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Extending Linear Response: Inferences from Electron-Ion Structure Factors
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Linear response methods applied to electron systems often display a level of accuracy which is n
table when viewed in terms of the strengths of perturbing interactions. Neglect of higher response term
is, in fact, justifiable in many cases, and it can be shown to stem from an intrinsic interference betwee
atomic and electronic length scales. For fluid metallic systems it can be further shown that electron
ion structure (increasingly accessible experimentally) can be understood from an application oflinear
responsein the electron system, combined with hard-sphere-like correlation for the ionic component
[S0031-9007(98)07697-2]
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The nearly free-electron (NFE) approximation underlie
much of our understanding of the properties of condens
matter, in particular, simple metals. Whileab initio simu-
lation techniques have long superseded the NFE appro
mation in quantitative accuracy, it remains an importa
source of insight and of simplifying concepts to elucidat
qualitative trends across different materials. It also pr
vides guidance in situations that remain out of the reach
computationalab initio techniques [1]. For many years,
the densityrinds $kd of an initially uniform electron gas in-
duced by an embedded pseudopotentialypss $kd has been
successfully treated at linear order even thoughypss $kd is
not necessarily a small perturbation. The linear approa
is a key component in many applications of the NFE a
proximation, examples of which include pseudopotenti
calculations of the free energy of simple metals, the
relative structural stability (and corresponding cohesiv
properties), and also the determination of effective ion-io
potentials [2–5]. The accuracy of the latter is a particu
larly striking example of the efficacy of linear response
while the energy scale of unscreened ions at typical se
rations is of the order of Ry, linear screening leads
ion-ion potentials fully capable of describing observe
structural phase transitions and implying consequent e
ergy scales of the order of mRy.

Here we address the evident success of the linear
proximation which to date remains incompletely resolve
We show that the implied neglect of higher order respon
is supported by physical arguments. In particular, w
explicitly demonstrate that the nonlinear terms are sm
for specific cases, and give arguments to suggest that
may be expected to hold more generally, the main exce
tion being hydrogen. As an application of the underlyin
argument, but one with experimental consequence
we demonstrate that simple linear-response theo
augmented by a hard-sphere approximation for ion
structure leads to a quantitatively accurate analytic
representation of electron-ion structure factorsSeiskd in
liquid metals, these now in principle accessible throug
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recent advances in both neutron and x-ray scatter
techniques. Another route to effective electron-ion inte
actions therefore opens, but here through the fluid state

To begin, consider the response of the interacting ele
tron gas to a single ion, where the electron-ion intera
tion is modeled by apseudopotential, taken as a simple
local one-parameter empty-core form [6]; i.e.,ypsskd ­
2s4pe2yk2d cosskRcd, where theatomic core radiusRc

or equivalently the zero crossingk0 ­ py2Rc is typi-
cally fixed by an atomic property such as the ionizatio
energy (or by a measurable crystalline metallic proper
such as the Fermi surface [7]). The pseudopotential lea
to a local electron density inhomogeneity representab
by rindskd. There are two routes to represent this induc
density, the first (essentially exact) from solving the fam
iar self-consistent Kohn-Sham equations within the loc
density approximation (LDA) [8], and the second from
the standard expansion of the response in powers of
perturbing (pseudo) potential, i.e.,

rindskd ­ x1skdypsskd 1
X
$k1

X
$k2

x2sk, k1, k2d

3 ypssk1dypssk2d 1 . . . . (1)

Here the response functionsxnsk1, . . .d are properties of
the homogeneousinteracting electron gas, the first bein
the well known linear-response function [5]. The secon
is given by

x2sk1, k2, k3d ­ fx0
2 sk1, k2, k3d 1

1
2 m2sk1, k2, k3dx0

1 sk1d

3 x0
1 sk2dx0

1 sk3dgyesk1desk2desk3d , (2)

where eskd is the usual dielectric function: eskd ­
1 2 f4pe2yk2 1 m1skdgx0

1 skd. In (2) thex0
nsk1, . . .d are

the noninteracting response functions (known to seco
order [9]) and themnsk1, . . . , ki11d are the homogeneous
limits of the nth functional derivatives of the exchange
correlation potential with respect to density. In particula
m1skd is related to the spin-averaged local field correctio
© 1998 The American Physical Society
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(LFC), Gskd ­ sk2y4pe2dm1skd. Figure 1 compares the
full nonlinear LDA response and Eq. (1), taken to secon
order; note that Eq. (1) appears to capture most of t
complete response with considerable accuracy.

Interestingly enough, the combined effects of exchan
and correlation partially cancel between first and seco
order. In addition, the second order response contributi
is of the same scale as the effect of local field correctio
at first order [10]. This has important implications fo
the widespread application of linear response theory
the derivation of effective ion-ion potentials in (simple
metals;the neglect of higher order response results in a
overestimate of the role of exchange and correlation.The
accuracy of the second order response depicted in Fig
also implies that the use of more accurate LFC’s coul
in some cases, lead to an improvement in accuracy ove
full Kohn-Sham LDA calculation. Although much effort
has gone into obtaining LFC’s beyond thesk ­ 0d LDA
limit at linear order [11], the second order LFC, directly
related tom2sk1, k2, k3d, to date remains unknown beyond
the LDA form. However, the second order electron LFC
is the direct analog of the third order direct correlatio
function cs3dsk1, k2, k3d of classical liquid-state theory for
which various successful approximations based on low
order correlation functions have been derived [12]. (Sin
the electron liquids are more weakly correlated than the
classical counterparts [13], it might now be suggested th

FIG. 1. A comparison of full nonlinear LDA response
frskd 2 rs1dskdg (solid line) to second order LDA re-
sponse (dashed line) for an empty core pseudopoten
with Rc ­ 1.5a0 embedded in an electron gas with densit
parameterrs ­ 3a0. For the scale, compare this to the ful
response with the limitrsk ! 0d ­ 1. The higher order
response is of the order of a few percent of the full respons
In turn, the second order response captures almost all
nonlinear response. (The small difference atk ! 0 is a
numerical artifact stemming from the use of a large but fini
real-space cutoff radius in the Kohn-Sham procedure.)
the inset is plotted the maximum of the 2nd order response
Rcyrs for rs ­ 2a0 (dotted), rs ­ 3a0 (solid), andrs ­ 5a0
(dashed). Note especially the minimum atRcyrs ­ 0.41
which corresponds tok0 ­ 2kF . It is reduced by an order of
magnitude from the value atRc ­ 0 (hydrogen) and is traced
to an interference between atomic and electronic length scale
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application of these classically inspired approaches to t
electronic case would be useful.)

A central question now arises, one whose answer
important to the proposition we make on electron-io
structure: Why is thenonlinear response contribution
depicted in Fig. 1 evidently so small? An immediate
possibility is that higher order terms in Eq. (1) are large
but actually vary in sign and therefore mutually cance
order by order. But another is that the higher orde
terms are eachindividually very small. The success
at the level of second order response evidently implie
that the latter is the case:We find that the response
series converges very rapidly.This might be physically
anticipated since a larger atomic parameterRc implies a
smaller perturbing potential, and the nonlinear respon
shows a clear decline with increasingRc. As expected,
the second order response is found to be largest
Rc ­ 0 (hydrogen), but asRc increases from zero a
noticeable secondary minimum occurs when the inver
atomic lengthk0 is equal to2kF . For the cases plotted
in Fig. 1, the secondary minimum is reduced by a
entireorder of magnitudewhen compared with the value
calculated for hydrogen, and is typically a factor of 3
lower than the secondary maximum at largerRc. This
minimum is attributed to the following: The second
order response function,x2sk, k1, k2d, itself peaks when
the summed arguments in (1) are close to2kF [10].
Accordingly, if the pseudopotential zero crossingk0 is
near the response peaks at2kF , a maximal cancellation
or maximal destructive interference of the atomic an
electronic length scalesoccurs, leading to a minimum in
second order response. We may now postulate that
the simple metals a similar interference effect occurs f
the higher order terms of (1).

Typically the value ofk0y2kF lies between 0.75 and 1,
and is therefore very close to the secondary minimum
the nonlinear response. Note that the ratio of the atom
and electronic length scales is set primarily by the volum
energy terms in the total ground state energy, and
almost independent of structure [5]. This clarifies in larg
part why the ubiquitous linear-response approximatio
performs so remarkably well for many materials an
why the higher order terms are indeed small. The NF
approximation has often been justified in a context fa
wider than linear response alone by appeal to the fact th
for a crystalline solid, the structure dependent reciproc
lattice vectors are typically near the pseudopotential ze
crossing k0 with the inference that the net scattering
is small [1]. This important effect stems from the
confluence of anatomicand astructural length scale; the
interference effect we discuss is complementary, but ha
different physical origin, namely, an interference betwee
intrinsic atomic and electronic length scales. Once aga
the clear exception is the singular case of a point-char
fypsskd , 4pe2yk2g, i.e., the case of hydrogen, which
has no well-defined core-length scalek0, no oscillations
4457



VOLUME 81, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 16 NOVEMBER 1998

here

re

e

s

.

by
an
ds
o

but
n
of

n-
on
if-
en-
g
].
ree
or
in the potential, and thus no interference effect in th
higher order terms. In sharp contrast to other system
nonlinear response terms are large term by term. In fa
the response series may not even formally converge, a
great care must be taken when applying concepts deriv
from linear-response theory to hydrogen (it is not a simp
material).

As noted, the continued accuracy of linear response
important to an interpretation now proposed for electro
ion structure factorsSeiskd in metallic fluids, these being
defined ask-space density-density correlation function
[3]. Invoking the adiabatic approximation they can alway
be rewritten in terms of the ion-ion structure factors a
follows:

Seiskd ­
nskd
p

Z
Siiskd , (3)

which defines a new dimensionless objectnskd. Electron-
ion correlations can therefore be described by convolvi
the pseudoelectron density (or pseudoatom)nskd with the
ionic correlations. The accuracy of linear response for t
pseudopotential in an electron gas implies that it shou
now also be an excellent approximation for a determinatio
of the pseudoatom density. For simple liquid metalsSiiskd
is very well approximated by the Percus-Yevick analyti
form for hard spheres by specifying a single parameter, t
packing fractionh, which is close toh , 0.46 for most
simple metals near melting [14]. Using this in (3), we
compare our approach in Fig. 2 to thefull ab initio Car-
Parrinello [15] calculations of de Wijset al. [16]. The
correspondence is striking, especially when we note th
the parametersh andRc area priori set by other physical
properties (no fitting is necessary).

Besides a semiquantitative description of electro
ion structure factors, this linear response theory no
provides an important qualitative insight into the form o
the electron-ion structure factors [17]. The pseudoato
density nskd is typically largest for smallk and rapidly
declines for largerk, while the near classical ion-ion
structure factorSiiskd follows an inverse behavior; it is
small for smallk. Together with the product form (3) this
implies that the shape of the electron-ion structure fact
Seiskd is determined primarily by the position of thezero
crossingk̄0 of nskd with respect to thefirst maximumkp

of Siiskd. If k̄0 , kp , then Siiskd selects (or filters) the
negative part ofnskd and Seiskd takes a form similar to
that of Mg [Fig. 2(a)]. Conversely, if̄k0 . kp , then the
ion-ion structure factor selects (or filters) the positive pa
of nskd, and again,Seiskd takes a form similar to that of
Bi [Fig. 2(c)]. Sincex1skd is positive definite, the zero
crossing in linear response occurs atk0. The large slope
of nskd near the zero crossing then implies that nonline
corrections must have a small effect on the location of th
zero crossing, and together with the expected accuracy
linear response this implies thatk̄0 , k0. As mentioned
earlier, for most metals,k0 is just a little less than2kF , and
4458
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FIG. 2. The electron-ion structure factorSeiskd and related
electron-ion correlation functiongeisrd for Mg and Bi: Car-
Parrinello results of de Wijset al. [16] (solid line) vs the
simple linear-response approach augmented by a hard-sp
approximation (dashed line). Panel (a) showsSeiskd and panel
(b) showsgeisrd for liquid Mg. Panel (c) showsSeiskd and
panel (d) showsgeisrd for liquid Bi. For Mg the parameters
(taken from the literature) arers ­ 2.66a0 and Rc ­ 1.31a0,
and for Bi the parameters (taken from the literature) a
rs ­ 2.25a0 and Rc ­ 1.15a0. Both have a packing fraction
h ­ 0.46 [note that for thegeisrd the region inside the core
radius is not physically significant].

the latter’s ratio tokp is well known: for small valence
sZ # 2d, 2kF , kp; for large valencesZ $ 3d, 2kF . kp

[18]. This accounts in a straightforward way for th
two separate forms found by de Wijset al. [16]: For
Mg, k̄0 , kp sZ ­ 2d, which belongs to thelow-valence
classof electron-ion structure factors. For Bi,k̄0 . kp

sZ ­ 5d, and we may refer to this as thehigh-valence
classof electron-ion structure factors [19]. Generally ion
of valenceZ # 2 belong to the low-valence class, while
ions with valenceZ . 3 belong to the high-valence class
Ions with valenceZ ­ 3 typically belong to the high-
valence class also, although they may be characterized
a crossover form [10]. The analytical approach above c
easily be extended by using the modern theory of liqui
to obtain improved ion-ion structure factors [20], but t
include second order contributions to the pseudoatomnskd
necessitates not only second order electron response,
also contributions from ion-ion triplet structure. This ca
also be carried out with concepts from the theory
classical liquids [10].

These observations have a potentially useful experime
tal consequence: The principal features of electron-i
structure factors can be measured by exploiting the d
ferences between x-ray scattering, which probes the d
sity fluctuations ofall electrons, and neutron scatterin
which generally probes fluctuations of the nuclei [21
X-ray measurements are usually interpreted using a f
atom form factor, while our analysis suggests that f
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liquid metals, they should be interpreted with the pseud
atom as a form factor. When this is taken into account,
small difference between x-ray and neutron scattering d
terminations of the ion-ion structure factor should emerg
This difference is largest for metals with a high ratio of va
lence to core electrons. For Li (1:2) or Al (3:10), we pre-
dict a 2% difference at the first peak of the structure fact
[22], but the largest effects are expected for Be which h
the highest ratio of valence to core electrons (1:1) and for
which the difference could be as much as 7%, well with
experimental range. In addition, Be may straddle the tw
classes (k0 is nearkp), which means that small differences
in k̄0 with respect tok0 may lead to significant, qualitative
differences inSeiskd, making it a particularly interesting
candidate for illuminating nonlinear effects. In a simila
way we now anticipate that higher order effects can be r
vealed in partially covalent liquid metals, silicon and ga
lium being examples. The arguments presented sugg
that these should become relatively less important upon
increase in density (via pressure).

The arguments and associated analysis above there
provide a physical basis for understanding why linea
response theories in dense electron systems gener
perform so well. The accuracy of linear response
demonstrated for fluid metals by a simple analytica
linear-response theory augmented by a hard-sphere
proach to classical electron-ion structure factors, whic
already gives semiquantitative accuracy. It suggests t
there are two main classes of electron-ion correlatio
functions, one for high- and one for low-valence me
als. Finally, it is suggested that experimental advanc
in x-ray and neutron scattering may be poised to provid
measurements of these electron-ion correlation functio
and hence on a systematic exploration of the interactio
themselves.
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