF),CuNCS), [P.A. Mansky, P.M.
Chaikin, and R.C. Haddon, Phys. Rev. 8, 15929

(1994)].
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