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Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials
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The transport of photoinjected charges in disordered organic films is often interpreted using a
formula based on a Gaussian disorder model (GDM) that neglects spatial correlations due to charge-
dipole interactions, even though such correlations have recently been shown to explain the universal
electric field dependence observed in these systems. Based on extensive computer simulations of a 3D
disorder model that includes such correlations, we present a new formula for analyzing experiments that
accurately describes transport in these materials. [S0031-9007(98)07626-1]
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Recent efforts by a number of workers [1–7] hav
increased our understanding of nearly universal featu
of photoinjected charge transport in many disorder
organic materials, including molecularly doped polyme
[8,9], low molecular weight organic glasses [10,11], an
certain polyconjugated polymers [12,13]. In particular,
is now recognized that the Poole-Frenkel (PF) depende
[8–12],

m ~ expsg
p

E d , (1)

of the drift mobilitym on electric fieldE observed in these
materials results from slowly varying spatial fluctuation
in the potential energy of a charge migrating through th
material. Such energetic fluctuations can arise [1] from
random distribution of molecules in the medium posses
ing permanent electric dipole moments; a carrier’s inte
action with the latter provides a significant contributio
Ud to the total site energy. More importantly, the energ
correlation function [1,3]

Csrd ­ kUds0dUdsrdl , s2
dayr (2)

decays very slowly with intersite separationr. Here,
sd ­ kU2

dl1y2 is the rms width of the dipolar energetic
disorder, anda is a minimal charge-dipole separation. I
a previous Letter [3], an analytical result equivalent
(1) was derived for carriers diffusing along one spati
dimension through a medium with correlations as in (2
This same behavior was also observed in 3D char
transport simulations [4]. Moreover, very recent studie
on both 1D and 3D systems suggest that this mechan
producing PF behavior is stable under additional sourc
of disorder less correlated than those that arise fro
dipoles [5,6], and indicate that the PF factorg in (1)
is insensitive to all but the dipolar component of th
disorder.

These recent advances raise questions regarding
way materials have been experimentally characterized
the past. Most measurements in the last decade h
been interpreted using an uncorrelated Gaussian disor
model, developed and extensively studied by Bässler a
co-workers prior to the recent recognition of the impo
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tance of spatial correlations [14]. In the GDM, transpo
occurs through hops among localized states character
by a Gaussian distribution of site energies, with hoppi
rates obeying an asymmetric detailed balance relation [1
Numerical simulations capture well many features of e
periment; its Gaussian density of states (DOS) leads
a temperature dependence lnm ~ 2sT0yT d2 routinely ob-
served, and the GDM reproduces low temperature tran
tions between dispersive and nondispersive photocurre
However, site energies are distributedindependently,with
no correlations occurring over any length scale. Con
quently, and consistent with recent work, the field depe
dence of the GDM agrees with (1) only over a very narro
range at high fields (E . 3 3 105 Vycm) [15]. Nonethe-
less, the nondispersive mobility within this limited rang
has often been empirically characterized in a form

m ­ m0 expf2s2ŝy3d2 1 Csŝ2 2 S2d
p

E g (3)

widely used in recent years to analyze experiment.
Eq. (3),C is a constant determined from simulation,ŝ ­
sykT is the width of the DOS relative tokT , and S

describes the spatial disorder. In analyzing data it
usually assumed thatm0, s, andS completely characterize
any given material, withs representing the width of the
DOS due to all sources of energetic disorder. Values
these three parameters have been obtained and tabu
for many organic solids.

Although Eq. (3) does describe time-of-flight data, pr
vided m0, s, andS are viewed simply as fitting parame
ters, recent theoretical work casts doubt on whether thes

extracted from experiment using (3) represents the ac
width of the full DOS. In the 1D analysis of Ref. [3]
e.g., a particle moving in a correlated random potential
width s is predicted to yield

m ­ m0 expf2ŝ2 1 2ŝ

q
eaEykT g . (4)

Use of (4) would lead to a different estimate ofs if
applied to data, and to a different dependence of the
factor on s and T . The use of Eq. (4) for analysis o
experimental data has been hindered by the reason
© 1998 The American Physical Society
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doubt about its applicability to 3D case. Indeed, in 1
case the transport path is always the same, while in
case it is not fixed and, moreover, there is a possibil
that the dominant transport paths may change withE and
T in a way that would alter the essential field dependen

Thus motivated, we have performed extensive nume
cal simulations on a simple 3Dcorrelateddisorder model
(CDM). The CDM shares some features with the GDM
However, important differences exist that critically affec
the interpretation of experiment. Moreover, in contra
to the GDM, essential transport properties of the CD
are insensitive to the way detailed balance is included
the hopping rate; the same PF field dependence occ
with symmetric (“small polaronlike”) rates or asymmet
ric (“Miller-Abrahams”) rates [16]. These and other re
sults of the simulation verify essential predictions of 1
analyses and quantify the relation between basic featu
of measured mobilities and microscopic parameters th
govern them. On the basis of these simulations, detai
below, we propose the following empirical relation

m ­ m0 exp

"
2

√
3ŝd

5

!2

1 C0

√
ŝ

3y2
d 2 G

!s
eaE
sd

#
,

(5)

describing nondispersive mobility in correlated (e.g
dipolar) media, whereC0 ­ 0.78, and G ­ 2. In (5),
the parameterm0 may have additional temperature de
pendence due to other less correlated sources of ene
disorder or polaron effects. Experience with the GDM
suggests thatG characterizes geometrical disorder an
thus should depend upon transport site concentration.
now describe our numerical studies leading to Eq. (5), t
main result of the present Letter.

The CDM treats carrier hopping among sites arrang
on a cubic lattice of cell spacinga, but differs from
the GDM in the way site energies are determined.
the current dipolar CDM, an independently and random
oriented dipole of momentp is placed at each lattice site
and the energy of a carrier at a given site is then the s
(calculated using the Ewald method [17])

Um ­ 2
X

nfim

e $pn ? s$rn 2 $rmd
´j$rn 2 $rmj3

(6)

of its interaction with dipoles at all sites except it
own. The site energy distribution for this model ha
been extensively studied, and shown to be approximat
Gaussian, with a width [18,19]

sd ­ 2.35epy´a2. (7)

However, unlike the GDM, the many long-range contr
butions comprising (6) introduce correlations in the di
tribution of site energies, making this a correlated versi
of the GDM with the particular kind of correlations de
scribed by (2).

Our numerical implementation of the dipolar CDM
starts with a simple cubic lattice of50 3 50 3 50 sites,
D
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from which an extended transport layer is formed by per
odic continuation. To determine the mobility, we have
performed Monte Carlo simulations using both Miller-
Abrahams and small-polaron-like hopping rates that fa
off with distance as exps22ard. We take2aa ­ 10,
as in Ref. [14]. For each field strength the mobility
m ­ yyE is calculated from the average carrier veloc
ity y. Except where noted, data presented below a
evaluated with transport layer thicknessL ­ 2000 lattice
planes (sufficient to obtain a nondispersive equilibrium
mobility). To compare with the GDM, we have followed
the same procedure with uncorrelated Gaussian site en
gies. In Fig. 1 we present field-dependent mobilities fo
the CDM using Miller-Abrahams rates for a wide range
of ŝd , along with a curve showing typical behavior of
the GDM. With Miller-Abrahams hopping rates [16], the
rate for hops down in energy is independent of energ
mismatch, causing the drift velocity to saturate and giv
ing a mobility that reaches a maximum before decreasin
as E21 at high fields (E * eays). In Figs. 2 and 3 we
present data showing the effect of different hopping rate
on the GDM and the CDM, respectively.

The main difference between the two models is th
range of fields over which PF behavior occurs. In th
CDM, which has the proper correlations, PF behavior oc
curs down to low fields and persists over a wide fiel
range. In the GDM, the mobility at low fields is almost
parabolic when plotted versus

p
E (see Fig. 1). This sug-

gests, as confirmed in Fig. 2, that at low-to-intermediat
fields the GDM is better described by a lnm ~ EykT law,
rather than by (1). Indeed, such a linear field dependen
is analytically exact for one-dimensional models with
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FIG. 1. Field-dependent mobility of the CDM for different
values ofŝd (from top curve downward). The lowest curve is
the mobility for the GDM forŝ ­ 5.10. If sd ­ 0.1 eV and
a ­ 10 Å, theneaEysd ø 1 for E ­ 106 Vycm.
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FIG. 2. Field-dependent mobility for the GDM for̂s ­ 4.17
and two different types of hopping rate: Miller-Abraham
(squares) and symmetric (diamonds).

uncorrelated Gaussian disorder. Moreover, a nearly line
field dependence is also consistent with simple scaling
guments. The mobility in energetically uncorrelated m
dia is limited by the slow rate of carrier release from dee
sites, rates that would exponentially depend on the (line
decrease in energy difference between neighboring s
along the field. Indeed, the limited PF behavior of th
standard GDM arises from a crossover between the nea
linear E dependence of lnm at low fields and theE21

dependence ofm at high fields, a mechanism that criti-
cally requires Miller-Abrahams rates. This viewpoin
is supported by the top curve in Fig. 2, which show
no PF dependence in the GDM when symmetric rat
are used.

In the CDM, by contrast, we note a PF region at low
to-intermediate fields (see Fig. 3), which, aside from
slight vertical shift, is the same for both rates. Thu
the PF behavior commonly observed in dipolar materia
can be considered a robust feature, associated m
with long-range fluctuations of the potential characterist
of the medium and less upon the details of electro
phonon coupling constants or of particular hopping rat
they produce. This viewpoint was expressed in earl
analytical studies for the 1D version of this model, whe
it was argued that the relatively low energy differenc
between neighboring sites in a correlated potential rend
the particular form of hopping rate unimportant [3,20].

To characterize the CDM empirically, we have fit th
simulation data to a trial function that generalizes th
GDM and 1D results, Eqs. (3) and (4). Specifically, w
assumed that the dependence ofm on E and T , for
moderate fields, has the form
4474
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FIG. 3. Field dependent mobility for the CDM for̂sd ­ 5.1
and two different types of hopping rate: Miller-Abraham
(squares) and symmetric (diamonds).

m ­ m0 expf2A1ŝn 1 A2sŝm 2 A3d
q

eaEys g , (8)

with constantsn, m, A1, A2, A3 to be determined. In the
standard GDM,n ­ m ­ 2, and in the 1D treatment,
n ­ 2, m ­ 3y2. The coefficient A1 was determined
from the temperature dependence ofm at zero field,
and A2 and A3 from the temperature dependence of t
slope of lnm versus

p
E in the PF region. To find

the exponentsn and m, a linear fit was made of the
PF region for simulation data generated usingL ­ 104

lattice planes, and the fit parameters used with (8)
calculate a correlation coefficientR for different values
of n andm. Maximization ofR2 gives the most probable
valuesn ø 1.8 and m ø 1.55. These are close enoug
to those in the 1D analysis (4) that we may reasona
take n ­ 2 and m ­ 1.5 (small differences inn and m
may arise from non-Gaussian deviations of the site ene
distribution). For these values ofn and m we then find
A1 ­ 0.35 ø s3y5d2, A2 ­ 0.78, andA3 ­ 1.97, leading
to our proposed Eq. (5). The main difference with the 1
model is the nonzero value ofA3, i.e.,G.

To demonstrate use of (5), we present here a li
ited comparison with experiment, focusing on the organ
glass NPPDA [10]. This particular material was ch
sen because of its high dipole moment of3.02 D, rela-
tively nondispersive charge transport [10], and the clo
resemblance between a material with 100% concen
tion of transport sites and our current studies of sp
tially ordered dipolar lattices. Using Eq. (5) to analyz
data on NPPDA digitized from Ref. [10], we find from
the temperature dependence of the PF factor the va
sd ­ 0.095 eV, in reasonable agreement with the valu
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sd ­ 0.084 eV found using Eq. (7). As we have men
tioned previously, this slope should depend only on th
dipole component of disorder. These values are obtain
assuminga ­ 9.2 Å, calculated using a reasonable mas
densityr ­ 1.1 gycm3. On the other hand, the extrapo
lated zero field mobility for the same data, assumin
only dipolar disorder, gives using (5) a different width
sd ­ 0.109 eV. The increase over our previous value i
clearly a measure of the other sources of energetic dis
der (e.g., Van der Waals [10,11]) present in the syste
sources that affect the zero-field mobility but not the P
factor. Assuming only a Van der Waals contribution, w
expect, based upon the GDM, that the prefactorm0 in
Eq. (5) is proportional to expf2s2ŝvdwy3d2g. Using this
givessydw ­ 0.04 eV.

The only significant difference between simulation an
experimental data for NPPDA is the difference inG;
the experimental value is4.55 rather than the proposed
G ­ 2. The coefficientG is analogous to the positional
disorder parameterS2 of the GDM [14]. NPPDA glass
is a material with randomly located molecules, while ou
present calculations on the CDM have included no explic
positional disorder in the transport sites. It is therefo
reasonable thatG for the glass would be greater than fo
a regular lattice. The small difference between calculat
and experimental values ofsd may also be associated
with this neglect of positional disorder, sincesd is greater
for randomly distributed dipoles than for a regular lattic
of the same density. Investigations into the effects
explicit positional disorder on the CDM will be reported
elsewhere.

In summary, we have (i) presented a comparison of t
transport properties of the (older) GDM and a (new) CDM
expected to more closely describe transport in disorder
organic polar materials; (ii) shown that Poole-Frenkel fie
dependence ofm is a universal feature of the CDM,
independent of the kind of hopping rate, unlike in th
case of the GDM; and (iii) proposed, on the basis o
numerical and analytical studies, an explicit operation
prescription (5) for the analysis of mobility measurement
We hope that the present analysis will encourage furth
experimental studies designed to critically examine Eq. (
through the systematic variation of polarity of the transpo
medium.
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