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Spiral surface growth is well understood in the limit where the step motion is controlled by the
local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals
can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics i
governed by the nonlocal diffusion field of adatoms on the whole surface. We investigate this limit
numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically
Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected
step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time
steady-state growth on the screw dislocation density. [S0031-9007(98)07642-X]

PACS numbers: 81.10.Aj, 68.10.Jy, 81.15.–z
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Spiral surface growth is one of the most widesprea
growth mechanisms for crystals with atomically fla
surfaces. Such crystals grow by the incorporation of ne
atoms at monoatomic steps. If steps are pinned at a scr
dislocation, they wind around the dislocation and form
growth spirals. The step dynamics, and the final stead
state spacingl between successive steps (or equivalent
the surface slopeayl, wherea is the lattice parameter)
is determined by the interplay of surface diffusion, the
attachment kinetics of atoms at the steps, and the st
line tension. Recently, there has been renewed interest
spiral surface growth following the observations of spira
ridges in sputtered high-temperature superconducting th
films [1] and in certain semiconductor materials grown b
molecular beam epitaxy (MBE) [2].

In the classical Burton-Cabrera-Frank (BCF) mode
of surface growth [3], atoms are first adsorbed to th
crystalline surface (“adatoms”) and then diffuse alon
the surface until they are either incorporated into th
crystal at a step or desorb from the surface with
probability 1yts per unit time. Therefore, two different
growth regimes can be distinguished depending on th
ratio of l and the diffusion lengthxs ­

p
Dts, whereD

is the surface diffusion constant. When desorption is fa
(xs ø l), only adatoms which are deposited near a ste
are incorporated, and the dynamics of the steps islocal;
that is, the velocity of a step is completely determined b
the local supersaturation and the step curvature. This
the well understood regime described by the BCF theo
of spiral growth [3,4]. In many practical applications
such as MBE, however, spirals can form in a step-flow
regime at temperatures where desorption is negligibl
Then, all deposited atoms reach a step, and success
turns of the spiral are strongly coupled via diffusion. The
step dynamics becomes a highly nonlocal free bounda
problem. The case of steady-state growth has be
investigated by approximate theories [5,6] and by th
boundary integral (potential theory) method [7], but no
dynamical solution of the original equations has bee
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performed to validate these results. Another importa
difference between the two regimes is their approach
steady-state growth: in the local limit, the spiral finds i
final step spacing essentially after a single rotation.
contrast, without desorption one would expect a slow
relaxation to steady state due to the global redistribut
of adatoms. In particular, this relaxation may depend
the density of screw dislocations.

The main goal of the present Letter is to use a pha
field approach to study the dynamics of spiral ridge form
tion in the BCF model. This approach has recently be
used to efficiently solve a similar free boundary proble
for dendritic growth [8], and the mathematical results
this study are exploited here. One distinguishing featu
of our approach is that it makes it possible to investigate
full crossover from the local to the desorption-free lim
whereas previous works [9,10] have assumed a cons
effective supersaturation, as appropriate in the local lim
The phase-field method in this context can also be int
preted as a direct continuum analog to microscopic grow
models studied by Monte Carlo techniques [11]. We ma
quantitative predictions for the selected step spacing a
function of the deposition flux and for the time to approa
steady-state growth, under the assumption that the e
tic interaction between steps can be neglected. We fo
mainly on the situation where adatoms feel the same b
rier for attaching at ascending or descending steps, i.e.
Ehrlich-Schwoebel (ES) barrier [12], in which case attac
ment can be described by a single sticking coefficientk.

We write the BCF equations in terms of the dimensio
less diffusion fieldu ­ Vsc 2 c0

eqd, wherec is the adatom
concentration,V is the atomic area of solid, andc0

eq is
the equilibrium concentration at a straight step. The ba
equations have the form

≠u
≠t

­ D=2u 2
u
ts

1 F , (1)

yn ­ D

"√
≠u
≠n

!
1

2

√
≠u
≠n

!
2

#
, (2)
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u ­ d0k , (3)

where yn is the step normal velocity,s≠uy≠nd6 is the
normal concentration gradient on the lower (1) and upper
(2) side of the step, andk is the local step curvature,d0 ­
V2c0

eqgykBT , whereg is the step stiffness. The effective
deposition frequencyF is related to the actual deposition
flux per atomic areaFd by F ­ Fd 2 ceqVyts.

We simulate Eqs. (1)–(3) by reformulating them i
terms of a phase-field model similar to the one us
previously by Liu and Metiu [13] for a one-dimensiona
step train. The basic equations of our model are

tc

≠c

≠t
­ 2

dH
dc

­ W2=2c 1 sinspfc 2 csgd

1 luh1 1 cosfpsc 2 csdgj , (4)

≠u
≠t

­ D=2u 2
u
ts

1 F 2
1
2

≠c

≠t
, (5)

whereH is the free energy functional depending on th
fields c andu, cy2 represents the surface height in uni
of a, csy2 is the height of the initial substrate surface,u
is the concentration field defined above,W is the width
of the step,tc is the characteristic time of attachment o
adatoms at the steps, which is typically much smaller th
ts, and l is a dimensionless coupling constant. If w
replace the coupling between the two fields in Eq. (4)
a constant supersaturation, we obtain the continuum lim
of the solid-on-solid model. The main difference with th
model of Ref. [13] is that the term1 1 cosfpsc 2 csdg
is introduced in Eq. (4) to keep the minima ofH at fixed
values (c 2 cs ­ 2n 1 1), independently of the adatom
concentration. A screw dislocation is introduced at th
origin by choosingpcs equal to the polar angle in the
x-y plane, orpcs ­ atansyyxd, which corresponds to
shifting the energy minima up by one atomic spacing af
one complete counterclockwise rotation.

We now use the recent asymptotic analysis of Karm
and Rappel [8] to relate the equations of the phase-fi
model to the sharp-interface equations of the BCF mod
Since the analysis of Ref. [8] applies directly to Eqs. (
and (5), it need not be repeated here. The results of inte
are that in the thin-interface limitWyxs ! 0, the phase-
field equations reduce to the free boundary problem defin
by Eqs. (1) and (2), with Eq. (3) replaced by

u ­ d0k 1 ynyk , (6)

where d0 ­ a1Wyl and 1yk ­ a1stcylW 2 a2WyDd.
The kinetic coefficientk can then be made effectively in
finite (instantaneous attachment), thereby recovering
condition (3) of local equilibrium, by choosing the cou
pling constantl ­ tcDya2W2. The numerical constants
a1 anda2 are determined by the form of the energy fun
tion in Eq. (4) and can be evaluated using Eqs. (51), (54
(56), and (58),(59) in Ref. [8], together with the one
dimensional stationary profile solution of Eq. (4) withu ­
0 for an isolated step withcs7`d ­ 61,
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px

W

!
. (7)

The resulting numerical values area1 ­ 0.718 348 and
a2 ­ 0.510 442. Equations (4) and (5) were simulated
on a square lattice of edge lengthL ­ NDx with zero
flux boundary conditions andN varying between 100 and
600. As in Ref. [8], Eq. (4) was integrated using an ex
plicit Euler scheme, Eq. (5) using a Crank-Nicholson im-
plicit scheme. For the simulations, we measured length
and times in units of the phase-field parameters; i.e
W ­ tc ­ 1. In these units, we choseD ­ 10, which
yields l ­ 19.591, d0 ­ 0.0366, Dx ­ 0.5, and Dt ­
0.025. The final results, stated in dimensionless ratios o
physically well-defined quantities, do not depend on th
choice of W and tc as long asW ø xs, W ø l, and
tc ø 1yF.

Simulations were started from a straight ridge along
the x axis with one end pinned to the screw dislocation
(c ­ cs). After a long transient, the ridge reaches a
steady-state spiral shape with a constant angular rotati
frequency v, and a step spacingl. For our plots,
we definedl to be the distance between the first two
successive steps from the center. This value is only
few percent smaller than the asymptotic step spacing f
from the core. A plot ofl as a function ofF is shown in
Fig. 1 for xsyd0 ­ 136.4, andxs ­ ` (no desorption).

Let us now compare our results to the standard BC
theory of spiral growth that is based on the expression fo
the normal step velocity:

yn ­ y`s1 2 rckd , (8)

wherey` is the velocity of a straight step andrc is the
critical radius for island nucleation. Expressions forv

and l are then obtained by looking for shape preservin

FIG. 1. Step spacingl normalized byd0 as a function ofF
for finite and vanishing desorption. The standard BCF theor
in the local limit is shown as a dashed line for comparison.
4445
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solutions of Eq. (8) in a frame rotating at angular frequenc
v. In the local limit,l ¿ xs, the solution is [4]

l ­ 19rc , (9)

v ­
2p

19
y`

rc
, (10)

wherey` ­ 2Fxs andrc ­ d0yFts; Fts is the supersatu-
ration far away from steps. The corresponding curve forl
is plotted as a dashed line in Fig. 1. For an arbitrary rat
lyxs, Eq. (8) is no longer exact because the diffusion field
of the steps overlap. Cabrera and Coleman (CC) propos
[5] that a rough estimate ofl and v can be obtained by
assuming that Eqs. (9) and (10) continue to hold with

y` ­ 2Fxs tanhsly2xsd , (11)

rc ­ d0yus0d ­ d0yhFtsf1 2 1yI0slyxsdgj , (12)

where Eq. (11) is the exact expression for the veloci
of an infinite one-dimensional step train of spacingl,
and us0d is the supersaturation at the center of a circula
terrace of radiusl, obtained by solving Eq. (1) subject
to the boundary conditionusld ­ 0. This yieldsusrd ­
Ftsf1 2 I0sryxsdyI0slyxsdg, whereI0 is the zeroth order
modified Bessel function. One interesting consequence
the CC estimate is that, in the limitxsyl ! `,

l ­ Asd0DyFd1y3, (13)

v ­ 2pF , (14)

whereA ­ 761y3 ø 4.236. The expression forv is exact
and follows from global mass conservation: since forl ø

xs all adatoms reach a step, the spiral rotation frequen
must just beF in steady state. The same scaling relation
but with a different prefactorA, have been obtained by
the boundary integral method [7]. The scaling forl
becomes exact in the limitd0yl ! 0, which is practically
always satisfied. This can be understood from a simp
dimensional analysis. In the limit wherets ! `, all
parameters can be removed from the BCF equations
making the variable transformations,

t0 ­ tF, x0 ­ xsFyd0Dd1y3,

u0 ­ usDyd2
0Fd1y3, (15)

if one neglects≠tu in Eq. (1) which is of relative mag-
nitude d0yl. Our numerical results confirm this scaling
and yield a value ofA ­ 4.626. They also show that the
crossover froml , F21 to l , F21y3 is very slow.

Next, let us examine how the dynamical aspects of th
spiral ridge formation depend on the system sizeL, which
on a real surface is roughly given by the mean distan
between dislocations. In the local limitxs ø l, v andl
are sharply selected on a time scale of one rotation, a
the ridge winds itself into a classic Archimedian spira
(i.e., spiral with a constantl) in ,Lyl rotations. In
contrast, Fig. 2 shows that, in the desorption-free limit, th
transient spiral ridge evolves extremely slowly towards a
Archimedian spiral via a progressive reduction of the ste
4446
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spacing away from the core. The rotation frequency o
the center is faster thanF at the beginning, as a larger
step spacing allows more adatoms to attach to the ridg
and then slowly approachesF. In addition, Fig. 2 shows
that the shape is strongly influenced by the boundarie
during the initial transient. The final spacing, however
is independent of the system size. In order to quantify th
transient dynamics, we calculate the surface width:

wstd ­
1
2

kcsx, td2 2 kcsx, tdl2l1y2, (16)

where kfl ; L22
R

fdxdy. In steady state, we simply
have wst ! `d ~ Lyl for L ¿ l. We plot in Fig. 3
wstdysLyld as a function ofFtysLyld3 for different system
sizes. The data collapse remarkably onto a single curv
which shows that the time to reach steady state scales
sLyld3. This cubic law can be understood analytically by
considering the train dynamics in the region away from
the spiral core. In this region, the effect of the step
curvature can be neglected and a one-dimensional st
train is governed by the simple evolution equation≠tln ­
sFy2d sln21 2 ln11d, whereln is the distance between the
nth and (n 1 1)th steps. This set of discrete equations
can be transformed into a continuum equation for th
coarse-grained surface heighthsx, td (in units ofa) of the
standard conserved form [14]:

≠th ­ F 2 ≠xJ , (17)

where J is the surface current. Here,J ­ 2D≠xkul,
where kul ­ Fl2y12D ­ Fy12Ds≠xhd2 is the average
adatom concentration between two steps, which combine
with Eq. (17) yields

≠th ­ F 1
F
12

≠2
x

√
1

s≠xhd2

!
. (18)

t'=10 t'=50

t'=100 t'=500

FIG. 2. Spiral ridge at different timest0 ­ tF, equivalent to
the number of monolayers deposited, forxs ­ `, Fd2

0yD ­
1.344 3 1025, andLyd0 ­ 5464.
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FIG. 3. Rescaled surface widthwysLyld as a function of
rescaled timetFysLyld3 for four different system sizes. The
large fluctuations at early times occur during the initial windin
of the straight ridge into a spiral shape.

This equation has a scaling solution of the form

hsx, td ­ Ft 1 sLyldh̃sssxysLyld, tFysLyld3ddd, (19)

where the system size drops out of the resulting equati
for h̃. Thus, the relaxation time depends on the thir
power of the system size as observed in our simulations

Let us now examine how these results become mo
fied when the assumption of local equilibrium at the ste
is relaxed by lettingk be finite in Eq. (6). In this case,
an approximate expression forl can be obtained by re-
peating the estimate of CC with the modified bounda
conditionusld ­ y`yk ­ Flyk at the edge of the circular
terrace around the dislocation center. This yieldsus0d ­
s1 1 4DylkdFl2y4D, where as beforel ­ 19d0yus0d. So
for fast attachment (4Dylk ø 1) we recover the pre-
vious scalingl , F21y3, whereas for slow attachment
(4Dylk ¿ 1) we obtain the scalingl , sd0kyFd1y2 in
agreement with boundary integral results [7]. We pe
formed a series of simulations with a finitek by choosing
l ­ 1 and observed a slow crossover towardsF21y2 with
increasingF, which is consistent with this prediction. The
spiral ridge was also found to relax much slower than in th
local limit, but we did not conduct a systematic finite siz
scaling analysis to determine the dependence onL. Fi-
nally, if the present analyses are extended to the case o
finite ES barrier, one concludes that the scalingl , F21y3

remains unchanged. In this case, however, the step tr
away from the spiral core is known to be morphologicall
unstable [15], and this instability may alter spiral growt
in ways that remain to be investigated.

Several of the present predictions should be experime
tally testable. If desorption is negligible, one should ob
serve a dependence of the forml , F2a with a between
1y3 and 1y2. Moreover, by examining the ridge dynamic
one can obtain information about the relative importanc
g
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of desorption and diffusion. In particular, in experimen
the distanceL between screw dislocation centers is ofte
in the range of five to tenl [1,2]. If desorption is
negligible, the cubic dependence of the relaxation tim
to steady-state growth onl implies that the spiral ridge
should reach a maximum surface slope only after a fe
hundred monolayers are deposited.

The present phase-field approach should be gener
applicable to simulate a wide range of mesoscopic surfa
growth phenomena. Interesting future prospects are
include concentration fluctuations to study the crossov
from spiral growth to island nucleation at high temperatur
flux, to study the effect of anisotropy of the line tensio
and/or the attachment kinetics on the growth morpholog
and to include an ES barrier. Finally, elastic effec
which have recently been shown to influence spiral grow
dynamics [10] could be incorporated by coupling th
dynamics ofc andu to the strain field.
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