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Incoherent Interlayer Transport and Angular-Dependent Magnetoresistance Oscillations
in Layered Metals
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The effect of incoherent interlayer transport on the interlayer resistance of a layered metal is
considered. We find that for both quasi-one-dimensional and quasi-two-dimensional Fermi liquids
the angular dependence of the magnetoresistance is essentially the same for coherent and incoherent
transport. Consequently, the existence of a three-dimensional Fermi surface isnot necessary to explain
the oscillations in the magnetoresistance that are seen in many organic conductors as the field direction
is varied. [S0031-9007(98)07660-1]
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One of the most fundamental concepts in solid st
physics is that in most metallic crystals the electron
conduction occurs through the coherent motion of el
trons in band states associated with well-defined wa
vectors [1]. There is currently a great deal of intere
in whether this concept is valid for interlayer transpo
in high-Tc superconductors [2,3], organic conductors [4
and layered manganite compounds with colossal mag
toresistance [5]. Incoherent transport means that the
tion from layer to layer is diffusive and band states and
Fermi velocity perpendicular to the layers cannot be d
fined. The Fermi surface is then not three-dimensio
and Boltzmann transport theory cannot describe the in
layer transport.

In organic conductors [6] large variations in the magn
toresistance are observed as the direction of the magn
field is varied and are referred to as angular-depend
magnetoresistance oscillations (AMRO) [7]. The
effects in quasi-one-dimensional systems are known
Danner [8], Lebed [9–11], and third angular effects [12
depending on whether the magnetic field is rotated
the a-c, b-c, or a-b plane, respectively. (Thea and
c axes are the most- and least-conducting directio
respectively). Oscillations in quasi-two-dimension
systems include the Yamaji [13] oscillations and t
anomalous AMRO in the low-temperature phase
a-sBEDT-TTFd2MHgsSCNd4fM ­ K, Rb, Tlg [7,14].

We focus on the Danner and Yamaji oscillations he
because their explanation in terms of a three-dimensio
Fermi surface has generally been accepted. The resist
perpendicular to the layers is a maximum when the field
rection is such that the electron velocity (perpendicular
the layers) averaged over its trajectories on the Fermi s
face is zero [8,15]. In contrast, it is not clear that coher
transport models can explain the angle-dependent ma
toresistance in the quasi-one-dimensionalsTMTSFd2PF6 at
pressures of about 10 kbar [4,9,10,16,17]. The main
sult of this Letter is that coherent interlayer transport
not necessaryto explain the Yamaji and Danner oscilla
tions. In contrast, the observation of beats in the magne
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oscillations of quasi-two-dimensional systems and a pe
in the magnetoresistance when the field is parallel to t
layers is evidence for a three-dimensional Fermi surfac
We now define precisely what we mean by coherent a
incoherent transport (see Fig. 1) and how to calculate t
associated conductivity.

Coherent interlayer transport.—A three-dimensional
dispersion relatione3Ds $kd can be defined where

e3Ds $kd ­ eskx , kyd 2 2tc cosskzcd , (1)

where tc is the interlayer hopping integral,c is the
layer separation, andeskx , kyd is the intralayer dispersion
relation, simple examples of which are given in Table
The electronic group velocity perpendicular to the laye
is

yz ­
1
h̄

≠e3Ds $kd
≠kz

­
2tcc

h̄
sinskzcd . (2)

kz
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ky
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FIG. 1. The pictures relevant to coherent and incohere
interlayer transport in a quasi-two-dimensional system. (a)
the transport between layers is coherent then one can defin
three-dimensional Fermi surface which is a warped cylinde
The interlayer conductivity is determined by correlations o
the electronic group velocity perpendicular to the layers. [Se
Eq. (3).] (b) For the incoherent interlayer transport considere
here a Fermi surface is only defined within the layers and th
interlayer conductivity is determined by the interlayer tunnelin
rate. [See Eq. (5).]
© 1998 The American Physical Society
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TABLE I. Different physical quantities relevant to angular-dependent magnetoresista
oscillations for the cases where intralayer Fermi surface is quasi-one-dimensional (open)
quasi-two-dimensional (closed). In a magnetic field the electrons oscillate on the Fermi sur
with frequencyv0 when the fieldB is perpendicular to the layers. The geometric factorg
determines the field directions at which the interlayer resistivity is a maximum [see Eq. (9
The magnitude of the Fermi wave vector is denotedkF . For the quasi-one-dimensional case,
yF is the Fermi velocity,tb the interchain hopping integral, andb the interchain distance. For
the quasi-two-dimensional case,mp is the effective mass.

Quantity Symbol Quasi-1D Quasi-2D

Intralayer
dispersion eskx , kyd h̄yFsjkx j 2 kFd 2 2tb cosskybd h̄2

2mp
sk2

x 1 k2
y d

Oscillation
frequency

v0
eyFbB

h̄
eB
mp

Geometric
factor

g 2tbc
h̄yF

kFc

Zero-field interlayer
conductivity s0

zz
4e2ct2

c t

p h̄3byF

2e2mpct2
c t

p h̄4
tic

ent

o

],

a-

e
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ir
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The interlayer conductivity involves correlations of thi
velocity and is given by Chambers formula [1]

szz ­
e2t

4p3

Z
d3kyzs $kdyzs $kddsssEF 2 e3Ds $kdddd , (3)

whereEF is the Fermi energy,t the scattering time, and
yzs $kd is the velocity averaged over a trajectory on th
Fermi surface ending at$k:

yzs $kd ­
1
t

Z 0

2`

dt expstytdyzsss $kstdddd . (4)

If the magnetic field is tilted sufficiently far away from the
layers thattcc tanu ø h̄yF , whereu is the angle between
the field and the normal to the layers, then to lowest ord
in tc the expression (3) can be evaluated analytically. Th
means neglecting the effects of closed orbits that beco
important when the field direction is close to the laye
[18]. After long calculations the results for both the quas
one-dimensional and quasi-two-dimensional cases can
written in the form (8) given below.

Incoherent interlayer transport.—If the intralayer scat-
tering rate1yt is much larger than the interlayer hop
ping integraltc [19] then the interlayer transport will be
incoherent [20] in the sense that successive interlayer t
neling events are uncorrelated [21]. The interlayer co
ductivity is then proportional to the tunneling rate betwee
just two adjacent layers (see Fig. 1). This rate can be c
culated using standard formalisms for tunneling in meta
insulator-metal junctions [22,23] which assume that th
intralayer momentum is conserved. The result (for tem
peratures much less than the Fermi energy andh̄ ­ 1) is

szz ­
e2t2

cc

pL2

Z
d2rad2rbA1s$ra, $rb , EFdA2s$rb , $ra, EFd ,

(5)

whereL2 is the area of the layer andAjs$ra, $rb , Ed s j ­
1, 2d are the spectral functions for layers 1 and 2. It wi
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be seen below that in the presence of a tilted magne
field A1 andA2 are not identical. The zero-field limit of
this expression has been used in treatments of incoher
interlayer transport in the cuprate superconductors [24].

The magnetic field $B ­ sBx , 0, Bzd ­
sB sinu, 0, B cosud is described by a vector potential
$A, which in the Landau gauge has only one nonzer
component, Ay ­ Bzx 2 Bxz. The Hamiltonian for
layer 1 sz ­ 0d is then the same as that for a single
layer in a perpendicular fieldB cosu. The Hamiltonian
for layer 2 sz ­ cd is the same as for layer 1 except
x is replaced with sx 2 c tanud. This displacement
actually corresponds to a gauge transformation [25
$A ! $A 2 =L whereLs$rd ­ B sinucy. Wave functions
transform according tocs$rd ! cs$rd expfieLs$rdg. The
Green’s functions in layers 1 and 2 are then related by

G2s$ra, $rbd ­ expfieLs$radgG1s$ra, $rbd expf2ieLs$rbdg .

(6)

Substituting this in (5) gives

szz ­
2e2t2

cc

p

Z
d2rjG1s$r , 0, EFdj2 cosseB sinucyd .

(7)
We have evaluated (7) for the simplest possible situ

tion, a Fermi liquid within each layer, with the dispersion
relations given in Table I. The complete details of th
calculations will be given elsewhere [26]. For the quas
two-dimensional case we followed a procedure similar t
that used by Hackenbroich and von Oppen [27] in the
study of magneto-oscillations in antidot lattices. In the
semiclassical approximation the Green’s function is writ
ten as a sum over classical trajectories from$ra to $rb. For
the quasi-one-dimensional case the quasiclassical Gree
function [28] was used.
4493
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In a tilted magnetic field the interlayer conductivity fo
bothcoherent and incoherent interlayer transport is

szzsud ­ s0
zz

"
J0sg tanud2

1 2
X̀
n­1

Jnsg tanud2

1 1 snv0t cosud2

#
, (8)

wheres0
zz is the zero-field conductivity,Jnsxd is thenth

order Bessel function,v0 is the oscillation frequency
associated with the magnetic field, andg is a constant
that depends on the geometry of the Fermi surface (s
Table I). This expression was previously derived by Ya
et al. [29] for coherent interlayer transport for a quas
two-dimensional Fermi surface [30]. Ifv0t cosu ¿ 1
then the first term in (8) is dominant. However, ifg tanu

equals a zero of the zeroth order Bessel function th
at that angleszz will be a minimum and the interlayer
resistivity will be a maximum. Ifg tanu ¿ 1, then the
zeros occur at anglesun given by

g tanun ­ p

µ
n 2

1
4

∂
sn ­ 1, 2, 3, . . .d . (9)

Determination of these angles experimentally provid
a value forg and thus information about the intralaye
Fermi surface. The values of the Fermi surface ar
of quasi-two-dimensional systems determined fro
AMRO are in good agreement with the Fermi su
face areas determined from the frequency of magne
-oscillations [7].

Figure 2 shows the angular dependence of the
terlayer resistivity rzz ; 1yszz for parameter values
relevant tosTMTSFd2ClO4. The results are similar to the
experimental results in Ref. [8] and the results of nume
cal integration of Chambers formula for coherent transpo
(3) except near 90±. For coherent transport there is a sma
peak inrzzsud at u ­ 90±. This is due to the existence o
closed orbits on the Fermi surface when the field lies clo
to the plane of the layers [18]. For incoherent transpo
these orbits do not exist and so the associated magnet
sistance is not present. Hence, except close to 90±, the
Danner oscillations can be explained equally well in term
of incoherent transport. Hence, contrary to the claims
Ref. [9], the observation of Danner oscillations is not ne
essarily evidence for the existence of a three-dimensio
Fermi surface. Similarly, the suppression of the Dann
oscillations by the introduction of a small component o
the magnetic field in theb direction, as is observed in
sTMTSFd2PF6 at pressures of about 10 kbar [9], does n
necessarily imply that the field is destroying the thre
dimensional Fermi surface.

It is the averaging of the phase factor over the spat
integral in (7) that gives rise to the Yamaji and Danner e
fects. The length scale associated with the magnetic fi
for the quasi-2d system is the cyclotron lengthR which at
the Fermi energy isR ­ h̄kFyseB cosud. For the quasi-
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FIG. 2. Dependence of the interlayer resistance of a qua
one-dimensional system on the direction of the magnetic fie
for a range of magnetic fields.u is the angle between the
magnetic field and the least conducting direction, with th
field in the same plane as the most conducting directio
The parameter which defines the anisotropy of the intralay
hoppingg ­ 0.25 (cf. Table I). t is the intralayer scattering
time andv0 is the frequency at which the electrons oscillat
between the chains when the field is perpendicular to th
layers. Except very close to 90±, this figure is similar to the
experimental data onsTMTSFd2ClO4 in Ref. [8].

1d case the length scale associated with oscillations p
pendicular to the chains isR ­ 2tbyseyFB cosud [31].
At this length scale the phase difference between the wa
function of adjacent layers iseLsRd ­ eB sinucR ­
g tanu. Naively, we might expect maximum resistivity
when this phase difference is an odd multiple ofp, lead-
ing to a condition different from (9). However, one mus
take into account averaging of the electron position ov
the perpendicular direction.

Given we have shown that the existence of a thre
dimensional Fermi surface is not necessary to produce
Yamaji oscillations we consider an alternative test for co
herent transport for quasi-two-dimensional systems. D
finitive evidence for the existence of a three-dimension
Fermi surface, such as that shown in Fig. 1(a), is the o
servation of a beat frequency in de Haas-van Alphen a
Shubnikov–de Haas oscillations. The frequency of the
oscillations is determined by extremal areas of the Ferm
surface [7]. For the Fermi surface shown in Fig. 1(a
there are two extremal areas, corresponding to “neck” a
“belly” orbits. The small difference between the two ar
eas leads to a beating of the corresponding frequenc
with a frequency proportional totcyEF [7]. Such beat
frequencies have been observed inb-sBEDT-TTFd2I3,
b-sBEDT-TTFd2IBr2 [7], a-sBETSd2KHgsSCNd4 at pres-
sures above 4 kbar [32], and Sr2RuO4 [33]. In the former
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it was used to establish thattcyEF . 1y175 [7]. How-
ever, in many other quasi-two-dimensional organics n
beat frequency is observed [7]. This could be becau
the interlayer transport is incoherent or because the int
layer hoppingtc is so small that the beat frequency can
not be resolved experimentally. Fork-sBEDT-TTFd2I3
the absence of beating has been used to establish the u
bound tcyEF , 1y3000 [7,34]. This implies a conduc-
tivity anisotropyszzysxx , stcyEFd2 , 1027. However,
the observed anisotropy in thek-sBEDT-TTFd2X materials
is about1023 [35]. This large discrepancy suggests tha
the interlayer transport is incoherent in these materials.

We have also examined semiclassical transport mo
els [11] which give Lebed resonances and find that th
resonances are still present for incoherent interlayer tra
port [26]. A much greater challenge than that consider
here is to explain the angle-dependent magnetoresista
observed insTMTSFd2PF6 at pressures of about 10 kba
[9,10]. In particular, the background magnetoresistan
is smallest when the field is in the layers, the opposite
what one expects based on the simple Lorentz force ar
ments relevant to semiclassical magnetoresistance.
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