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Spiral surface growth is well understood in the limit where the step motion is controlled by the
local supersaturation of adatoms near the spiral ridge. In epitaxial thin-film growth, however, spirals
can form in a step-flow regime where desorption of adatoms is negligible and the ridge dynamics is
governed by the nonlocal diffusion field of adatoms on the whole surface. We investigate this limit
numerically using a phase-field formulation of the Burton-Cabrera-Frank model, as well as analytically.
Quantitative predictions, which differ strikingly from those of the local limit, are made for the selected
step spacing as a function of the deposition flux, as well as for the dependence of the relaxation time to
steady-state growth on the screw dislocation density. [S0031-9007(98)07642-X]

PACS numbers: 81.10.Aj, 68.10.Jy, 81.15.-z

Spiral surface growth is one of the most widespreagerformed to validate these results. Another important
growth mechanisms for crystals with atomically flat difference between the two regimes is their approach to
surfaces. Such crystals grow by the incorporation of nevsteady-state growth: in the local limit, the spiral finds its
atoms at monoatomic steps. If steps are pinned at a screfimal step spacing essentially after a single rotation. In
dislocation, they wind around the dislocation and formcontrast, without desorption one would expect a slower
growth spirals. The step dynamics, and the final steadyrelaxation to steady state due to the global redistribution
state spacing between successive steps (or equivalentlyof adatoms. In particular, this relaxation may depend on
the surface slope/I, wherea is the lattice parameter) the density of screw dislocations.
is determined by the interplay of surface diffusion, the The main goal of the present Letter is to use a phase-
attachment kinetics of atoms at the steps, and the stefjeld approach to study the dynamics of spiral ridge forma-
line tension. Recently, there has been renewed interest tion in the BCF model. This approach has recently been
spiral surface growth following the observations of spiralused to efficiently solve a similar free boundary problem
ridges in sputtered high-temperature superconducting thifor dendritic growth [8], and the mathematical results of
films [1] and in certain semiconductor materials grown bythis study are exploited here. One distinguishing feature
molecular beam epitaxy (MBE) [2]. of our approach is that it makes it possible to investigate the

In the classical Burton-Cabrera-Frank (BCF) modelfull crossover from the local to the desorption-free limit,
of surface growth [3], atoms are first adsorbed to thewhereas previous works [9,10] have assumed a constant
crystalline surface (“adatoms”) and then diffuse alongeffective supersaturation, as appropriate in the local limit.
the surface until they are either incorporated into theThe phase-field method in this context can also be inter-
crystal at a step or desorb from the surface with goreted as a direct continuum analog to microscopic growth
probability 1/7, per unit time. Therefore, two different models studied by Monte Carlo techniques [11]. We make
growth regimes can be distinguished depending on thquantitative predictions for the selected step spacing as a
ratio of  and the diffusion lengthry = /D7, whereD  function of the deposition flux and for the time to approach
is the surface diffusion constant. When desorption is fassteady-state growth, under the assumption that the elas-
(xs < 1), only adatoms which are deposited near a stepic interaction between steps can be neglected. We focus
are incorporated, and the dynamics of the stegsdal;  mainly on the situation where adatoms feel the same bar-
that is, the velocity of a step is completely determined byrier for attaching at ascending or descending steps, i.e., no
the local supersaturation and the step curvature. This iBhrlich-Schwoebel (ES) barrier [12], in which case attach-
the well understood regime described by the BCF theorynent can be described by a single sticking coeffickent
of spiral growth [3,4]. In many practical applications We write the BCF equations in terms of the dimension-
such as MBE, however, spirals can form in a step-flowless diffusion field: = Q(c — ¢? )» Wherec is the adatom
regime at temperatures where desorption is negligibleconcentration() is the atomic area of solid, ancf is
Then, all deposited atoms reach a step, and successiuge equilibrium concentration at a straight step. The basic
turns of the spiral are strongly coupled via diffusion. Theequations have the form
step dynamics becomes a highly nonlocal free boundary ou

u
problem. The case of steady-state growth has been EY DV’u — — + F, 1)
. . . . TS
investigated by approximate theories [5,6] and by the
boundary integral (potential theory) method [7], but no v =D ouy) _ [du )
dynamical solution of the original equations has been " on an ’
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u = dok, 3)
where v, is the step normal velocity(du/dn)+ is the
normal concentration gradient on the lower)(and upper
(=) side of the step, and is the local step curvaturdgy =
O%c,v/ksT, wherey is the step stiffness. The effective
deposition frequency is related to the actual deposition
flux per atomic ared’; by F = Fy — ceq€)/ 7.

We simulate Egs. (1)—(3) by reformulating them in
terms of a phase-field model similar to the one use

Yolx) =1 — iatan(exp@) @)
T w

The resulting numerical values arg = 0.718 348 and
a; = 0.510442. Equations (4) and (5) were simulated
on a square lattice of edge length= NAx with zero
flux boundary conditions and varying between 100 and
600. As in Ref. [8], Eq. (4) was integrated using an ex-

licit Euler scheme, Eq. (5) using a Crank-Nicholson im-

reviouslv by Liu and Metiu 1131 for ne-dimensional licit scheme. For the simulations, we measured lengths
previously by Liu a etiu [13] for a one-dimensiona and times in units of the phase-field parameters; i.e.,

step train. The basic equations of our model are W — 7, — 1. In these units, we chose — 10, which

Ty o _ _dH yields A = 19.591, dy = 0.0366, Ax = 0.5, and At =
at oY 0.025. The final results, stated in dimensionless ratios of
— Ww2v2 : _ physically well-defined quantities, do not depend on the
= WV sin(aly — 4)) choice of W and 7, as long asW <« x;, W < [, and
+ Auf{l + cog7 (& — o)1}, 4) 1, <1/F.
ou ; 1 oy Simulations were started from a straight ridge along
— =DV’u - — +F - — =, (5) thex axis with one end pinned to the screw dislocation
ot Ts 2 ot (4 = ). After a long transient, the ridge reaches a
where H is the free energy functional depending on thesteady-state spiral shape with a constant angular rotation
fields ¢ andu, /2 represents the surface height in unitsfrequency w, and a step spacindg. For our plots,
of a, /2 is the height of the initial substrate surface, we defined/ to be the distance between the first two
is the concentration field defined abowg, is the width  syccessive steps from the center. This value is only a
of the step,r, is the characteristic time of attachment of few percent smaller than the asymptotic step spacing far
adatoms at the steps, which is typically much smaller thafrom the core. A plot of as a function of is shown in
75, and A is a dimensionless coupling constant. If we Fig. 1 forx,/d, = 136.4, andx, = © (no desorption).
replace the coupling between the two fields in Eq. (4) by Let us now compare our results to the standard BCF
a constant supersaturation, we obtain the continuum limitheory of spiral growth that is based on the expression for
of the solid-on-solid model. The main difference with the the normal step velocity:
model of Ref. [13] is that the termh + cod 7 (¢ — ;)]
is introduced in Eg. (4) to keep the minima Hf at fixed U = Va(l = 1K), (8)
values {4 — ¢, = 2n + 1), independently of the adatom \yherev.. is the velocity of a straight step and is the
concentration. A screw dislocation is introduced at thegritical radius for island nucleation. Expressions for
origin by choosingm, equal to the polar angle in the and/ are then obtained by looking for shape preserving
x-y plane, ora, = atan(y/x), which corresponds to
shifting the energy minima up by one atomic spacing after
one complete counterclockwise rotation.
We now use the recent asymptotic analysis of Karma

and Rappel [8] to relate the equations of the phase-fielc N ~=="BCF theory - x/d-136.4
model to the sharp-interface equations of the BCF model. N —o phase field - x Jd00=136~4
Since the analysis of Ref. [8] applies directly to Egs. (4) , A—A phase field — x =0

and (5), it need not be repeated here. The results of interes 10" |-
are that in the thin-interface limi#/ /x; — 0, the phase- i
field equations reduce to the free boundary problem definec.s
by Egs. (1) and (2), with Eq. (3) replaced by ~
u=dok + v,/k, (6)
wheredy = a;W/X and 1/k = ai(7,/AW — a;W /D).
The kinetic coefficienk can then be made effectively in-
finite (instantaneous attachment), thereby recovering the
condition (3) of local equilibrium, by choosing the cou-
pling constant = 7,D/a,W?. The numerical constants 10" L . et |
a; anda, are determined by the form of the energy func- 10 2 10
tion in Eqg. (4) and can be evaluated using Egs. (51), (54)- Fd, /D
(56), and (58),(59) in Ref. [8], together with the one-rig 1 step spacing normalized byd, as a function ofF

dimensic_)nal stationary profile solution of Eq. (4) with=  for finite and vanishing desorption. The standard BCF theory
0 for an isolated step withy () = =1, in the local limit is shown as a dashed line for comparison.
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solutions of Eq. (8) in a frame rotating at angular frequencyspacing away from the core. The rotation frequency of

w. Inthe local limit,/ > x;, the solution is [4]

[ = 19r,, 9
27T Voo
— STV 1
T 09 n (10)

wherev., = 2Fx, andr. = dy/F,; F, is the supersatu-
ration far away from steps. The corresponding curvd for

is plotted as a dashed line in Fig. 1. For an arbitrary ratio
[/xs, EQ. (8) is no longer exact because the diffusion fields

Gf)ghere(f) = L2 [ fdxdy. In steady state, we simply

of the steps overlap. Cabrera and Coleman (CC) propos
[5] that a rough estimate df and w can be obtained by
assuming that Egs. (9) and (10) continue to hold with

Vo = 2Fx, tanh(l/2x;), (11)

re = do/u(0) = do/AF7,[1 — 1/Io(l/xy)]},  (12)

the center is faster thah at the beginning, as a larger
step spacing allows more adatoms to attach to the ridge,
and then slowly approachda In addition, Fig. 2 shows
that the shape is strongly influenced by the boundaries
during the initial transient. The final spacing, however,
is independent of the system size. In order to quantify the
transient dynamics, we calculate the surface width:

WD) = 3 0 = G, (19

have w(t — o) « L/l for L > [. We plot in Fig. 3
w(t)/(L/1) as a function ofFt /(L /1)? for different system
sizes. The data collapse remarkably onto a single curve,
which shows that the time to reach steady state scales as
(L/1)*. This cubic law can be understood analytically by

where Eq. (11) is the exact expression for the velocityconsidering the train dynamics in the region away from

of an infinite one-dimensional step train of spacihg

the spiral core. In this region, the effect of the step

and «(0) is the supersaturation at the center of a circulacurvature can be neglected and a one-dimensional step

terrace of radiud, obtained by solving Eq. (1) subject
to the boundary conditiom(/) = 0. This yieldsu(r)
Frg[l — Iy(r/x5)/Io(l/xs)], wherel, is the zeroth order

train is governed by the simple evolution equatigh, =
(F/2)(I,—1 — l.+1), wherel, is the distance between the
nth and @ + 1)th steps. This set of discrete equations

modified Bessel function. One interesting consequence ¢fan be transformed into a continuum equation for the

the CC estimate is that, in the limit /I — o,

I = A(dyD/F)'3, (13)

w =27F, (14)

whereA = 76!/3 = 4.236. The expression fow is exact
and follows from global mass conservation: sincelfex

coarse-grained surface heighx, r) (in units ofa) of the
standard conserved form [14]:

ah=F — 9,J, a7

where J is the surface current. Herd, = —Dd (u),
where (u) = FI*/12D = F/12D(d,h)* is the average
adatom concentration between two steps, which combined

xs all adatoms reach a step, the spiral rotation frequency,iip Eq. (17) yields

must just beF in steady state. The same scaling relations,

but with a different prefactod, have been obtained by
the boundary integral method [7]. The scaling fbr
becomes exact in the limity/! — 0, which is practically

always satisfied. This can be understood from a simple

dimensional analysis. In the limit wherg, — «, all

parameters can be removed from the BCF equations by

making the variable transformations,
t' =tF, x'=x(F/dyD)"?,
u' = u(D/dF)"?, (15)

if one neglectsd;u in Eqg. (1) which is of relative mag-

nitude do/I. Our numerical results confirm this scaling
and yield a value oA = 4.626. They also show that the
crossover fromi ~ F~'tol ~ F~'/3is very slow.

Next, let us examine how the dynamical aspects of the

spiral ridge formation depend on the system dizevhich

on a real surface is roughly given by the mean distance

between dislocations. In the local limit < [, v and!/

are sharply selected on a time scale of one rotation, and

the ridge winds itself into a classic Archimedian spiral
(i.e., spiral with a constant) in ~L/I rotations. In

1
(9xh)?

(18)

)

@

7
A\

F
dh=F + — o2
' 12 X(

t'=500

2

contrast, Fig. 2 shows that, in the desorption-free limit, the-i_ 2. spiral ridge at different timeg = ¢F, equivalent to
transient spiral ridge evolves extremely slowly towards arhe number of monolayers deposited, far= «, Fd2/D =

Archimedian spiral via a progressive reduction of the stef.344 X 1073, andL/d,
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S obobes of desorption and diffusion. In particular, in experiments
the distancd. between screw dislocation centers is often
in the range of five to ten [1,2]. If desorption is
negligible, the cubic dependence of the relaxation time
to steady-state growth ohimplies that the spiral ridge
should reach a maximum surface slope only after a few
hundred monolayers are deposited.
| The present phase-field approach should be generally
6—oL/I=40.9 1 applicable to simulate a wide range of mesoscopic surface
G-—aL/1=27.3 1 growth phenomena. Interesting future prospects are to
f___f: t;::ig'g 1 include concentration fluctuations to study the crossover
— 1 from spiral growth to island nucleation at high temperature/
] flux, to study the effect of anisotropy of the line tension
and/or the attachment kinetics on the growth morphology,
7Y S— and to include an ES barrier. Finally, elastic effects
tF/(L/|)3 which have recently been shown to influence spiral growth
dynamics [10] could be incorporated by coupling the
FIG. 3. Rescaled surface widtw/(L/l) as a function of dynamics ofiy andu to the strain field.
rescaled timerF/(L/1)° for four different system sizes. The “This research was supported by U.S. DOE Grant
I(f}r?ﬁefgf;ijgﬁmgga; ﬁ]a;gyatgﬁzloscﬁ:ggunng the initial winding No. DE-FG02-92ER45471 and benefited from supercom-
puter time at NERSC. We thank R. Kohn, D. Wolf, and
A. Zangwill for valuable exchanges.
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